11111 JEFFERSON BOULEVARD MIXED-USE PROJECT
Draft Environmental Impact Report
State Clearinghouse No. 2020090329

Prepared for
City of Culver City
Culver City Case Nos: P2021-0025- CP/DOBI/TPM/ZCMA

May 2021
OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.
TABLE OF CONTENTS

11111 Jefferson Boulevard Mixed-Use Project
Draft Environmental Impact Report

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>ES-1</td>
</tr>
<tr>
<td>ES.1 Project Description</td>
<td>ES-1</td>
</tr>
<tr>
<td>ES.2 Issues Raised during Notice of Preparation Process and Areas of</td>
<td>ES-3</td>
</tr>
<tr>
<td>Controversy</td>
<td></td>
</tr>
<tr>
<td>ES.3 Significant and Unavoidable Environmental Impacts</td>
<td>ES-3</td>
</tr>
<tr>
<td>ES.4 Alternatives that Would Reduce or Avoid Significant Impacts</td>
<td>ES-4</td>
</tr>
<tr>
<td>ES.5 Summary of Environmental Impacts</td>
<td>ES-6</td>
</tr>
<tr>
<td>Chapter 1, Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Purpose of the Draft EIR</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 EIR Scoping Process</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 Format of the Draft EIR</td>
<td>1-4</td>
</tr>
<tr>
<td>1.4 Public Review of the Draft EIR</td>
<td>1-6</td>
</tr>
<tr>
<td>Chapter 2, Project Description</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Project Location and Surrounding Uses</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Existing Conditions</td>
<td>2-4</td>
</tr>
<tr>
<td>2.4 General Plan Land Use and Zoning</td>
<td>2-4</td>
</tr>
<tr>
<td>2.5 Statement of Project Objectives</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6 Description of Proposed Project</td>
<td>2-6</td>
</tr>
<tr>
<td>2.7 Project Design Features</td>
<td>2-25</td>
</tr>
<tr>
<td>2.8 Anticipated Project Approvals</td>
<td>2-29</td>
</tr>
<tr>
<td>Chapter 3, Environmental Setting</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Overview of Environmental Setting</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Related Projects</td>
<td>3-2</td>
</tr>
<tr>
<td>Chapter 4, Environmental Impacts Analysis</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Air Quality</td>
<td>4.1-1</td>
</tr>
<tr>
<td>4.2.1 Historical Resources</td>
<td>4.2.1-1</td>
</tr>
<tr>
<td>4.2.2 Archaeological Resources</td>
<td>4.2.2-1</td>
</tr>
<tr>
<td>4.3 Energy</td>
<td>4.3-1</td>
</tr>
<tr>
<td>4.4 Geology and Soils - Paleontological Resources</td>
<td>4.4-1</td>
</tr>
<tr>
<td>4.5 Greenhouse Gas Emissions</td>
<td>4.5-1</td>
</tr>
<tr>
<td>4.6 Hazards and Hazardous Materials</td>
<td>4.6-1</td>
</tr>
<tr>
<td>4.7 Land Use and Planning</td>
<td>4.7-1</td>
</tr>
<tr>
<td>4.8 Noise</td>
<td>4.8-1</td>
</tr>
<tr>
<td>4.9 Population and Housing</td>
<td>4.9-1</td>
</tr>
<tr>
<td>4.10.1 Public Services - Fire Protection</td>
<td>4.10.1-1</td>
</tr>
<tr>
<td>4.10.2 Public Services - Police Protection</td>
<td>4.10.2-1</td>
</tr>
<tr>
<td>4.11 Transportation</td>
<td>4.11-1</td>
</tr>
<tr>
<td>4.12 Tribal Cultural Resources</td>
<td>4.12-1</td>
</tr>
</tbody>
</table>
Chapter 5, Alternatives .. 5-1
 5.1 Introduction .. 5-1
 5.2 CEQA Requirements for Alternatives Analysis ... 5-1
 5.3 Project Summary ... 5-3
 5.4 Project Objectives ... 5-4
 5.5 Summary of Project Alternatives ... 5-5
 5.6 Alternatives Considered and Rejected ... 5-5
 5.7 Alternatives to the Proposed Project .. 5-8
 5.8 Environmentally Superior Alternative ... 5-5

Chapter 6, Other CEQA Considerations .. 6-1
 6.1 Irreversible Environmental Changes .. 6-1
 6.2 Significant Unavoidable Impacts ... 6-2
 6.3 Growth-Inducing Impacts ... 6-2
 6.4 Potential Secondary Effects Related to Project Mitigation Measures 6-4
 6.5 Effects Found Not to Be Significant in the Initial Study .. 6-5

Chapter 7, References .. 7-1

Chapter 8, List of EIR Preparers and Organizations and Persons Contacted 8-1
 8.1 Lead Agency ... 8-1
 8.2 Project Applicant and Applicant Team ... 8-1
 8.3 Environmental Impact Report Preparation ... 8-1
 8.4 Agencies Consulted .. 8-3

Chapter 9, Standard Terms, Acronyms, and Abbreviations .. 9-1

Appendices
A. Notice of Preparation (NOP), Initial Study, Scoping Meeting Materials, and Comments
 on the NOP
 A-1. Notice of Preparation
 A-2. Initial Study
 A-3. Scoping Meeting Materials
 A-4. Comments on the NOP
B. Air Quality Technical Appendix
C. Cultural Resources Assessment Report
D. Energy Technical
E. Paleontological Resources Assessment Report
F. Greenhouse Gas Technical Appendix
G. Hazards and Hazardous Materials Documentation
 G-1. Phase I Environmental Site Assessment
 G-2. Phase II Environmental Site Assessment
 G-3. Vapor Intrusion Human Health Risk Assessment Report
H. Noise Documentation
I. Public Services Correspondence
 I-1. Culver City Fire Department Correspondence
 I-2. Culver City Police Department Correspondence
J. Transportation Impact Study
K. Tribal Cultural Resources Documentation
L. Alternatives Documentation
List of Figures

2-1 Regional and Site Location Map ... 2-2
2-2 Aerial Photograph of the Project Site and Vicinity .. 2-3
2-3 Conceptual Site Plan .. 2-7
2-4 Ground Level Plan ... 2-10
2-5 Second Level Plan .. 2-11
2-6 Third Level Plan .. 2-12
2-7 Project Elevations .. 2-14
2-8 Rendering of Sepulveda Boulevard Frontage .. 2-15
2-9 Rendering of Paseo Courtyard .. 2-16
2-10 Rendering of Machado Park .. 2-18
2-11 Rendering of Paseo Courtyard and Ground Floor Spaces 2-19
2-12 Rendering of Pedestrian Connection at Janisann Avenue 2-22
3-1 Related Projects Map ... 3-5
4.1-1 Boundaries of the South Coast Air Quality Management District 4.1-2
4.1-2 Air Quality Sensitive Receptors .. 4.1-17
4.7-1 Project Site and Surrounding Land Uses ... 4.7-2
4.7-2 General Plan Land Use Element Map .. 4.7-5
4.7-3 Zoning Map ... 4.7-8
4.8-1 Decibel Scale and Common Noise Sources ... 4.8-2
4.8-2 Noise Measurement Locations ... 4.8-8
4.8-3 Guideline for Noise Compatible Land Use .. 4.8-14
4.10.1-1 CCFD Fire Stations in the Project Vicinity .. 4.10.1-2
4.10.2-1 Police Stations ... 4.10.2-3
4.11-1 Existing Transit Service .. 4.11-4
4.11-2 Existing and Planned Bicycle Facilities .. 4.11-5

List of Tables

ES-1 Summary of Project Impacts, Project Design Features, and Mitigation Measures .. ES-7
2-1 Development Program Summary .. 2-8
2-2 Summary of Project Design Features .. 2-26
3-1 Related Projects List .. 4.1-4
4.1-1 South Coast Air Basin Attainment Status (Los Angeles County) 4.1-12
4.1-2 Ambient Air Quality Data .. 4.1-13
4.1-3 Estimated Existing Site Emissions (pounds per day) 4.1-15
4.1-4 Ambient Air Quality Standards .. 4.1-18
4.1-5 Unmitigated Regional Maximum Daily Construction Emissions
(pounds per day) ... 4.1-45
4.1-6 Unmitigated Regional Maximum Daily Operational Emissions
(pounds per day) ... 4.1-47
4.1-7 Unmitigated Localized Construction Emissions (pounds per day) 4.1-48
4.1-8 Maximum Unmitigated Localized Operational Emissions
(pounds per day) ... 4.1-49
4.1-9 Unmitigated Maximum Health Risk Impacts for Off-Site Sensitive
Receptors .. 4.1-51
4.1-10 Mitigated Regional Maximum Daily Construction Emissions
(pounds per day) ... 4.1-55
4.1-11 Mitigated Localized Construction Emissions (pounds per day) 4.1-56
Table of Contents

4.1-12 Mitigated Maximum Health Risk Impacts for Off-Site Sensitive Receptors ... 4.1-57
4.3-1 Existing Annual Regional Energy Use .. 4.3-2
4.3-2 Electric Power Mix Delivered to Retail Customers in 2019 .. 4.3-3
4.3-3 Existing Site Annual Energy Use .. 4.3-5
4.3-4 Summary of Energy Use During Project Construction .. 4.3-15
4.3-5 Summary of Annual Net New Energy Use During Project Operation .. 4.3-17
4.5-1 State of California Greenhouse Gas Emissions .. 4.5-3
4.5-2 Existing Site GHG Emissions .. 4.5-7
4.5-3 Estimated Greenhouse Gas Emissions Reductions Required by HSC Division 25.5 .. 4.5-17
4.5-4 Project Consistency with Applicable Scoping Plan Greenhouse Gas Reduction Strategies 4.5-31
4.5-5 Project Construction Greenhouse Gas Emissions .. 4.5-42
4.5-6 Existing Site GHG Emissions to be Removed .. 4.5-43
4.5-7 Estimated Annualized Unmitigated Project Greenhouse Gas Emissions .. 4.5-44
4.7-1 Comparison of the Project to Applicable Policies of the Culver City General Plan 4.7-17
4.7-2 Comparison of the Project to Applicable Land Use Regulations of the Culver City Zoning Code 4.7-25
4.7-3 Consistency of the Project with Applicable Goals of the 2020 RTP/SCS .. 4.7-30
4.8-1 Summary of Ambient Noise Measurements .. 4.8-9
4.8-2 Predicted Existing Vehicular Traffic Noise Levels .. 4.8-10
4.8-3 Construction Vibration Damage Criteria .. 4.8-12
4.8-4 Groundborne Vibration Impact Criteria for General Assessment .. 4.8-13
4.8-5 City of Culver City Exterior Noise Standards .. 4.8-15
4.8-6 Construction Equipment Noise Levels .. 4.8-25
4.8-7 Estimate of Construction Noise Levels (L_{eq}) Without Mitigation at Existing Off-Site Sensitive Receiver Locations ... 4.8-27
4.8-8 Estimate of Off-Site Construction Traffic Noise Levels Without Mitigation .. 4.8-34
4.8-9 Off-Site Traffic Noise Impacts – Existing with Project Conditions ... 4.8-36
4.8-10 Off-Site Traffic Noise Impacts – Future (2024) with Project Conditions ... 4.8-37
4.8-11 Off-Site Traffic Noise Impacts – Future (2045) with Project Conditions ... 4.8-39
4.8-12 Parking Structure Noise Levels (L_{eq}) .. 4.8-40
4.8-13 Open Space Noise Levels (L_{eq}) ... 4.8-43
4.8-14 Noise Levels at Machado Park with Occasional Use of Amplified Sound System (L_{eq}) .. 4.8-45
4.8-15 Composite Operational Noise Levels (L_{eq}) .. 4.8-46
4.8-16 Vibration Source Levels for Construction Equipment ... 4.8-47
4.8-17 Off-Site Traffic Noise Impacts – Future 2024 Cumulative Increment .. 4.8-50
4.8-18 Off-Site Traffic Noise Impacts – Future 2045 Cumulative Increment .. 4.8-51
4.8-19 Mitigated Construction Noise Levels .. 4.8-53
4.9-1 Projected Population, Housing, and Employment Estimates for Culver City .. 4.9-2
4.9-2 Projected Increases in Population, Housing, and Employment .. 4.9-12
4.9-3 Projected Population, Housing, and Employment Increases for the City .. 4.9-12
4.9-4 Total Cumulative Development .. 4.9-15
4.9-5 Cumulative Population, Housing and Employment Growth For City ... 4.9-15
4.10.1-1 CCFD Fire Stations Located in the Vicinity of the Project Site ... 4.10.1-3
4.10.1-2 CCFD Response Times ... 4.10.1-5

City of Culver City
SCH No. 2020090329

1111 Jefferson Boulevard Mixed Use Project
May 2021
Table of Contents

4.10.1-3 Related Projects for Fire Protection ... 4.10.1-18
4.10.2-1 Culver City 2020 Part I Crime Statistics .. 4.10.2-4
4.10.2-2 Related Projects for Police Protection ... 4.10.2-14
4.11-1 Consistency of the Project with Applicable Policies of the Circulation
 Element ... 4.11-17
4.11-2 Consistency of the Project with Applicable Action of the Action Plan 4.11-19
4.11-3 Consistency of the Project with Applicable Policies of the Complete
 Streets Policy .. 4.11-19
5-1 Comparison of Alternative 2 to the Project ... 5-21
5-2 Comparison of Alternative 3 to the Project ... 5-36
5-3 Comparison of the Impacts of the Project and Alternatives 5-52
EXECUTIVE SUMMARY

This Draft Environmental Impact Report (Draft EIR) has been prepared pursuant to the requirements of the California Environmental Quality Act, Public Resources Code Sections 21000 et. seq. (CEQA) with respect to the proposed mixed-use residential and commercial project (Project) on an approximately 3.43-acre (149,553 square feet [sf]) triangular shaped site (Project Site) located in the City of Culver City (Culver City or City). In accordance with CEQA Guidelines Section 15123, this chapter of the Draft EIR includes (1) a brief description of the Project; (2) issues raised during the Notice of Preparation (NOP) process including areas of controversy known to the lead agency; (3) significant and unavoidable impacts; (4) identification of alternatives that would reduce or avoid environmental impacts; and (5) summary of Project impacts, with proposed project design features and mitigation measures.

ES.1 Project Description

The Project Site encompasses approximately 3.43 acres at 11111 Jefferson Boulevard in the southern part of Culver City. The Project Site is generally bounded by Jefferson Boulevard to the east, Machado Road to the north and Sepulveda Boulevard to the west.

The Project Site is relatively flat with elevations ranging from approximately 35 feet from the northwestern corner of the Project Site at the intersection of Sepulveda Boulevard and Machado Road and sloping down to 33 feet on the southern corner of the Project Site at the intersection of Sepulveda Boulevard and Jefferson Boulevard. The Project Site is made up of four parcels from north to south. The northernmost parcel consists of a surface parking lot with 34 parking spaces used by the Exceptional Children’s Foundation (ECF) as off-site parking. The northern central parcel is occupied by a United States Post Office (27,225 sf) built in the early 1960s and includes a mail processing and distribution center and a rear loading dock. The next parcel to the south is occupied by Coco’s Bakery Restaurant (6,064 sf) built in the late 1960s. The southernmost parcel is occupied by Valvoline Instant Oil Change (1,722 sf) built in the 1990s. The Project Site includes approximately 216 existing vehicle parking spaces, including 194 regular spaces, 12 truck loading spaces, and 10 handicap spaces, across all existing uses.

The Project would involve demolition of approximately 35,011 sf of existing buildings on the Project Site to support the new mixed-use development. The Project would consist of five stories of development over one subterranean level for vehicular parking and building infrastructure. The proposed five-story building would be 67 feet tall (70.5 feet including the parapet) with a total building area of 555,221 sf, including all parking areas (subterranean, ground level, and above-
The Project would provide an approximately 13,800 sf Machado Park, which would be publicly accessible but privately maintained as well as an approximately 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard and between the retail spaces at the southern end of the Project Site would welcome pedestrian, bike, bus and other foot traffic through and into the Project Site. An additional 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue would also be provided. All publicly accessible open space areas on the ground floor would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site from the ground-floor parking level or via escalators from the above- and below-ground parking levels.

There are currently ten driveways surrounding the Project Site: five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. The Project would change the locations of and remove seven driveways, resulting in three remaining driveways to serve the Project Site. Vehicular access to the Project Site would be provided from one driveway on Sepulveda Boulevard at Janisann Avenue and two driveways on Machado Road. Access for trucks and deliveries would be off of Machado Road where they would access a 2,856 sf loading dock within the Project Site via the eastern-most retail entrance. The Project also includes a proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard. Additionally, the Project includes proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into the Project and eastbound Machado Road, respectively.

The Project would provide three levels of vehicular parking including one subterranean level. Structured parking containing 653 vehicular parking spaces would be provided with 308 spaces for residential uses, 311 spaces for commercial uses, and 34 for the Exceptional Children’s Foundation (ECF). Bicycle parking would include 71 long-term and 26 short-term bicycle parking spaces provided in various locations throughout the Project Site. Bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market by the surface parking spaces for the retail uses. Bicycle lockers would be provided for residents in the subterranean parking level.

1. The building height is measured pursuant to Culver City Municipal Code (CCMC) Section 17.300.025, which requires that height be measured as the vertical distance from the existing grade of the site to an imaginary plane located the allowed number of feet above and parallel to the grade. The existing grade has been established through a survey as 34.8 feet.

2. Floor area ratio (FAR) is calculated by using the usable square footage of 311,109 sf divided by the 149,553 sf Project Site area.
Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City. Separate from the Project, the City intends to implement a bicycle share facility on the Project Site adjacent to the Machado Park. The bicycle share facility would allow for connections to the City’s proposed bicycle lanes along Jefferson Boulevard and Sepulveda Boulevard as part of the City’s Bicycle & Pedestrian Action Plan.

ES.2 Issues Raised during Notice of Preparation Process and Areas of Controversy

The following lists potential environmental issues or concerns raised in response to the NOP circulation, the comment period for which extended from September 17, 2020 through October 19, 2020, and during the virtual Community Meeting and EIR Scoping Meeting held on October 6, 2020. The NOP comments are contained in Appendix A-4 of this Draft EIR.

- Size and scale of the Project.
- Aesthetics, light and glare, and shading impacts on the adjacent neighborhood.
- Air quality impacts of the Project (local and regional emissions, etc.).
- Consistency of rezoning the Project Site.
- Noise impacts on the adjacent neighborhood.
- Traffic impacts on the local streets and Caltrans facilities.
- Neighborhood cut-through traffic.
- Traffic impacts of the proposed road improvements on Machado Road.
- Pedestrian safety.
- Demolition of the existing U.S. Post Office and Coco’s Bakery Restaurant.

ES.3 Significant and Unavoidable Environmental Impacts

Based on the analysis contained in Chapter 4, *Environmental Impact Analysis*, of this Draft EIR, the Project would not result in any significant and unavoidable impacts and would not result in any cumulatively considerable impacts.
ES.4 Alternatives that Would Reduce or Avoid Significant Impacts

ES.4.1 Alternative 1: No Project

The No Project Alternative, as required by CEQA, consists of the circumstance under which the Project would not proceed, pursuant to Section 15126.6(e)(3)(B) of the CEQA Guidelines. The No Project Alternative assumes that no new development would occur within the Project Site. As mentioned in Chapter 2, Project Description, of this Draft EIR, the Project Site is currently developed with a post office, restaurant, and oil change facility. Therefore, the existing buildings on the Project Site would remain unchanged. The Coco’s Bakery Restaurant and the Valvoline Instant Oil Change would continue to operate under Alternative 1. However, as the United States Post Office has indicated it plans to move locations, the United States Post Office building is assumed to move at some point in the future and remain vacant until such time it is occupied by another commercial or industrial use, which may be difficult given the unique aspects of the building’s form and potential lack of suitability for another use.

ES.4.2 Alternative 2: Code-Compliant Alternative

Under the Code-Compliant Alternative, Alternative 2, the Project Site would be developed with uses that are permitted by right under current zoning and land use designations. The 3.43-acre Project Site is majority zoned Commercial General (CG) (3.27 acres) with a small portion (0.16 acres) of the northernmost parcel adjacent to Machado Road being zoned Single-Family (R-1). Mixed-use developments are not permitted within R-1 Zones, and a maximum of one dwelling unit is permitted per parcel. Development of a single unit on the R-1 parcel is impractical given the elongated shape of the lot combined with the setback requirements. Therefore, under Alternative 2, no uses would be developed on the northernmost parcel that is split zoned; it would remain a surface parking lot that would be used by ECF. All residential and commercial uses would be developed on the remaining 3.27 acres. Alternative 2, like the Project, would include one building centrally located on the Project Site, that would include residential and commercial uses. Access to the Project Site would be provided via the three driveways that are proposed under the Project.

Alternative 2 would include development of 114 residential units, with a residential density of 34.8 units/acre, consistent with the 35 units/acre density permitted for the Project Site. Alternative 2 would be three stories with a maximum height of 44 feet, which would be within the height limit of 56 feet. The ground floor would consist of 15,000 sf of restaurant area and a 3,000 sf residential lobby. Alternative 2 would also include 9,441 sf publicly accessible open space across the Project Site, compared to the 28,200 sf under the Project, with an additional 10,000 sf of common residential open space on the second floor. Given the reduction in open space under Alternative 2, Machado Park would not be developed. Alternative 2 would include 313 vehicle parking spaces (163 spaces for residential uses and 150 spaces for restaurant uses) in ground floor and second floor garages. In total, Alternative 2 would develop 318,720 sf on the Project Site, including 15,000 sf of restaurant uses, 166,000 sf of residential uses, and 137,720 sf of parking contained in a two-level parking structure. No subterranean parking would be provided. As no subterranean parking would be provided, parking under Alternative 2 would front several facades on the major arterials.
surrounding the Project Site and would not be shielded by any uses as under the Project. Alternative 2 would require excavation to accommodate building foundations, utilities and other improvements. Up to approximately 13,000 cubic yards of earthwork would be excavated under Alternative 2 compared to the 88,000 cubic yards of earthwork under the Project.

Under Alternative 2, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would be developed. Similarly, Alternative 2 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into Alternative 2 and eastbound Machado Road, respectively. Alternative 2 would result in a FAR of 2.5:1.

ES.4.3 Alternative 3: Reduced Density Alternative

The Reduced Density Alternative would reduce proposed residential and commercial uses on the Project Site by 20 percent. Alternative 3 would develop a total of 184 residential units, inclusive of 9 units affordable to very low income households) and 53,200 sf of commercial uses, including the same uses as under the Project (e.g., market, restaurants, coffee and bakery, office, retail, and gym/studio fitness center). Alternative 3 would, similar to the Project, develop a five-story building that would be 67 feet tall (70.5 feet including the parapet). Under Alternative 3, 530 vehicle parking spaces, including 34 spaces for ECF, would be provided. One level of subterranean parking would still be provided under Alternative 3, similar to under the Project. Alternative 3 would require excavation to accommodate subterranean parking, building foundations, utilities and other improvements. Up to approximately 70,000 cubic yards of earthwork would be excavated under Alternative 3 compared to the 88,000 cubic yards of earthwork under the Project.

Under Alternative 3, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would still be developed. Similarly, Alternative 3 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into the Project and eastbound Machado Road, respectively.

Under Alternative 3, a total of 23,040 sf of publicly accessible open space would be provided, compared to the 28,800 sf under the Project. Given the reduction in open space under Alternative 3, Machado Park would not be developed.

ES.4.5 Environmentally Superior Alternative

Based on the analysis in Chapter 5, *Alternatives*, of this Draft EIR, of the alternatives analyzed in this Draft EIR, the No Project Alternative, would be considered the environmentally superior because it would not involve new development and assumes on-site uses would continue to operate similar to existing conditions, with the exception of the United States Post Office building which is assumed to move at some point in the future and remain vacant until such time it is occupied by
another commercial or industrial use. Although the No Project Alternative would not meet any of the Project Objectives, it would avoid all of the Project’s potentially significant impacts and would have reduced impacts compared to the Project, with the exception of Alternative 1 having greater impacts related to population and housing and design hazards. However, because the No Project Alternative has been identified as the environmentally superior alternative, identification of another environmentally superior alternative is required.

Alternative 2 would reduce more potential impacts, but would still require similar mitigation measures as under the Project. As both Alternatives 2 and 3 would consist of a lower scale of excavation and development compared to the Project, both alternatives would reduce the Project’s less-than-significant or less-than-significant-with-mitigation impacts related to construction (e.g., air quality, archaeological and paleontological resources, and noise).

As Alternative 2 would not develop office uses, Mitigation Measure TRAF-1 which is implemented under the Project to reduce the Project’s daily work VMT, would not be necessary, and the Project’s potential daily work VMT impact is avoided. However, as Alternative 3 would develop office uses, although at a smaller scale, Alternative 3 would still require implementation of Mitigation Measure TRAF-1 to reduce the daily work VMT impact to a less-than-significant level. In conclusion, because Alternative 2 would result in the most reduction of impacts compared to the Project, it is considered to be the Environmentally Superior Alternative.

However, because Alternative 2 would not develop affordable housing units, would not include a grocery store, or provide Machado Park, Alternative 2 would not meet any of the Project Objectives to the same extent as under the Project. Similarly, while Alternative 3 would develop affordable housing units, it would not develop as many as under the Project and would also not develop the Machado Park. Therefore, Alternative 3 would meet more objectives, though to a lesser extent than the Project.

ES.5 Summary of Environmental Impacts

This section provides a summary of impacts, mitigation measures, and impacts after implementation of the mitigation measures associated with implementation of the Project. The summary is provided by environmental issue area below in Table ES-1, Summary of Project Impacts, Project Design Features and Mitigation Measures. Table ES-1 provides the impact statement for each issue area evaluated in Chapter 4, Environmental Impact Analysis. The summary also includes any Project Design Features (PDFs) and mitigation measures, as applicable.
TABLE ES-1
SUMMARY OF PROJECT IMPACTS, PROJECT DESIGN FEATURES, AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. AIR QUALITY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Air Quality Management Plan (Impact AIR-1a): Project construction would increase the frequency or severity of an existing violation for pollutant emissions, but would not exceed the assumptions utilized in preparation of the Air Quality Management Plan. Impacts associated with Project construction are therefore considered potentially significant. | No project design features are required. | AIR-1: Construction of the Project shall incorporate the following conditions:
 a. The Project shall use off-road diesel-powered construction equipment that meets or exceeds the CARB and USEPA Tier 4 off-road emissions standards for equipment rated at 50 horsepower or greater and not identified under b or c. below. Such equipment will be outfitted with Best Available Control Technology (BACT) devices, including a CARB-certified Level 3 Diesel Particulate Filter or equivalent. These requirements shall be included in applicable bid documents and successful contractor(s) must demonstrate the ability to supply such equipment.
 b. During the site preparation and excavation/grading phases, watering must be conducted a minimum of 4 times per day. Alternatively, other fugitive dust emissions practices shall be implemented that will reduce fugitive dust to at least the same level.
 c. On-road haul trucks, including delivery and those conveying excavated material, shall not exceed 120 truck trips (round trips, or 240 one-way trips) per day. | Less than Significant with Mitigation |
<p>| Air Quality Management Plan (Impact AIR-1b): Project operations would not increase the frequency or severity of an existing air quality violation for pollutant emissions and would not conflict with or obstruct implementation of relevant air quality policies in the adopted Air Quality Management Plan. Therefore, operational impacts would be less than significant. | No project design features are required. | N/A | Less than Significant |
| Regional Impacts (Impact AIR-2a): The South Coast Air Basin is designated as non-attainment for ozone, PM10, and PM2.5 under federal and/or state ambient air quality standards. Construction of the Project would not exceed the applicable SCAQMD significance thresholds for VOC, PM10, or PM2.5. However, construction of the Project would exceed the applicable SCAQMD significance threshold for NOx. Therefore, impacts associated with construction emissions are considered potentially significant. | N/A | Refer to Mitigation Measure AIR-1. | Less than Significant with Mitigation |</p>
<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Impacts (Impact AIR-2b): The South Coast Air Basin is designated as non-attainment for ozone, PM10, and PM2.5 under federal and/or state ambient air quality standards. Operation of the Project would not exceed the applicable SCAQMD significance thresholds for ozone precursor emissions (i.e., VOCs and NOx), PM10, or PM2.5 and operational impacts would be less than significant.</td>
<td>N/A</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Non-Attainment Criteria Pollutants (Impact AIR-3a): Construction of the Project would have the potential to exceed localized significance thresholds at off-site sensitive receptors. Therefore, localized construction impacts are considered potentially significant.</td>
<td>N/A</td>
<td>Refer to Mitigation Measures AIR-1.</td>
<td>Less than Significant with Mitigation</td>
</tr>
<tr>
<td>Non-Attainment Criteria Pollutants (Impact AIR-3b): Operation of the Project would not exceed the localized significance thresholds at off-site sensitive receptors. Therefore, operational impacts would be less than significant.</td>
<td>N/A</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Carbon Monoxide Hotspots (Impact AIR-3c): Project construction would not cause or contribute to an exceedance of the CAAQS one-hour or eight-hour CO standards of 20 or 9.0 (ppm), respectively. Therefore, CO hotspots impacts would be less than significant.</td>
<td>N/A</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Toxic Air Contaminants (Impact AIR-3d): Construction of the Project would generate substantial short-term TAC emissions from DPM that would exceed the health risk threshold for cancer risk. Therefore, construction impacts would be considered potentially significant.</td>
<td>N/A</td>
<td>Refer to Mitigation Measure AIR-1.</td>
<td>Less than Significant with Mitigation</td>
</tr>
<tr>
<td>Toxic Air Contaminants (Impact AIR-3e): Operation of the Project would not include permanent sources (equipment, etc.) that would generate substantial long-term TAC emissions in excess of the health risk thresholds. Therefore, operational impacts would be less than significant.</td>
<td>Refer to Project Design Feature PDF-TRAF-1.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>
Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 CULTURAL RESOURCES – HISTORICAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historical Resources (Impact HIST-1): No historical resources are present on the Project Site; therefore, the Project would not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5, and no impacts would occur.</td>
<td>N/A</td>
<td>N/A</td>
<td>No Impact</td>
</tr>
<tr>
<td>4.2.2 CULTURAL RESOURCES – ARCHAEOLOGICAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeological Resources (Impact ARCH-1): Although no known archaeological resources were identified within the Project Site, Project construction activities may potentially encounter buried archaeological resources. Impacts to archaeological resources are therefore considered potentially significant.</td>
<td>N/A</td>
<td>ARCH-1: Prior to issuance of demolition permit, the Applicant shall retain an archaeologist who meets the Secretary of the Interior’s Professional Qualifications Standards for Archaeology (Qualified Archaeologist) to oversee an archaeological monitor who shall be present during construction excavations such as demolition, clearing/grubbing, grading, trenching, or any other construction excavation activity associated with the Project. The frequency of monitoring shall be based on the rate of excavation and grading activities, proximity to known archaeological resources, the materials being excavated (younger alluvium vs. older alluvium), and the depth of excavation, and if found, the abundance and type of archaeological resources encountered, as determined by the Qualified Archaeologist. The frequency of monitoring shall be determined based on the factors presented above, and can be reduced to part-time inspections or ceased entirely if determined appropriate by the Qualified Archaeologist. Prior to commencement of excavation activities, an Archaeological and Cultural Resources Sensitivity Training shall be given for construction personnel. The training session shall be carried out by the Qualified Archaeologist and shall focus on how to identify archaeological resources that may be encountered during earthmoving activities and the procedures to be followed in such an event.</td>
<td>Less than Significant with Mitigation</td>
</tr>
</tbody>
</table>
found, the abundance and type of prehistoric archaeological resources encountered. The frequency of monitoring shall be determined based on the factors presented above, and can be reduced to part-time inspections or ceased entirely if determined appropriate by the Gabrieleno Tribe.

ARCH-3: In the event that historic or prehistoric archaeological resources (e.g., bottles, foundations, refuse dumps, Native American artifacts or features, etc.) are unearthed, ground-disturbing activities shall be halted or diverted away from the vicinity of the find so that the find can be evaluated. An appropriate buffer area shall be established by the Qualified Archaeologist around the find where construction activities shall not be allowed to continue. Work shall be allowed to continue outside of the buffer area. All archaeological resources unearthed by project construction activities shall be evaluated by the Qualified Archaeologist and a Gabrieleno Tribe. If the resources are Native American in origin, the Gabrieleno Tribe shall consult with the City and Qualified Archaeologist regarding the treatment and curation of any prehistoric archaeological resources. If a resource is determined by the Qualified Archaeologist to constitute a “historical resource” pursuant to CEQA Guidelines Section 15064.5(a) or a “unique archaeological resource” pursuant to Public Resources Code Section 21083.2(g), the Qualified Archaeologist shall coordinate with the Applicant and the City to develop a formal treatment plan that would serve to reduce impacts to the resources. The treatment plan established for the resources shall be in accordance with CEQA Guidelines Section 15064.5(f) for historical resources and Public Resources Code Sections 21083.2(b) for unique archaeological resources. The treatment plan shall incorporate the Gabrieleno Tribe's treatment and curation recommendations. Preservation in place (i.e., avoidance) is the preferred manner of treatment. If preservation in place is not feasible, treatment may include implementation of archaeological data recovery excavations to remove the resource along with subsequent laboratory processing and analysis. The treatment plan shall include measures regarding the curation of the recovered resources that may include curation at a public, non-profit institution with a research interest in the materials, such as the Natural History Museum of Los Angeles County or the Fowler Museum, if such an institution agrees to accept the material and/or the Gabrieleno Tribe. If no institution or the Gabrieleno Tribe accept the resources, they may be donated to a local school or historical society in the area (such as the Culver City Historical Society) for educational purposes.
<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH-4: Prior to the release of the grading bond, the Qualified Archaeologist shall prepare a final report and appropriate California Department of Parks and Recreation Site Forms at the conclusion of archaeological monitoring. The report shall include a description of resources unearthed, if any, treatment of the resources, results of the artifact processing, analysis, and research, and evaluation of the resources with respect to the California Register of Historical Resources and CEQA. The report and the Site Forms shall be submitted by the Applicant to the City, the South Central Coastal Information Center, and representatives of other appropriate or concerned agencies to signify the satisfactory completion of the Project and required mitigation measures.</td>
<td>N/A</td>
<td>Less than Significant</td>
<td></td>
</tr>
</tbody>
</table>

4.3 Energy

Energy Resources (Impact ENE-1a): Project construction would utilize fuel-efficient equipment, comply with idling restrictions, regulations, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. Therefore, Project construction would not result in the wasteful, inefficient, or unnecessary consumption of energy resources, and impacts would be less than significant.

<table>
<thead>
<tr>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Less than Significant</td>
</tr>
</tbody>
</table>

Energy Resources (Impact ENE-1b): Project operations include sustainable design features that would comply with energy efficiency regulatory requirements. Furthermore, the Project’s land use characteristics (such as proximity to transit and a variety of uses) and location would minimize vehicle trips and VMT. Therefore, Project operations would not result in the wasteful, inefficient, or unnecessary consumption of energy resources, and impacts would be less than significant.

<table>
<thead>
<tr>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Less than Significant</td>
</tr>
</tbody>
</table>

Consistency with Energy Plans (Impact ENE-2): The Project would include a number of sustainable energy efficiency features to support the use of renewable energy and energy efficiency goals. The Project would support and not conflict with or obstruct a state or local plan for renewable energy or energy efficiency. Therefore, impacts would be less than significant.

<table>
<thead>
<tr>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Less than Significant</td>
</tr>
</tbody>
</table>
4.4. GEOLOGY AND SOILS – PALEONTOLOGICAL RESOURCES

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleontological Resources (Impact GEO-1): Younger Quaternary alluvium deposits (which have been assigned low-to-high paleontological potential increasing with depth) are present within the Project Site. These sediments are well known for preserving significant paleontological resources in the area. As a result, Project construction activities may directly or indirectly destroy unique paleontological resources or sites. Impacts to paleontological resources are therefore considered potentially significant.</td>
<td>N/A</td>
<td>GEO-1: Prior to issuance of demolition permit, the Applicant shall retain a qualified Paleontologist to develop and implement a paleontological monitoring program for construction excavations that would encounter older alluvial sediments. A qualified Paleontologist is defined as a paleontologist meeting the criteria established by the Society for Vertebrate Paleontology (2010). The qualified Paleontologist shall supervise a paleontological monitor who shall be present at such times as required by the Paleontologist during construction excavations into older alluvial sediments. Paleontological resources monitoring shall be conducted for all ground disturbing activities that exceed 10 feet in depth in previously undisturbed sediments, and are therefore likely to impact high sensitivity older alluvial sediments. Work in the upper 10 feet of the Project Site does not warrant monitoring. Monitoring shall consist of visually inspecting fresh exposures of rock for larger fossil remains and, where appropriate, collecting wet or dry screened sediment samples of promising horizons for smaller fossil remains. The frequency of monitoring inspections shall be determined by the Paleontologist and shall be based on the rate of excavation and grading activities, proximity to known paleontological resources or fossiliferous geologic formations (i.e., older alluvium deposits), the materials being excavated (i.e., native sediments versus artificial fill), and the depth of excavation, and if found, the abundance and type of fossils encountered. Full-time monitoring can be reduced to part-time inspections, or ceased entirely, if determined adequate by the Paleontologist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less than Significant with Mitigation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEO-2: Prior to commencement of demolition or excavation activities, the Paleontologist shall attend a pre-grade/construction meeting to conduct construction worker paleontological resources sensitivity training for construction personnel. The training session, shall be carried out by the Paleontologist and shall focus on how to identify paleontological resources that may be encountered during earthmoving activities and the procedures to be followed in such an event. In the event construction crews are phased, additional trainings shall be conducted for new construction personnel. Documentation shall be retained demonstrating that construction personnel attended the training.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEO-3: If a potential fossil is found, the paleontological monitor shall be allowed to temporarily divert or redirect grading and excavation activities in the area of the exposed fossil to facilitate evaluation of the discovery. The Paleontologist shall establish an appropriate buffer area around the find where construction activities shall not be allowed to continue. Work shall be allowed to continue outside of the buffer area. At the Paleontologist’s</td>
</tr>
</tbody>
</table>

City of Culver City
SCH No. 2020090329

11111 Jefferson Boulevard Mixed-Use Project
May 2021

ES-12
Executive Summary

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>discretion, and to reduce any construction delay, the grading and excavation contractor shall assist in removing rock/sediment samples for initial processing and evaluation. If the fossil is determined to be significant, the qualified Paleontologist shall implement a paleontological salvage program to remove the resources from their location, following the guidelines of the SVP (2010). Any fossils encountered and recovered shall be prepared to the point of identification and catalogued before they are submitted to their final repository. Any fossils collected shall be curated at a public, non-profit institution with a research interest in the material and with retrievable storage, such as the Natural History Museum of Los Angeles County, if such an institution agrees to accept the fossils. If no institution accepts the fossil collection, they shall be donated to a local school in the area for educational purposes. Accompanying notes, maps, and photographs shall also be filed at the repository and/or school. If construction personnel discover any potential fossils during construction while the paleontological monitor is not present, regardless of the depth of work or location, work at the discovery location shall cease in a 50-foot radius of the discovery until the Paleontologist has assessed the discovery and recommended and implemented appropriate treatment as described earlier in this measure. GEO-4: Prior to the release of the grading bond, the qualified Paleontologist shall prepare a report summarizing the results of the monitoring and salvaging efforts, the methodology used in these efforts, as well as a description of the fossils collected and their significance. The report shall be submitted by the Applicant to the City, the Natural History Museum of Los Angeles County, and representatives of other appropriate or concerned agencies to signify the satisfactory completion of the project and required mitigation measures.</td>
<td></td>
</tr>
</tbody>
</table>

4.5. GREENHOUSE GAS EMISSIONS

GHG Emissions (Impact GHG-1) and GHG Plan Consistency (Impact GHG-2): The Project would generate GHG emissions due to construction and operational activities. The Project’s annual direct and indirect GHG emissions would be generated from development that is located and designed to be consistent with relevant goals and actions to reduce Project emissions as much as feasibly possible, as well as consistent with the HSC Division 25.5 goals and CARB guidelines for assessing GHG emissions. Therefore, the Project’s GHG emissions would be consistent with the relevant guidelines and actions. Therefore, the GHG emissions are less than significant. | N/A | N/A | Less than Significant |
Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>emissions and associated impacts would be less than significant.</td>
<td></td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>

4.6. HAZARDS AND HAZARDOUS MATERIALS

Upset/Accident Conditions (Impact HAZ-2): The Project would not create a significant hazard to the public or environment through conditions involving the release of hazardous materials with compliance with applicable regulations. Accordingly, impacts would be less than significant.

Refer to Project Design Feature PDF-TRAF-1.

| N/A | Less than Significant |

Hazardous Emissions Near Schools (Impact HAZ-3): While the Project would include temporary use of hazardous substances during construction within one-quarter mile of a school, the handling of such materials would occur on the Project Site and be disposed of in accordance with applicable laws and regulations. Accordingly, impacts would be less than significant.

Refer to Project Design Feature PDF-TRAF-1.

| N/A | Less than Significant |

Hazardous Materials Database Listings (Impact HAZ-4): The Project Site is located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5. However, as reported in the Phase I ESA, Phase II ESA, and the HHRA, the Project would not create a significant hazard to the public or the environment. Therefore, impacts would be less than significant.

Refer to Project Design Feature PDF-TRAF-1.

| N/A | Less than Significant |

4.7. LAND USE AND PLANNING

Consistency with of Project Applicable Plans and Policies (Impact LU-1): The Project, with the approval of the Comprehensive Plan and requested entitlements, would be substantially consistent with applicable adopted land use plans, policies, guidance, and regulations adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, impacts with respect to land use plans, policies, guidelines, and regulations would be less than significant.

| N/A | N/A | Less than Significant |
### Environmental Impacts	Project Design Features (PDF)	Mitigation Measures (MM)	Impact Level of Significance
4.8. NOISE

Construction Noise (Impact NOISE-1a): Construction activities would increase noise levels at off-site noise-sensitive receptors in excess of the applicable thresholds. Therefore, impacts are considered potentially significant.

PDF-NOISE-1 (Project Construction Schedule): Prior to issuance of a building permit, notice of the Project construction schedule shall be provided to all abutting property owners and occupants. Evidence of such notification shall be provided to the Building Division. The notice shall identify the commencement date and proposed timing for all construction phases (demolition, grading, excavation/shoring, foundation, rough frame, plumbing, roofing, mechanical and electrical, and exterior finish).

PDF-NOISE-2 (Mechanical Equipment Noise): All mechanical equipment and/or ventilation systems not fully enclosed will be designed, through the use of quiet fans and duct silencers or similar methods, to not exceed 55 dBA L_{eq} from 7:00 AM to 10:00 PM and 50 dBA L_{eq} from 10:00 PM to 7:00 AM at the neighboring property lines including the north and west property lines per sound level limits of the Culver City Noise Element.

PDF-NOISE-3 (Construction Rules Sign): During all phases of construction, a “Construction Rules Sign” that includes contact names and telephone numbers of the Applicant, Property Owner, construction contractor(s), and the City, shall be posted on the Property in a location that is visible to the public. These names and telephone numbers shall also be made available to adjacent property owners and occupants to the satisfaction of the Planning Manager and Building Official.

PDF-NOISE-4 (Compliance with Noise Element): The following noise standards from Policy 2.2A of the City’s General Plan Noise Element shall be complied with at all times:

A. No construction equipment shall be operated without an exhaust muffler, and all such equipment shall have mufflers and sound control devices (i.e., intake silencers and noise shrouds) that are no less effective than those provided on the original equipment;

B. All construction equipment shall be properly maintained to minimize noise emissions;

NOISE-1: Prior to the commencement of demolition, the Project shall provide a temporary 15-foot-tall construction fence equipped with noise blankets rated to achieve sound level reductions of at least 12 dBA along the northern and western boundaries of the Project Site, between the Project Site and the surrounding residences to the north (Heritage Park Neighborhood) and west (Studio Village Town Homes), Temple Akiba, and Circle K Motel. Temporary noise barriers shall be used to block the line-of-sight between the construction equipment and the noise-sensitive receptors to the north and west of the Project Site during the duration of construction activities. Standard construction protective fencing with green screen or pedestrian barricades for protective walkways shall be installed along property lines facing streets or commercial buildings. All temporary barriers, fences, and walls shall have gate access as needed for construction activities, deliveries, and site access by construction personnel.

NOISE-2: Contractors shall ensure that all construction equipment, fixed or mobile, are equipped with properly operating and maintained noise shielding and muffling devices, consistent with manufacturers’ standards. The construction contractor shall keep documentation on-site demonstrating that the equipment has been maintained in accordance with the manufacturers' specifications. Most of the noise from construction equipment originates from the intake and exhaust portions of the engine cycle. According to FHWA, use of adequate mufflers systems can achieve reductions in noise levels of up to 10 dBA. The contractor shall use muffler systems that provide a minimum reduction of 8 dBA compared to the same equipment without an installed muffler system, reducing maximum construction noise levels. The contractor shall also keep documentation on-site prepared by a noise consultant verifying compliance with this measure.

Impact Level of Significance:

Less than Significant with Mitigation
Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Noise (Impact NOISE-1b)</td>
<td>If any construction vehicles are serviced at a location onsite, the vehicle(s) shall be setback from any street and other property lines so as to maintain the greatest distance from the public right-of-way and from Noise Sensitive Receptors; Noise impacts from stationary sources (i.e., mechanical equipment, ventilators, and air conditioning units) shall be minimized by proper selection of equipment and the installation of acoustical shielding as approved by the Planning Manager and the Building; and The Project shall not allow any delivery truck idling in the loading area. Signs shall be posted prohibiting idling. Also, refer to Project Design Feature PDF-TRAF-1.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>Groundborne Vibration (Impact NOISE-2)</td>
<td>Operation of the Project would not increase noise levels at off-site noise-sensitive receptors in the Project Area in excess of applicable thresholds. Thus, operational noise impacts would be less than significant.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>

Operational Noise (Impact NOISE-1b):
Operation of the Project would not increase noise levels at off-site noise-sensitive receptors in the Project Area in excess of applicable thresholds. Thus, operational noise impacts would be less than significant.

Groundborne Vibration (Impact NOISE-2):
Construction and operational activities would not exceed the vibration significance thresholds. Thus, vibration impacts would be less than significant.
Executive Summary

City of Culver City

11111 Jefferson Boulevard Mixed-Use Project

SCH No. 2020090329

May 2021

Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9. POPULATION AND HOUSING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induce Substantial Population Growth (Impact POP/H-1): The Project would induce population growth through the direct development of proposed residential units and indirectly through the proposed mixed-use development. However, the Project would not induce substantial direct or indirect population growth and impacts would be less than significant.</td>
<td>N/A</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>4.10.1 PUBLIC SERVICES: FIRE PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Protection (Impact FIRE-1a): Project construction would not require new or expanded fire protection facilities to maintain service due to compliance with City’s Fire Code requirements and proposed Project Design Features that address fire safety, emergency access, emergency response times, and fire flow. Therefore, construction impacts would be less than significant.</td>
<td>PDF-FIRE-1 (Fire Protection Devices): The Project would be equipped with fire alarms, fire sprinklers, and an emergency radio response system. PDF-FIRE-2 (Submittal of Plans to CCFD for Review/Approval): Plans for the proposed new building, fire lanes and associated turnarounds, fire hydrant locations, and associated fire prevention/suppression equipment, will be submitted to the CCFD for review and approval. Also, refer to Project Design Feature PDF-TRA-1.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>4.10.2 PUBLIC SERVICES: POLICE PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Police Protection – Construction (Impact POL-1a): Impacts on police protection services, access and emergency response times during Project construction would be temporary and less than significant. While Project construction would temporarily add on-site employees and off-site traffic, security features would be incorporated, and emergency access would be maintained.</td>
<td>PDF-POL-1 (Project Site Security and Access During Construction): During construction of the Project the Project Site will be enclosed with security fencing, lit with security lighting, and patrolled periodically by security personnel. Also, refer to Project Design Feature PDF-TRA-1.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>
Environmental Impacts

<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Police Protection – Operation (Impact POL-1b): Impacts on police protection services related to access and emergency response times during Project operation would be less than significant. While Project operation would add residents, on-site employees and off-site traffic, it would upgrade to strict security provisions at the Project Site and improve circulation and access in proximity to the Project Site. Overall, Project effects on police services would not require new or expanded police facilities.</td>
<td>PDF-POL-2 (Project Site Security and Access During Operation): During operation, the Project will incorporate a 24-hour/seven-day security program to ensure the safety of its residents, employees, and visitors. The Project’s security will include, but not be limited to, the following design features: a) Installing and utilizing a 24-hour/seven-day security program to ensure the safety of its residents and site visitors. b) Full-time security personnel. Duties of the security personnel will include, but would not be limited to, assisting residents and visitors with site access; monitoring entrances and exits of buildings, including parking; managing and monitoring fire/life/safety systems; and patrolling the property. The site security would regularly interface and collaborate with CCPD, as necessary. c) Staff training and building access/design to assist in crime prevention efforts and to reduce the demand for police protection services. d) Controlled access to all residential units, lobby areas, and residential common open space areas through the use of key cards, site security and/or other means, as appropriate. e) CCTV surveillance within the parking garage, ground floor levels, and open space areas. f) Lighting of entry-ways, publicly accessible areas, parking areas, and common building and open space residential areas.</td>
<td>N/A</td>
<td>Less than Significant</td>
</tr>
</tbody>
</table>

4.11. TRANSPORTATION

<p>| Conflict with Program, Plan, Ordinance or Policy (Impact TRAF-1): The Project would not conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities. Therefore, impacts would be less than significant. | N/A | N/A | Less than Significant |</p>
<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
</table>
| Vehicle Miles Traveled (Impact TRAF-2): The Project would not exceed the City's threshold for household VMT per capita for the residential uses, but would exceed the City's threshold for daily work VMT per employee for the office uses. Impacts associated with the Project are therefore considered potentially significant. | N/A | TRAF-1: The Project shall implement a Transportation Demand Management (TDM) Program to reduce the VMT impacts from office uses. The TDM Program shall be reviewed and approved by the City’s Planning Division, Public Works Mobility and Traffic Engineering, Division and Transportation Staff for review prior to the issuance of the first building permit for the Project. The TDM Program shall include the following measures and strategies:
 - Commute Marketing Program – This strategy involves the use of marketing and promotional tools to educate and inform travelers about site-specific transportation options and the effects of their travel choices. At a minimum, this strategy includes educational and promotional materials, and a TDM Coordinator from building management to oversee the TDM program, such as field questions, manage regular updates of transportation materials for the Project Site, and coordinate carpool and ridesharing options.
 - Off-Street Parking Pricing – This strategy implements parking pricing for spaces within the Project Site for office employees. This would mean that employees of the office land use would need to pay for a parking spot within the Project Site garage, separate from the cost of the lease for the office space. | Less than Significant with Mitigation |
| Geometric Design Feature (Impact TRAF-3): The Project would ensure that all access would be designed to the City standards and would meet the City’s requirements to protect driver, bicyclist, and pedestrian safety. The Project would relocate bus stops, install a new traffic signal and pedestrian crosswalk, and eliminate seven existing driveway curb cuts, all of which would serve to reduce transportation hazards. Impacts would be less than significant. | N/A | N/A | Less than Significant |
| Inadequate Emergency Access (Impact TRAF-4): The Project would ensure that emergency access is maintained during construction and operation. Therefore, impacts would be less than significant. | PDF-TRAF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project’s traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant’s proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City’s Building Official, City Traffic Engineer, Civil Engineer, and | N/A | Less than Significant |
| | | | |
Environmental Impacts

<table>
<thead>
<tr>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
</table>
| Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, Civil Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer. Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare. Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:
- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity.
 (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site. |
<table>
<thead>
<tr>
<th>Environmental Impacts</th>
<th>Project Design Features (PDF)</th>
<th>Mitigation Measures (MM)</th>
<th>Impact Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Emergency access plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Demolition plan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Staging plan for the concrete pours, material loading and removal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Crane location(s).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Community notification procedures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Procedures for the training and certification of flag persons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Impacts</td>
<td>Project Design Features (PDF)</td>
<td>Mitigation Measures (MM)</td>
<td>Impact Level of Significance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. The location of temporary power, portable toilet and trash and materials storage locations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.12. TRIBAL CULTURAL RESOURCES

Tribal Cultural Resources (Impact TCR-1): No known tribal cultural resources are present on the Project Site; therefore, the Project would not cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21074, and no impacts would occur.

| Tribal Cultural Resources (Impact TCR-1) | N/A | N/A | No Impact |

CHAPTER 1
Introduction

This Draft Environmental Impact Report (EIR) has been prepared for the 11111 Jefferson Boulevard Mixed-Use Project (Project). Jefferson Park LLC, the Applicant, proposes to develop a mixed-use residential and commercial project on an approximately 3.43-acre (149,553 square feet [sf]) triangular shaped site (Project Site) located at the southern corner in the City of Culver City (City). The Project Site is currently developed with three single-story commercial buildings, surface parking, a parking lot that serves the proximate Exceptional Children’s Foundation (ECF), and landscaping. The Project would construct 230 residential dwelling units, 19 of which would be affordable targeted to very low income households, for a total of 244,609 sf of residential area (including the residential lobby and residential amenity room); 55,050 sf of ground floor commercial area, including a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail spaces, and a 1,950 sf gym/studio fitness center; and 11,450 sf of second floor office uses within a five story building.

1.1 Purpose of the Draft EIR

The purpose of this Draft EIR is to inform decision-makers and the general public of the potential environmental impacts resulting from the Project. The City is the Lead Agency under the California Environmental Quality Act (CEQA) responsible for preparing this Draft EIR. This Draft EIR has been prepared in conformance with CEQA (California Public Resources Code [PRC] Section 21000 et seq.), and the CEQA Guidelines (California Code of Regulations [CCR], Title 14, Section 15000 et seq.). The principal CEQA Guidelines sections governing content of this document are Sections 15120 through 15132 (Contents of an EIR), and Section 15161 (Project EIR).

The City is responsible for processing and approving the Project pursuant to CEQA Statute Section 21067. The City will consider the information in this Draft EIR, along with other information that may be presented during the CEQA process, including but not limited to the Initial Study and a Final EIR. The EIR will be used in connection with other permits and approvals necessary for the construction and operation of the Project. The EIR will be used by the City’s Current Planning Division, Building Safety Division, Public Works Department, and any other responsible public agencies that must approve activities undertaken with respect to the Project.

In accordance with CEQA Guidelines Section 15121, this Draft EIR is an informational document that will inform public agency decision-makers and the public generally of the environmental effects associated with the Project, and ways to minimize significant environmental effects through mitigation measures or reasonable alternatives to the Project. For some effects, significant environmental impacts cannot be mitigated to a level considered less than significant; in such cases,
impacts are considered significant and unavoidable. In accordance with CEQA Guidelines Section 15093(b), if a public agency approves a project that has significant impacts that are not substantially mitigated (i.e., significant unavoidable impacts where impacts cannot be mitigated to less than significant levels), the agency must state in writing the specific reasons for approving the project, based on the Final EIR and any other information in the public record for the project. This is known as a “statement of overriding considerations.”

This Draft EIR analyzes the environmental effects of the Project to the degree of specificity appropriate to the activities proposed by the Project, as required under CEQA Guidelines Section 15146. This analysis considers the activities associated with the Project, to determine the short-term and long-term effects associated with their implementation. This Draft EIR discusses both the direct and indirect impacts of this Project, as well as the cumulative impacts associated with other past, present, and reasonably foreseeable future projects in the vicinity. CEQA requires the preparation of an objective, full disclosure document to inform agency decision-makers and the general public of the direct and indirect environmental effects of the proposed Project, including mitigation measures and reasonable alternatives that can reduce or eliminate any identified significant adverse impacts.

1.2 EIR Scoping Process

In compliance with the State CEQA Guidelines, the City has taken steps to provide opportunities to participate in the environmental review process. In association with preparation of the Draft EIR, efforts were made to contact various State, regional, and local government agencies and other interested parties to solicit comments and inform the public of the Project. As further described below, this included the distribution of an Initial Study and Notice of Preparation (NOP) of an Environmental Impact Report and EIR Scoping Meeting.

1.2.1 Initial Study

In accordance with CEQA Guidelines Section 15063(a), the City prepared an Initial Study to identify potential environmental impacts. The Initial Study determined that the Project had the potential to result in significant impacts associated with a number of environmental issues. As a result, the Initial Study led to a determination that a Draft EIR should be prepared to address those issues where the Project could result in significant environmental impacts, and to consider feasible mitigation measures and alternatives to the Project.

The Draft EIR focuses primarily on changes in the environment that would result from the Project, individually and cumulatively with other development projects. The Draft EIR identifies potentially significant direct and indirect impacts resulting from construction and operation of the Project, and provides mitigation measures to reduce or avoid such effects. Based on public input and the results of the Initial Study, this Draft EIR addresses environmental effects in the following areas:

- Air Quality
- Cultural Resources
 - Historical Resources
 - Archaeological Resources
• Energy
• Geology and Soils
 – Paleontological Resources
• Greenhouse Gas Emissions
• Hazards and Hazardous Materials
• Land Use and Planning
• Noise
• Population and Housing
• Public Services
 – Fire Protection
 – Police Protection
• Transportation
• Tribal Cultural Resources

Based on the Initial Study, issues for which no significant impacts are anticipated to occur are discussed briefly as a part of Chapter 6, Other CEQA Considerations, of this Draft EIR. The analyses supporting these determinations are provided in the Initial Study included as Appendix A-2 of this Draft EIR.

1.2.2 Notice of Preparation

Pursuant to the provision of CEQA Guidelines Section 15082, the City circulated a Notice of Preparation of an Environmental Impact Report and Community Meeting/EIR Scoping Meeting (NOP) to State, regional, and local agencies, and members of the public for a 33-day review period commencing September 17, 2020 and ending October 19, 2020. The purpose of the NOP was to formally notice that the City was preparing a Draft EIR for the Project, and to solicit input regarding the scope and content of the environmental information to be included in the Draft EIR. See Appendix A-1 of this Draft EIR for a copy of the NOP.

1.2.3 EIR Scoping Meeting/Community Meeting

The NOP included notification that a virtual Community Meeting and an EIR Scoping Meeting would be held. Consistent with City policy, but independent of the CEQA process, the purpose of the Community Meeting was for the Applicant to present the Project, solicit community comments, and receive feedback in association with the entitlement applications submitted to the City. In accordance with the CEQA Guidelines, the purpose of the EIR Scoping Meeting was for the City to solicit input and written comments from agencies and the public on environmental issues or alternatives they believe should be addressed in the Draft EIR. The virtual Community Meeting and EIR Scoping Meeting were held on October 6, 2020, with the Community Meeting starting at 6:00 P.M. followed by the EIR Scoping Meeting at 7:00 P.M. The EIR Scoping Meeting was held in an online format using zoom and provided interested individuals, groups, and public agencies the opportunity to view materials and ask questions regarding the scope and focus of the Draft EIR.
as described in the NOP and Initial Study. The presentation materials from the EIR Scoping Meeting are provided in Appendix A-3 of this Draft EIR.

1.2.4 Comments Received

During the public review period for the NOP, 51 commenters submitted responses to the NOP. Correspondence was received from the Native American Heritage Commission, the South Coast Air Quality Management District, the State of California Department of Transportation, interested organizations, and interested parties. All written comments are provided in Appendix A-4, of this Draft EIR and summarized in the Executive Summary.

1.3 Format of the Draft EIR

The Draft EIR includes an Executive Summary, nine chapters, and appendices, which are organized as follows:

- **Executive Summary.** This chapter of the Draft EIR provides an overview of the entire document in a concise, summarized format. It briefly describes the Project (location and key Project features), the CEQA review process and focus, identifies effects found to be significant and unavoidable, identifies areas of controversy, provides a summary of the Project alternatives (descriptions and conclusions regarding comparative impacts), and provides a summary of Project impacts, Project Design Features and mitigation measures, and the level of impact significance following implementation of mitigation measures.

1. **Introduction.** This chapter provides a summary of the Project, describes the purpose of the EIR, including CEQA compliance requirements, steps undertaken to date regarding implementation of the CEQA process, and also summarizes the Draft EIR’s organization.

2. **Project Description.** This chapter describes the location, background and existing conditions, objectives, physical and operational characteristics of the Project, and requested entitlements.

3. **Environmental Setting.** This chapter presents an overview of the Project’s environmental setting, including on-site and surrounding land uses. This section also provides a list and the mapped locations of past, present, and probable future projects considered in the analysis of potential Project contributions to cumulative impacts.

4. **Environmental Impact Analysis.** This chapter contains the environmental setting, regulatory framework, methodology, thresholds to determine level of significance, Project Characteristics and/or Project Design Features, Project-specific and cumulative impact analyses, mitigation measures, and conclusions regarding the level of significance after mitigation for each of the following environmental issues: 1) Air Quality; 2) Cultural Resources – Historical Resources, Archaeological Resources, 3) Energy; 4) Geology and Soils – Paleontological Resources; 5) Greenhouse Gas Emissions; 6) Hazards and Hazardous Materials; 7) Land Use and Planning; 8) Noise; 9) Population and Housing; 10) Public Services – Fire Protection, Police Protection; 11) Transportation; and 12) Tribal Cultural Resources.
5. **Alternatives.** This chapter describes a reasonable range of alternatives to the Project, including the (1) No Project/No Build Alternative, (2) Code Compliant Alternative; and (3) Reduced Density Alternative. This chapter also evaluates the environmental effects of the alternatives for each issue area analyzed in the Draft EIR, though not at the same level of detail as analyzed for the Project.

6. **Other CEQA Considerations.** This chapter includes a discussion of issues required by CEQA that are not covered in other chapters. This includes irreversible environmental changes, significant unavoidable impacts, reasons why the Project is being proposed notwithstanding significant unavoidable impacts, growth-inducing impacts, potential secondary effects related to Project mitigation measures, effects found not to be significant in the Initial Study, and effects found to be less than significant in the Draft EIR (before mitigation).

7. **References.** This chapter lists the references and sources used in the preparation of this Draft EIR.

8. **List of EIR Preparers and Organizations and Persons Contacted.** This chapter lists the persons, public agencies, and organizations that were consulted or who contributed to the preparation of this Draft EIR.

9. **Standard Terms, Acronyms and Abbreviations.** This chapter provides a reference listing of the common terms, acronyms and abbreviations that are used throughout this document, as well as definitions of key terms.

The Environmental Analyses in this Draft EIR are supported by the following appendices:

- **Appendix A – Notice of Preparation (NOP), Initial Study, Scoping Meeting Materials, and Comments on the NOP**
 - A-1 Notice of Preparation
 - A-2 Initial Study
 - A-3 Scoping Meeting Materials
 - A-4 Comments on the NOP
- **Appendix B – Air Quality Technical Appendix**
- **Appendix C – Cultural Resources Assessment Report**
- **Appendix D – Energy Technical Appendix**
- **Appendix E – Paleontological Resources Assessment Report**
- **Appendix F – Greenhouse Gas Technical Appendix**
- **Appendix G – Hazards and Hazardous Materials Documentation**
 - G-1 Phase I Environmental Site Assessment
 - G-2 Phase II Environmental Site Assessment
 - G-3 Vapor Intrusion Human Health Risk Assessment Report
1.4 Public Review of the Draft EIR

The Draft EIR is subject to a 45-day review period in which the document is made available to responsible and trustee agencies and interested parties. In compliance with the provision of CEQA Guidelines Sections 15085(a) and 15087, the City, serving as the Lead Agency: (1) prepared and transmitted a Notice of Completion (NOC) to the State Clearinghouse; (2) published a Notice of Availability (NOA) of a Draft EIR which indicated that the Draft EIR was available for public review at the City's Current Planning Division; (3) provided copies of the NOA and Draft EIR to the Culver City Julian Dixon Library; (4) posted the NOA and the Draft EIR on the City’s Planning Division website:

(https://www.culvercity.org/city-hall/city-government/city-departments/community-development/planning);

(5) sent a NOA to all property owners within 1,000 feet of the Project Site; (6) sent a NOA to the last known name and address of all organizations and individuals who previously requested such notice in writing or attended public meetings about the Project; and (7) filed the NOA with the County Clerk. Proof of publication is available at the Culver City Current Planning Division. The public review period commenced on May 6, 2021 and will end on June 21, 2021 for a total of 47 days.

Any public agency or members of the public desiring to comment on the Draft EIR must submit their comments in writing or send them via email to the following address prior to the end of the public review period:

Mail: Michael Allen, AICP
 Current Planning Manager
 City of Culver City Current Planning Division
 9770 Culver Boulevard
 Culver City, California 90232

Email: Michael.Allen@culvercity.org

Upon the close of the public review period, the City will proceed to evaluate and prepare responses to all relevant oral and written comments received from public agencies and other interested parties.
during the public review period. A Final EIR will then be prepared. The Final EIR will consist of the Draft EIR, any necessary revisions to the Draft EIR, comments submitted by responsible agencies or reviewing parties during the public circulation period for the Draft EIR, and City responses to those comments. After the Final EIR is completed and at least 10 days prior to its certification by the City Planning Commission, responses to comments made by public agencies on the Draft EIR will be provided to the commenting agencies.

1 Prior to approval of the Project, the City, as Lead Agency and decision-making entity, is required to certify that the Final EIR has been completed in compliance with CEQA, that the Project has been reviewed and the information in the Final EIR has been considered, and that the Final EIR reflects the independent judgement of the City.
CHAPTER 2
Project Description

2.1 Introduction

Jefferson Park LLC, the Applicant, proposes to develop a mixed-use residential and commercial project (Project) on an approximately 3.43-acre (149,553 square feet [sf]) triangular shaped site (Project Site) located in the City of Culver City (Culver City or City). The Project Site is currently developed with three single story commercial buildings, surface parking, a parking lot that serves the proximate Exceptional Children’s Foundation (ECF), and landscaping. The Project would construct 230 residential dwelling units, including 19 units affordable to very low income households, for a total of 244,609 sf of residential area (including the residential lobby and residential amenity room); 55,050 sf of ground floor retail area, including a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail spaces, and a 1,950 sf gym/studio fitness center; and 11,450 sf of second floor office uses within a five story building. The building would be constructed atop one level of subterranean vehicular parking, with parking also provided on the first and second floor of the building. There would be a total of 653 parking stalls (308 stalls for residential, 311 stalls for commercial, and 34 spaces for the ECF). The Project would also include private and publicly accessible open space including: a park open to the public at the corner of Machado Road and Sepulveda Boulevard (Machado Park), a public paseo area with an interior courtyard adjacent to the ground floor retail uses at the intersection of Sepulveda Boulevard and Jefferson Boulevard (Paseo Courtyard), a courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue (Entry Courtyard), and an internal, open air courtyard with amenities located at the third level of the development to serve the residential units on the third through fifth levels.

2.2 Project Location and Surrounding Uses

The Project Site is located at 11111 Jefferson Boulevard in the southern part of the City. The Project Site is generally bounded by Jefferson Boulevard to the east, Machado Road to the north and Sepulveda Boulevard to the west. The Project Site is surrounded by the Sunkist Park neighborhood to the west and southwest, the Heritage Park and Lindberg Park neighborhoods to the north, the Studio Village Shopping Center to the east, and the Blanco Park neighborhood to the southeast. Primary regional access is provided by the San Diego Freeway (I-405), the Marina Freeway/Expressway (SR-90), both located approximately 0.7 miles southwest of the Project Site, and the Interstate 10 (I-10) approximately 3 miles north of the Project Site. See Figure 2-1, Regional and Site Location Map, for the location of the Project Site. See Figure 2-2, Aerial Photograph of the Project Site and Vicinity, for an aerial image of the Project Site and surrounding development. As described in Section 2.3, below, the Project Site is also served by multiple regional and local bus lines that run along Sepulveda and Jefferson Boulevards.
Figure 2-1
Regional and Site Location Map
Figure 2-2
Aerial Photograph of the Project Site and Vicinity

Nearby land uses north of Machado Boulevard include a residential neighborhood (Heritage Park) consisting of single-family homes, and a private K-12 school (ECF). To the east across Jefferson Boulevard is the Studio Village Shopping Center and surface parking lot. South and west of the Project Site across Sepulveda Boulevard is a temple (Temple Akiba) and commercial uses. There are also multi-family residential uses north of Temple Akiba along Sepulveda Boulevard (Studio Village Townhomes), single-family residential uses backing the commercial uses along Sepulveda Boulevard (Sunkist Park Neighborhood), and single-family residential uses to the south of the Studio Village Shopping Center (Blanco Park Neighborhood).

2.3 Existing Conditions

The Project Site is relatively flat with elevations ranging from approximately 33 to 35 feet. The Project Site is made up of four parcels from north to south. The northernmost parcel consists of a surface parking lot with 34 parking spaces used by ECF as off-site parking. The northern central parcel is occupied by a United States Post Office (27,225 sf) built in the early 1960s. The next parcel to the south is occupied by Coco’s Bakery Restaurant chain (6,064 sf) built in the late 1960s. The southernmost parcel is occupied by Valvoline Instant Oil Change (1,722 sf) built in the 1990s. The Project Site includes approximately 216 existing vehicle parking spaces, including 194 regular spaces, 12 truck loading spaces, and 10 handicap spaces across all existing uses.

Existing vehicular access to the Project Site is currently provided from ten driveways; five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. Pedestrian access is provided via sidewalks located along Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Bicycle access is provided by bicycle lanes on Sawtelle Boulevard west of Sepulveda Boulevard and also on Sepulveda Boulevard north of Machado Road. Additional off-street regional bicycle paths are provided by the Ballona Creek Bike Path and the Culver Boulevard Bike Path located approximately 0.3 miles and 0.8 miles from the Project Site, respectively.

In addition to the existing buildings and areas of surface parking, there is a mix of ornamental landscaping on the Project Site, including a number of mature eucalyptus and palm trees, with the most concentrated plantings along Machado Road. At the southern end of the Project Site there is a sparsely landscaped open space area with decomposed granite and a decorative fountain. There are also street trees along all three frontages of the Project Site and within the Machado Road landscaped median. In certain areas along the perimeter of the Project Site, there are block walls, chain link fencing and wrought iron fencing. There is monument and other signage for the Coco’s Bakery Restaurant and oil change facility, as well as parking lot and landscape lighting.

2.4 General Plan Land Use and Zoning

The General Plan Land Use designation for the Project Site is “General Corridor Commercial,” which allows commercial uses with an emphasis on community serving retail. Per the Culver City Zoning Code (Zoning Code), the Project Site is majority zoned “Commercial General” (CG). The northernmost parcel (APN 4215-001-020) adjacent to Machado Road is split-zoned CG and Single-Family (R-1).
The Project is proposing to change the zoning designations for the Project Site to “Planned Development” (PD), which requires the adoption of a Comprehensive Plan that would serve as the overarching entitlement mechanism for the Project Site. Per the Zoning Code, a Comprehensive Plan is appropriate for large-scale development as it allows flexibility in the application of zoning code standards to encourage innovation in site planning and design and to support more effective responses to the settings of such properties and other environmental considerations. To permit this, a Comprehensive Plan regulates permitted uses, development standards, and conditions of approval on a project site. In order to be approved, environmental review must support specific findings set forth in the Zoning Code that affirm, among other requirements, compatibility with adjacent uses, the sustainability and stability of the proposed project, adequacy of the road network serving the project site, and conformance with the General Plan.

2.5 Statement of Project Objectives

The underlying purpose and primary objective of the Project is to develop the Project Site with a mixed-use development that includes residential uses, Project- and community-serving commercial uses, and publicly accessible and private open space. As further required by the CEQA Guidelines, the specific objectives of the Project are provided below:

- Develop new, high-quality infill housing with a diverse mix of residential dwelling types, containing both market-rate and affordable units, to serve a range of household sizes adjacent to existing roadway improvements, service connections, and near existing transit.
- Fulfill the City’s housing goals by improving access to quality housing for all members of the community through the provision of affordable housing in proximity to open space and public transportation, while maintaining access to a wide range of services and goods.
- Provide open space amenities that will enhance existing site conditions through a publicly accessible park (Machado Park), a Paseo Courtyard, an Entry Courtyard, as well as a unified landscape design with common open space areas for Project residents.
- Provide for a mix of commercial and residential uses to promote pedestrian activity, reduce vehicle trips and vehicle miles traveled, and encourage active transportation.
- Activate the Sepulveda and Jefferson Boulevard frontages by providing street-oriented retail and restaurant uses, and a landscaping program that further enhances the pedestrian experience.
- Activate Machado Road at Sepulveda Boulevard with a publicly accessible park that is open to the sky and offers future residents and the general public both active and passive areas such as seating, landscaped paseos, and exercise areas.
- Promote vehicular, pedestrian and bicycle safety and access through the Project Site, including the elimination of seven driveways around the Project Site; a new traffic signal at Janisann and Sepulveda Boulevard, new eight foot sidewalks along Sepulveda and Jefferson Boulevards and Machado Road; bicycle racks, lockers, bicycle share facilities; provision of bicycle lanes along Sepulveda Boulevard between Machado Road and Jefferson Boulevard; contributions to design and construction of bike lanes on Sepulveda Boulevard to connect to the Ballona Creek Bike

Path; and the provision of a pedestrian circulation system connecting a Paseo Courtyard, Entry Courtyard, ground level commercial uses and open space areas.

- Provide safe access to parking for ECF to replace parking currently on-site associated with that use.
- Provide an on-site grocery store where future residents and employees at the Project Site and nearby residents may purchase groceries, reducing reliance on single occupancy vehicles.
- Utilize the City’s Community Benefits and Density Bonus Programs to increase the permitted density at the Project Site in order to provide much needed housing at a variety of income levels that will assist the City in meeting its Regional Housing Needs goals.
- Provide a development that complements and improves the visual character of the area by connecting with the surrounding urban environment through a high level of architectural design, including a porous building form with vertical and horizontal breaks, generous setbacks, light materiality, landscape features, and active ground floor uses with open space amenities.
- Create a development with high quality design that supports environmental sustainability through energy efficiency, water conservation, and the reduction of greenhouse gas emissions through such features as solar photovoltaic power, electric vehicle charging stations, energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping.

2.6 Description of Proposed Project

2.6.1 Proposed Land Uses

The Project would involve demolition of approximately 35,011 sf of existing buildings on the Project Site to support the new mixed-use development. As shown in Figure 2-3, Conceptual Site Plan, the Project would consist of five stories of development over one subterranean level for vehicular parking and building infrastructure. The proposed five-story building would be 67 feet tall (70.5 feet including the parapet) with a total building area of 555,221 sf, including all parking areas (subterranean, ground level, and above-ground) and usable building area of 311,109 sf. The Project would have a 2.08 floor area ratio (FAR).

2 The building height is measured pursuant to Culver City Municipal Code (CCMC) Section 17.300.025, which requires that height be measured as the vertical distance from the existing grade of the site to an imaginary plane located the allowed number of feet above and parallel to the grade. The existing grade has been established through a survey as 34.8 feet.

3 FAR is calculated by using the usable square footage of 311,109 sf divided by the 149,553 sf Project Site area.
5 Story Building
(Residential over Ground and Second Level Retail / Office)

Over 1 Subterranean Parking Level

Figure 2-3
Conceptual Site Plan

SOURCE: AO, 2021

11111 Jefferson Boulevard Mixed-Use Project
As shown in **Table 2-1, Development Program Summary**, and as further detailed below, the Project includes 244,609 sf of residential uses (including the residential lobby and amenity room) with 230 residential apartment units (including 19 units affordable to very low income households); 66,500 sf of commercial uses, including a market, retail/restaurant uses and office uses; three levels of vehicular parking (653 spaces), including one subterranean level; and public and private open space areas.

**Table 2-1
DEVELOPMENT PROGRAM SUMMARY**

<table>
<thead>
<tr>
<th>Use</th>
<th>Size/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Area (sf/ac)</td>
<td>149,553 sf/3.43 ac</td>
</tr>
<tr>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>United States Post Office</td>
<td>27,225 sf</td>
</tr>
<tr>
<td>Coco’s Bakery Restaurant</td>
<td>6,064 sf</td>
</tr>
<tr>
<td>Valvoline Instant Oil Change</td>
<td>1,722 sf</td>
</tr>
<tr>
<td>Proposed</td>
<td></td>
</tr>
<tr>
<td>Residential Component</td>
<td></td>
</tr>
<tr>
<td>Studios</td>
<td>54 units</td>
</tr>
<tr>
<td>1-Bedrooms</td>
<td>113 units</td>
</tr>
<tr>
<td>2-Bedrooms</td>
<td>63 units</td>
</tr>
<tr>
<td>Residential Lobby</td>
<td>2,500 sf</td>
</tr>
<tr>
<td>Residential Amenity (Third Level)</td>
<td>2,500 sf</td>
</tr>
<tr>
<td>Subtotal Residential Units and Square Footage</td>
<td>230 units (244,609 sf)</td>
</tr>
<tr>
<td>Commercial Component</td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>38,600 sf</td>
</tr>
<tr>
<td>Restaurant (High Turnover Sit-Down)</td>
<td>3,300 sf</td>
</tr>
<tr>
<td>Restaurant (Fast Casual)</td>
<td>4,900 sf</td>
</tr>
<tr>
<td>Coffee & Bakery</td>
<td>2,400 sf</td>
</tr>
<tr>
<td>Office</td>
<td>11,450 sf</td>
</tr>
<tr>
<td>Retail</td>
<td>3,900 sf</td>
</tr>
<tr>
<td>Gym/Studio Fitness Center</td>
<td>1,950 sf</td>
</tr>
<tr>
<td>Subtotal Commercial Square Footage</td>
<td>66,500 sf</td>
</tr>
<tr>
<td>Total Residential and Commercial Square Footage</td>
<td>311,109 sf</td>
</tr>
<tr>
<td>Subterranean Parking</td>
<td>118,680 sf</td>
</tr>
<tr>
<td>Ground Level Parking</td>
<td>33,916 sf</td>
</tr>
<tr>
<td>Second Level Parking</td>
<td>88,660 sf</td>
</tr>
<tr>
<td>Loading Dock</td>
<td>2,856 sf</td>
</tr>
<tr>
<td>Total Project Square Footage</td>
<td>555,221 sf</td>
</tr>
</tbody>
</table>
2. Project Description

<table>
<thead>
<tr>
<th>Use</th>
<th>Size/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Residential Parking</td>
<td>308 spaces</td>
</tr>
<tr>
<td>Commercial Parking</td>
<td>311 spaces</td>
</tr>
<tr>
<td>ECF Parkinga</td>
<td>34 spaces</td>
</tr>
<tr>
<td>Total Vehicle Parking Provided</td>
<td>653 spaces</td>
</tr>
<tr>
<td>Bicycle Parking Spaces (Long / Short-Term)</td>
<td>71 / 26 spaces</td>
</tr>
<tr>
<td>Open Space</td>
<td></td>
</tr>
<tr>
<td>Publicly Accessible Open Space</td>
<td></td>
</tr>
<tr>
<td>Machado Park</td>
<td>13,800 sf</td>
</tr>
<tr>
<td>Paseo Courtyard</td>
<td>13,000 sf</td>
</tr>
<tr>
<td>Entry Courtyard</td>
<td>2,000 sf</td>
</tr>
<tr>
<td>Subtotal Publicly Accessible Open Space</td>
<td>28,800 sf</td>
</tr>
<tr>
<td>Common Open Space (for Residents)</td>
<td></td>
</tr>
<tr>
<td>Courtyard (Third Level)</td>
<td>24,000 sf</td>
</tr>
<tr>
<td>Private Open Space (Balconies)</td>
<td>14,350 sf</td>
</tr>
<tr>
<td>Total Open Space Provided</td>
<td>67,150 sf</td>
</tr>
</tbody>
</table>

*sf = square feet; ac = acres

*a The 34 parking spaces for the ECF are a relocation of the existing 34 ECF parking stalls on-site.

As shown in **Figure 2-4, Ground Level Plan**, the ground floor level of the building would include a market, restaurants and a café, retail spaces, a gym/studio fitness center, a residential lobby and leasing office, parking spaces for retail uses, and outdoor landscaped open space. As shown in **Figure 2-5, Second Level Plan**, the second level would include office space and vehicle parking spaces for commercial uses. As shown in **Figure 2-6, Third Level Plan**, the third level would include 76 residential units, an amenity courtyard, and an amenity room. The fourth and fifth levels would each include 77 residential units. An additional 241,256 sf would be developed for parking (subterranean, ground level, and second level).
Figure 2-5
Second Level Plan

11111 Jefferson Boulevard Mixed-Use Project

SOURCE: AO, 2021

Office
Retail Parking
Landscape
Project Site Boundary

SOURCE: AO, 2021

11111 Jefferson Boulevard Mixed-Use Project

Figure 2-5
Second Level Plan
Residential Uses

As shown in Figure 2-7, Project Elevations, the 2,500 sf residential lobby and leasing office would be located on the ground floor located towards the intersection of Machado Road and Sepulveda Boulevard and fronting Sepulveda Boulevard. The lobby, which contains the mail room for the residential units, would have ground floor pedestrian access from Sepulveda Boulevard, with an elevator and staircase providing access from the subterranean garage. The 230 residential units would be located on floors three through five of the proposed development. The third floor would provide 76 residential units comprised of 18 studio units, 37 one-bedroom units, and 21 two-bedroom units. The fourth floor would provide 77 residential units comprised of 18 studio units, 38 one-bedroom units, and 21 two-bedroom units. The fifth floor would provide 77 residential units comprised of 18 studio units, 38 one-bedroom units, and 21 two-bedroom units. The affordable units would be dispersed throughout the building.

Residential-only amenities would be provided on the third floor of the building in the form of a 24,000 sf amenity courtyard and a 2,500 sf amenity room. The amenity room and courtyard would include: a fitness center, BBQ area, conference room/business center, pool and sun deck which would be set back from Sepulveda and screened by the residential building. Storage facilities will be provided in the residential leasing office and subterranean residential parking garage.

Commercial Uses

As previously stated, the commercial uses for the Project would be located in the ground floor and second floor of the Project. The ground floor level of the building would include a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail space, 1,950 sf gym/studio fitness center, and 81 vehicle parking spaces for retail uses, with a significant amount of outdoor landscaped open space. As shown in Figure 2-4, the market and its associated loading dock would anchor the northwest corner of the Project Site. As shown in Figure 2-8, Rendering of Sepulveda Boulevard Frontage, the restaurant, café, and retail uses would be located at the southern end of the Project Site by the Paseo Courtyard towards the intersection of Sepulveda Boulevard and Jefferson Boulevard. As shown in Figure 2-9, Rendering of Paseo Courtyard, the Paseo Courtyard and retail area would not be covered and would be open to the sky. The Paseo Courtyard would include outdoor seating for visitors and for the restaurants and gathering areas to facilitate community interaction.

The second floor would include 11,450 sf of office space and 230 vehicle parking spaces for commercial uses. The office uses, which would be oriented towards Sepulveda Boulevard, would wrap around the parking garage area to shield the parking from the street. Multiple vertical circulation access points through elevators and stairs would connect the office and retail parking to the ground floor.
Figure 2-7
Project Elevations
Figure 2-8
Rendering of Sepulveda Boulevard Frontage

11111 Jefferson Boulevard Mixed-Use Project

SOURCE: AO, 2021

11111 Jefferson Blvd. Mixed Use Project Graphics-GIS-Modeling
~

ESA
11111 Jefferson Boulevard Mixed-Use Project

Figure 2-9
Rendering of Paseo Courtyard
2.6.2 Open Space and Landscaping

Open space and landscaping would be provided in accordance with the Culver City Municipal Code (CCMC). The Project would incorporate publicly accessible at-grade open space as well as indoor and outdoor common and private open space for Project residents and guests. As shown in Figure 2-4, the Project would provide an approximately 13,800 sf Machado Park, which would be publicly accessible but privately maintained, that is expected to include such amenities as a children’s play area, and terraced landscaping and seating. The City also intends to include a bicycle share facility on the Project Site adjacent to Machado Park, as further described below.

As shown on Figure 2-10, Rendering of Machado Park, the Machado Park would link the publicly accessible open space areas along Machado Road from Sepulveda Boulevard to Jefferson Boulevard. As shown in Figure 2-11, Rendering of Paseo Courtyard and Ground Floor Spaces, an approximately 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard and between the retail spaces at the southern end of the Project Site would welcome pedestrian, bike, bus and other foot traffic through and into the Project Site. An additional 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue would also be provided to welcome patrons to enjoy both corner food offerings as well as a direct path to both the grocer entrance and the courtyard spaces internally sheltered from area traffic. All publicly accessible open space areas on the ground floor would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site from the ground-floor parking level or via escalators from the above- and below-ground parking levels. As shown in Figure 2-6, the third floor amenity room and courtyard would include: a fitness center, BBQ area, conference room/business center, and a pool deck which would be set back from Sepulveda and screened by the residential portion of the building.

The Paseo Courtyard, Entry Courtyard, and third floor residential amenity room could include amplified sound systems (i.e., background music) with speakers, as further detailed in Project Design Feature PDF-NOISE-5, these systems would be designed and located such that amplified sound would not result in a meaningfully perceivable increase in existing noise levels beyond the Project Site (an increase of 3 dBA L_{eq}), and would be compliant with CCMC Section 9.07.055(B).

Storage facilities would be provided in the residential leasing office and subterranean residential parking garage. Bicycle lockers for 33 bikes (for long-term parking) and a repair station would be provided in the subterranean parking level for residents. Balconies with a minimum size of 52 sf for studios, 62 sf for one bedroom units, and 72 sf for two bedroom units would be provided for the residential uses.

The landscape design would be tailored for each of the landscaped open space areas with a compatible plant palette used throughout the Project Site. Landscaping would emphasize native, Mediterranean and drought tolerant plants (e.g., Agave, Aloe, ornamental grasses, leafy groundcovers, colorful shrubs, and soft textured vegetation).
Figure 2-10
Rendering of Machado Park
Figure 2-11
Rendering of Paseo Courtyard and Ground Floor Spaces

SOURCE: AO, 2020
2. Project Description

2.6.3 Vehicular and Bicycle Access, Circulation, and Parking

Vehicular Access

There are currently ten driveways surrounding the Project Site: five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. The Project would change the locations of and remove seven driveways, resulting in three remaining driveways to serve the Project Site. The removal of driveways would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site. Vehicular access to the Project Site would be provided from one driveway on Sepulveda Boulevard at Janisann Avenue and two driveways on Machado Road. The driveway on Sepulveda Boulevard and the east driveway on Machado Road (closer to Jefferson Boulevard) would serve retail, market, and office uses. The west driveway on Machado Road opposite Heritage Place would provide access for resident and resident guest parking, and for ECF parking, all located below grade. Access for trucks and deliveries would be off of Machado Road where they would access a 2,856 sf loading dock within the Project Site via the eastern-most retail entrance. The loading dock would be set back from Machado Road and would be screened and enclosed to reduce potential noise effects on residents located north of the Project Site. A separate loading and drop-off area for the residential and commercial retail uses is planned in front of the residential lobby entrance on Sepulveda Boulevard. The Project also includes a proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard.

Machado Road Improvements

Machado Road currently includes an 8-foot sidewalk, two eastbound vehicle through lanes which expand to three lanes at the intersection to accommodate the turn pockets (10 feet, 10 feet, and 13 feet wide), an eight-foot landscaped median, two westbound vehicle through lanes that transition into three lanes at the intersection to accommodate the turn pockets (10 feet, 10 feet, and 13 feet wide), and then another sidewalk.

The Project would provide new 8-foot sidewalk, curb, and street trees on the southern edge of Machado Road. At the proposed residential driveway on Machado Road, the Project would remove portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into the Project and eastbound Machado Road, respectively.

At the proposed commercial driveway on Machado Road, the Project would remove portions of the median to allow for all possible turning movements and a westbound left-turn lane into the Project Site. This would result in the removal of the existing eastbound left-turn lane at the Machado Road and Jefferson Boulevard intersection. The Project would convert the left side through lane on Machado Road to an eastbound left-turn lane and the other through lane would become an eastbound shared through-right lane as the roadway approaches Jefferson Boulevard.

Bicycle Access and Circulation

Bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market by the
surface parking spaces for the retail uses. Bicycle lockers would be provided for residents in the subterranean parking level. The Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City. Separate from the Project, the City intends to implement a bicycle share facility adjacent to the Machado Park. The bicycle share facility would allow for connections to the City’s proposed bicycle lanes along Jefferson Boulevard and Sepulveda Boulevard as part of the City’s Bicycle & Pedestrian Action Plan.

Pedestrian Circulation

The Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road. The ground floor retail uses at the corner of Sepulveda Boulevard and Jefferson Boulevard, along with the market, would serve as pedestrian points of interest on the Project Site. The Paseo Courtyard, located between the retail uses at Sepulveda Boulevard and Jefferson Boulevard would provide open space for people to gather and interact with the retail. People would be able to access the residential lobby through the Machado Park along Machado Road. Pedestrians would also be able to easily access the retail market from Sepulveda Boulevard or from Machado Road. Pedestrians would also be able to access the market from the Paseo Courtyard by walking past the retail uses. As shown in Figure 2-12, Rendering of Pedestrian Connection at Janisann Avenue, the Project also includes a proposed traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard.

Vehicle and Bicycle Parking

Structured parking containing 653 vehicular parking spaces would be provided on the Project Site with 308 spaces for residential uses, 311 spaces for commercial uses, and 34 for ECF. The subterranean parking level would include 292 parking spaces for residential tenants, 16 parking spaces for residential guests, and 34 parking spaces for ECF, including tandem spaces. A total of 14 handicap accessible spaces would be provided, including 6 parking spaces in the subterranean parking level, 3 parking spaces on the ground floor, and 5 parking spaces on the second floor. The Project would include 132 electric vehicle (EV) capable spaces, 63 EV charging stations, and 63 EV-ready spaces. The vehicle parking spaces for residential guests would be clearly identified either by specific ground painting or wall signage/decals and would be located within the residential garage in the subterranean parking level only. All subterranean parking would be secured under an access control system. The 34 vehicular parking spaces for ECF would be located within the subterranean parking level and would be identified as being fully dedicated to ECF. The ground floor parking level would include 81 vehicle parking spaces for the retail uses, and the second floor parking area would include 230 vehicle parking spaces for both ground floor retail and second level office use. There would be 71 long-term and 26 short-term bicycle parking spaces provided in various locations throughout the Project Site.
Figure 2-12

Rendering of Pedestrian Connection at Janisann
Public Transit

The Culver City Bus has multiple stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Los Angeles County Metropolitan Transportation Authority (Metro) E-Line (Expo) Light Rail at the La Cienega Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro Green Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service from the Culver City Transit Center at the Westfield Culver City Mall to the Metro E-Line (Expo) Light Rail at the Expo/Seapulveda Station. The Culver City Bus Line 3 travels north/south along Overland Avenue from Culver City Fox Hills to Century City and includes a Sunday route with a stop on Jefferson Boulevard. Culver City Bus Line 3 would provide connections from the Culver City Transit Center to Culver Center and the Palms neighborhood. Culver City Bus Line 4 travels east/west from Playa Vista to the West LA Transit Center.

The Westfield Culver City Transit Center is located approximately 0.7 miles south of the Project Site. The Westfield Culver City Transit Center is not only served by Culver City Bus Lines 4, 6, and Rapid 6, but also by Metro Bus Lines 108/358 and 110.

The Project includes the proposed relocation of the bus stop for Culver City Bus Line 6 on Sepulveda Boulevard. As currently proposed, the northbound bus stop would shift approximately 100 to 200 feet south from its current location at the intersection of Machado Road and Sepulveda Boulevard, to just north of the newly signalized intersection of Janisann Avenue and Sepulveda Boulevard. Additionally, the Project includes the proposed relocation of the bus stop for Culver City Bus Lines 3 and 4 on Jefferson Boulevard. As currently proposed, the southbound bus stop would shift approximately 100 to 200 feet north from its current location on Jefferson Boulevard, to just south of the signalized intersection of Machado Road and Jefferson Boulevard. New bus stop furniture and amenities would also be provided at these two bus stops, including new bus stop sign poles, bus shelters, benches, trash receptacles, real-time LED displays, bus pads, red curbs, and dedicated micromobility (e.g., e-bikes, electric scooters) drop zones near the bus stop.

Transportation Demand Management Program

Transportation demand management (TDM) and mobility components may include a City-implemented bicycle-share program and parking area, traffic calming, traffic signal and pedestrian safety enhancements, employee incentives to reduce vehicular traffic to the Project Site, dedicated ride-share drop off locations, rideshare matching, and TDM education and awareness programs for residents, employees, and visitors. In accordance with the California Green Building Standards Code (CALGreen Code), infrastructure for EV charging stations would be provided.

2.6.4 Lighting and Signage

Lighting for the Project is intended to minimize light trespass and glare from buildings and the Project Site onto adjacent properties, to provide comfort, safety, and nighttime visibility through shielded, focused and directed illumination. All proposed lighting for the Project’s residential, office and market/retail uses would be provided in accordance with CCMC Section 17.300.040, which provides the general standards for outdoor lighting to regulate lighting fixtures and design, energy use, light shielding, light intensity, and lighting placement. Additionally, the Project would
comply with CCMC Section 15.02.110A.12, which requires that all new lighting installed in a garage or parking structure shall be motion-sensor controlled and that minimum base level lighting shall be permitted. Project materials would also be selected to avoid highly reflective surfaces that would result in adverse glare effects on motorists or adjacent uses. Signage for the Project’s residential, office and market/retail uses would be provided in accordance with the CCMC. There would be wayfinding signage for Project residents, employees and visitors, as well as public signage identifying access to parking facilities. Additional signage would be available to ensure that routes to rideshare, bus stops, and other transportation is clear for those accessing and departing from the Project Site.

2.6.5 Site Security

The Project would incorporate a security program to ensure the safety of Project residents, employees, and visitors. A separate elevator will be provided for residents of the Project. Controlled access to the building interiors would be provided as appropriate. Access to retail uses and publicly accessible open space areas would be unrestricted during business hours. Public access would be available to those who wish to use or interact with these spaces, including the Machado Park, after business hours; however, on-site security is planned for the building operations to ensure that residents and visitors are not disturbed and that open spaces are used for their intended purpose. Facility operations would include staff training and building access/design to assist in crime prevention efforts and to reduce the demand for police protection services. Site security would include the provision of 24-hour video surveillance and roving security personnel. Duties of the security personnel would include, but would not be limited to, assisting residents and visitors with site access; monitoring entrances and exits of buildings, including parking; managing and monitoring fire/life/safety systems; and patrolling the property. Project design would also include lighting of entryways, publicly accessible areas, parking areas, and common building and open space residential areas for security purposes.

2.6.6 Sustainability Features

Energy efficiency, water conservation, and the reduction of greenhouse gas emissions would be considered in the design, construction, and operation of the building and its proposed new uses. Some of the Project’s proposed design features that would contribute to energy efficiency include energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping. All Project components would, at a minimum, meet Culver City’s mandatory Green Building Program requirements. The Project would supply 1 kW of solar photovoltaic power. In accordance with the CALGreen Code, infrastructure for EV charging stations for both the residential and retail uses on the Project Site would be provided and meet local applicable Codes. The Project would include 132 EV capable spaces, 63 EV charging stations, and 63 EV-ready spaces.

2.6.7 Construction Schedule/Activities

A Construction Management Plan would be prepared which defines the scope and scheduling of planned construction activities as well as the Applicant’s proposed construction site management responsibilities, to ensure minimal impacts to neighboring residents and land uses and to avoid
2. Project Description

The Project would comply with CCMC Section 9.07.035’s allowable construction hours of:

- Monday-Friday: 8:00 AM through 8:00 PM
- Saturdays: 9:00 AM through 7:00 PM
- Sundays: 10:00 AM through 7:00 PM

In the event that special construction activities such as concrete pours, oversized equipment delivery, or mobile crane placement are required after permitted hours of construction, a Temporary Use Permit would be required from the City pursuant to CCMC Section 9.07.035.

The Project would require excavation to accommodate subterranean parking, building foundations, utilities and other improvements. Up to approximately 88,000 cubic yards of earthwork would be excavated and exported from the Project Site. The Project would excavate to a maximum depth of 25 feet below grade.

Project construction would occur in one phase and is anticipated to commence as early as the second quarter of 2022 and be completed by the third quarter of 2024 for an anticipated duration of 26 months.

2.7 Project Design Features

The Project proposes to implement a number of Project Design Features that have been voluntarily incorporated into the Project that serve to minimize or avoid significant environmental effects. The Project Design Features will be included in the Mitigation Monitoring and Reporting Program required in association with certification of the Draft EIR. The Project Design Features are summarized in Table 2-2, Summary of Project Design Features, and are discussed in detail in the technical sections indicated in the table. The Project Design Features are taken into account in the analyses of potential Project impacts.
TABLE 2-2
SUMMARY OF PROJECT DESIGN FEATURES

<table>
<thead>
<tr>
<th>Project Design Feature #</th>
<th>Project Design Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 Noise</td>
<td></td>
</tr>
<tr>
<td>PDF-NOISE-1 (Project Construction Schedule)</td>
<td>Prior to issuance of a building permit, notice of the Project construction schedule shall be provided to all abutting property owners and occupants. Evidence of such notification shall be provided to the Building Division. The notice shall identify the commencement date and proposed timing for all construction phases (demolition, grading, excavation/shoring, foundation, rough frame, plumbing, roofing, mechanical and electrical, and exterior finish).</td>
</tr>
<tr>
<td>PDF-NOISE-2 (Mechanical Equipment Noise)</td>
<td>All mechanical equipment and/or ventilation systems not fully enclosed will be designed, through the use of quiet fans and duct silencers or similar methods, to not exceed 55 dBA L_{eq} from 7:00 AM to 10:00 PM and 50 dBA L_{eq} from 10:00 PM to 7:00 AM at the neighboring property lines including the north and west property lines per sound level limits of the Culver City Noise Element.</td>
</tr>
<tr>
<td>PDF-NOISE-3 (Construction Rules Sign)</td>
<td>During all phases of construction, a "Construction Rules Sign" that includes contact names and telephone numbers of the Applicant, Property Owner, construction contractor(s), and the City, shall be posted on the Property in a location that is visible to the public. These names and telephone numbers shall also be made available to adjacent property owners and occupants to the satisfaction of the Planning Manager and Building Official.</td>
</tr>
</tbody>
</table>
| PDF-NOISE-4 (Compliance with Noise Element) | The following noise standards from Policy 2.A of the City's General Plan Noise Element shall be complied with at all times:

a) No construction equipment shall be operated without an exhaust muffler, and all such equipment shall have mufflers and sound control devices (i.e., intake silencers and noise shrouds) that are no less effective than those provided on the original equipment;
b) All construction equipment shall be properly maintained to minimize noise emissions;
c) If any construction vehicles are serviced at a location onsite, the vehicle(s) shall be setback from any street and other property lines so as to maintain the greatest distance from the public right-of-way and from Noise Sensitive Receptors;
d) Noise impacts from stationary sources (i.e., mechanical equipment, ventilators, and air conditioning units) shall be minimized by proper selection of equipment and the installation of acoustical shielding as approved by the Planning Manager and the Building;
e) The Project shall not allow any delivery truck idling in the loading area. Signs shall be posted prohibiting idling. |
PDF-NOISE-5 (Noise Control - Permanent Amplified Sound Systems)	Permanent outdoor amplified sound systems that will operate on a regularly scheduled ongoing basis shall be designed so as not to result in a meaningfully perceivable increase in noise beyond the Project Site. Specifically, outdoor amplified sound systems shall not result in an increase of 3 dBA L_{eq} over existing conditions at the Project property line. All speakers shall have a minimum setback of 25 feet from the Project property line and shall be directed internally and shielding from off-site uses. A qualified noise consultant shall provide written documentation that the design of the system(s) complies with the maximum noise level.
4.10.1 Public Services – Fire Protection	
PDF-FIRE-1 (Fire Protection Devices)	The Project would be equipped with fire alarms, fire sprinklers, and an emergency radio response system.
PDF-FIRE-2 (Submittal of Plans to CCFD for Review/Approval)	Plans for the proposed new building, fire lanes and associated turnarounds, fire hydrant locations, and associated fire prevention/suppression equipment, will be submitted to the CCFD for review and approval.
4.10.2 Public Services – Police Protection

<table>
<thead>
<tr>
<th>Project Design Feature #</th>
<th>Project Design Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF-POL-1 (Project Site Security and Access During Construction)</td>
<td>During construction of the Project the Project Site will be enclosed with security fencing, lit with security lighting, and patrolled periodically by security personnel.</td>
</tr>
</tbody>
</table>
| PDF-POL-2 (Project Site Security and Access During Operation) | During operation, the Project will incorporate a 24-hour/seven-day security program to ensure the safety of its residents, employees, and visitors. The Project’s security will include, but not be limited to, the following design features:
 a) Installing and utilizing a 24-hour/seven-day security program to ensure the safety of its residents and site visitors.
 b) Full-time security personnel. Duties of the security personnel will include, but would not be limited to, assisting residents and visitors with site access; monitoring entrances and exits of buildings, including parking; managing and monitoring fire/life/safety systems; and patrolling the property. The site security would regularly interface and collaborate with CCPD, as necessary.
 c) Staff training and building access/design to assist in crime prevention efforts and to reduce the demand for police protection services.
 d) Controlled access to all residential units, lobby areas, and residential common open space areas through the use of key cards, site security and/or other means, as appropriate.
 e) CCTV surveillance within the parking garage, ground floor levels, and open space areas.
 f) Lighting of entry-ways, publicly accessible areas, parking areas, and common building and open space residential areas. |

4.11 Transportation

<table>
<thead>
<tr>
<th>Project Design Feature #</th>
<th>Project Design Features</th>
</tr>
</thead>
</table>
| PDF-TRAFF-1 (Construction Management Plan) | A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project’s traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant’s proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City’s Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City’s Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer. Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare. Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City’s Community Meeting guidelines, to discuss and provide the following information to the surrounding community:
 • Construction schedule and hours.
 • Framework for construction phases.
 • Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
 • Potential location of construction parking and office trailers.
 • Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project. |
2. Project Description

<table>
<thead>
<tr>
<th>Project Design Feature #</th>
<th>Project Design Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.</td>
</tr>
<tr>
<td></td>
<td>• Emergency access plan.</td>
</tr>
<tr>
<td></td>
<td>• Demolition plan.</td>
</tr>
<tr>
<td></td>
<td>• Staging plan for the concrete pours, material loading and removal.</td>
</tr>
<tr>
<td></td>
<td>• Crane location(s).</td>
</tr>
<tr>
<td></td>
<td>• Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).</td>
</tr>
<tr>
<td></td>
<td>• Community notification procedures.</td>
</tr>
<tr>
<td></td>
<td>• The FCMP shall at a minimum include the following:</td>
</tr>
<tr>
<td></td>
<td>1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.</td>
</tr>
<tr>
<td></td>
<td>2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.</td>
</tr>
<tr>
<td></td>
<td>3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.</td>
</tr>
<tr>
<td></td>
<td>4. Procedures for the training and certification of flag persons.</td>
</tr>
<tr>
<td></td>
<td>5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.</td>
</tr>
<tr>
<td></td>
<td>6. The location of temporary power, portable toilet and trash and materials storage locations.</td>
</tr>
<tr>
<td></td>
<td>7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City’s website and distribution via email alerts on the City’s “Gov Delivery” system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.</td>
</tr>
<tr>
<td></td>
<td>8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.</td>
</tr>
</tbody>
</table>

2.8 Anticipated Project Approvals

Discretionary entitlements, reviews, and approvals required or requested for the Project may include, but would not necessarily be limited to, the following:

- Zoning Map Amendment;
- Adoption of a Comprehensive Plan for the Project, which would establish the development standards for the Project Site;
- Community Benefits Request;
- Density Bonus Request;
- Tentative Parcel Map;
- Certification of the EIR for the Project;
- Demolition Permits to remove the existing on-site structures to allow for construction of the Project;
- Construction Permits, including building, grading, excavation, foundation, and associated permits;
- Haul Route Permit, as may be required by Culver City; and
- Other discretionary and ministerial approvals as needed and as may be required.
CHAPTER 3
Environmental Setting

3.1 Overview of Environmental Setting

CEQA Guidelines Section 15125 requires that an EIR include a description of the existing environment. This chapter provides a general overview of the environmental setting for the Project, however, detailed information on existing conditions for each environmental resource area evaluated in this Draft EIR is provided in Chapter 4, *Environmental Impact Analysis*. This chapter also provides an overview of related projects that are considered in the Draft EIR in evaluating cumulative impacts that could result from the Project together with other projects.

3.1.1 On-Site Conditions

The Project Site is located at 11111 Jefferson Boulevard on an approximately 3.43-acre triangular shaped site. The Project Site is bounded by Jefferson Boulevard to the east, Machado Road to the north and Sepulveda Boulevard to the west. The Project Site is relatively flat with elevations ranging from approximately 35 feet from the northwestern corner of the Project Site at the intersection of Sepulveda Boulevard and Machado Road and sloping down to 33 feet on the southern corner of the Project Site at the intersection of Sepulveda Boulevard and Jefferson Boulevard. Primary regional access to the north and south is provided by the San Diego Freeway (I-405), to the west the Marina Freeway/Expressway (SR-90), both located approximately 0.7 miles southwest of the Project Site, and east/west access by the Interstate 10 (I-10) approximately 3 miles north of the Project Site.

The Project Site is made up of four parcels from north to south. The northernmost parcel consists of a surface parking lot with 34 parking spaces used by Exceptional Children’s Foundation (ECF) as off-site parking. The northern central parcel is occupied by a United States Post Office (27,225 square feet [sf]) built in the early 1960s and includes a mail processing and distribution center and a rear loading dock. The next parcel to the south is occupied by Coco’s Bakery Restaurant (6,064 sf) built in the late 1960s. The southernmost parcel is occupied by Valvoline Instant Oil Change (1,722 sf) built in the 1990s. The Project Site includes approximately 216 existing vehicle parking spaces, including 194 regular spaces, 12 truck loading spaces, and 10 handicap spaces, across all existing uses. In addition to the existing buildings and areas of surface parking, there is a mix of ornamental landscaping on the Project Site, including a number of mature eucalyptus and palm trees, with the most concentrated plantings along Machado Road. At the southern end of the Project Site there is a sparsely landscaped open space area with decomposed granite and a decorative fountain. There are also street trees along all three frontages of the Project Site and within the Machado Road landscaped median. In certain areas along the perimeter of the Project Site, there are concrete block walls, chain link fencing and wrought iron fencing. There is monument and other
signage for the Coco’s Bakery Restaurant and oil change facility. Lighting is provided throughout the parking lots and along the street frontages.

Existing vehicular access to the Project Site is currently provided from ten driveways; five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. Pedestrian access is provided via sidewalks located along Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Bicycle access is provided by bicycle lanes on Sawtelle Boulevard west of Sepulveda Boulevard and also on Sepulveda Boulevard north of Machado Road.

The General Plan Land Use designation for the Project Site is General Corridor, which allows commercial uses with an emphasis on community serving retail. Per the Culver City Zoning Code (Zoning Code), the majority of the Project Site is zoned Commercial General (CG). The northern most parcel (APN 4215-001-020) adjacent to Machado Road is split-zoned CG and Single-Family (R-1).

3.1.2 Surrounding Uses

Nearby land uses north of Machado Boulevard include a residential neighborhood (Heritage Park) consisting of single-family homes and a private K-12 school (ECF). To the east across Jefferson Boulevard is the Studio Village Shopping Center and surface parking lot. South and west of the Project Site across Sepulveda Boulevard is a temple (Temple Akiba) and commercial uses. There are also multi-family residential uses north of Temple Akiba along Sepulveda Boulevard (Studio Village Townhomes), single-family residential uses backing the commercial uses along Sepulveda Boulevard (Sunkist Park Neighborhood), and single-family residential uses to the south of the Studio Village Shopping Center (Blanco Park Neighborhood).

3.2 Related Projects

CEQA requires that EIRs analyze cumulative impacts. As defined in CEQA Guidelines Section 15355, a cumulative impact would result from the combination of the project evaluated in the EIR together with other projects that would cause related impacts. CEQA Guidelines Section 15130(a) states that an EIR must discuss cumulative impacts of a project when the project's incremental effect is cumulatively considerable, as defined in Section 15065(a)(3). Where a lead agency is examining a project with an incremental effect that is not “cumulatively considerable,” a lead agency need not consider that effect significant, but must briefly describe its basis for concluding that the incremental effect is not cumulatively considerable. When the combined cumulative impact associated with the project's incremental effect and the effects of other projects is not significant, the EIR must briefly indicate why the cumulative impact is not significant and is not discussed in further detail in the EIR. A lead agency may determine that a project’s contribution to a significant cumulative impact will be rendered less than cumulatively considerable and thus is not significant. A project’s contribution is less than cumulatively considerable if a project is required to implement or fund its fair share of a mitigation measures designed to alleviate the cumulative impact. A lead agency must identify facts and analysis supporting the lead agency’s conclusion that the cumulative impact is less than significant.
In addition, CEQA Guidelines Section 15130(b) states that the analysis of cumulative impacts shall reflect the severity of the impacts and the likelihood of occurrence, but the discussion need not provide as great of detail as provided for the effects attributable to the project alone. Instead, the discussion should be guided by the standards of practicality and reasonableness, and should focus on the cumulative impact to which the identified other projects contribute rather than the attributes of the other projects which do not contribute to the cumulative impact.

Under CEQA Guidelines Section 15065(a)(3), a project has “cumulatively considerable” or significant cumulative impacts, when its incremental effects “are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.”

For an adequate discussion of significant cumulative impacts, the CEQA Guidelines (Section 15130(b)(1)(A) and (B)) allow an EIR to determine cumulative impacts and reasonably foreseeable growth based on either of the following methods:

Cumulative impacts are anticipated impacts of the proposed project along with reasonably foreseeable growth. Reasonably foreseeable growth may be based on either:

- A list of past, present, and reasonably anticipated future projects producing related or cumulative impacts; or
- A summary of projections contained in an adopted general plan or related planning document, or in a prior environmental planning document which has been adopted or certified, which described or evaluated regional or area-wide conditions contributing to the cumulative impact.

For the Project’s cumulative impacts analysis, a list of related projects is used as the primary basis for evaluation. Consistent with CEQA Guidelines Section 15130(b)(3), the City has determined in its independent judgement, based on the size and scale of the Project analysis and related projects in the area, 1.5 miles is the appropriate radius applied for the identification of related projects for this Project. This distance includes a portion of the City of Los Angeles and areas within the County of Los Angeles. The list is based on information obtained from the Culver City Engineering Division and Planning Division, City of Los Angeles Department of Transportation (LADOT), and the County of Los Angeles. The list of 27 related projects is provided in Table 3-1, Related Projects List, with their locations identified in Figure 3-1, Related Projects Map. Of the 27 related projects, 21 are located within the City of Culver City and 6 are located within the City of Los Angeles. Although the projects listed in Table 3-1 serve as the primary basis for evaluation of cumulative impacts, the related projects or methodology used to address cumulative impacts may vary among certain environmental issues and topics due to their unique characteristics. The cumulative analyses for each environmental issue, including the identification of relevant related projects are provided in their applicable sections in Chapter 4, Environmental Impact Analysis, of this Draft EIR.
TABLE 3-1
RELATED PROJECTS LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Jurisdiction</th>
<th>Land Use</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6733 S. Sepulveda Boulevard</td>
<td>City of Los Angeles</td>
<td>Apartments</td>
<td>176 du</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apartments</td>
<td>49 du</td>
</tr>
<tr>
<td>2</td>
<td>11612 W. Culver Boulevard</td>
<td>City of Los Angeles</td>
<td>Restaurant</td>
<td>1.75 ksf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retail</td>
<td>2.05 ksf</td>
</tr>
<tr>
<td>3</td>
<td>4471 Inglewood Boulevard</td>
<td>City of Los Angeles</td>
<td>School</td>
<td>800 students</td>
</tr>
<tr>
<td>4</td>
<td>6711 S. Sepulveda Boulevard</td>
<td>City of Los Angeles</td>
<td>Apartments</td>
<td>180 du</td>
</tr>
<tr>
<td>5</td>
<td>9919 Jefferson Boulevard</td>
<td>City of Culver City</td>
<td>Office</td>
<td>62.56 ksf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apartments</td>
<td>98 du</td>
</tr>
<tr>
<td>6</td>
<td>11924 Washington Boulevard</td>
<td>City of Los Angeles</td>
<td>Retail</td>
<td>11.25 ksf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restaurant</td>
<td>3.75 ksf</td>
</tr>
<tr>
<td>7</td>
<td>11259 Washington Boulevard</td>
<td>City of Culver City</td>
<td>Office</td>
<td>4.02 ksf</td>
</tr>
<tr>
<td>8</td>
<td>6161 Centinela Boulevard</td>
<td>City of Culver City</td>
<td>Office</td>
<td>281.19 ksf</td>
</tr>
<tr>
<td>9</td>
<td>3961 Tilden Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>5 du</td>
</tr>
<tr>
<td>10</td>
<td>4333 Sepulveda Boulevard</td>
<td>City of Culver City</td>
<td>Retail</td>
<td>2.97 ksf</td>
</tr>
<tr>
<td>11</td>
<td>4241 Duquesne Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>2 du</td>
</tr>
<tr>
<td>12</td>
<td>4044 Globe Avenue</td>
<td>City of Culver City</td>
<td>Single Family Houses</td>
<td>10 du</td>
</tr>
<tr>
<td>13</td>
<td>4055 Jackson Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>9 du</td>
</tr>
<tr>
<td>14</td>
<td>4115 Lincoln Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>2 du</td>
</tr>
<tr>
<td>15</td>
<td>4234 Sawtelle Boulevard</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>3 du</td>
</tr>
<tr>
<td>16</td>
<td>4034 La Salle Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>4 du</td>
</tr>
<tr>
<td>17</td>
<td>4013 Sawtelle Boulevard</td>
<td>City of Culver City</td>
<td>Medical Office</td>
<td>4.52 ksf</td>
</tr>
<tr>
<td>18</td>
<td>3873 Bentley Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>2 du</td>
</tr>
<tr>
<td>19</td>
<td>West LA Community College Master Plan</td>
<td>Unincorporated Los Angeles County</td>
<td>School</td>
<td>18,904 students</td>
</tr>
<tr>
<td>20</td>
<td>11141 Washington Boulevard</td>
<td>City of Culver City</td>
<td>Assisted Living</td>
<td>117 du</td>
</tr>
<tr>
<td>21</td>
<td>4338 Huntley Avenue</td>
<td>City of Culver City</td>
<td>Single Family Houses</td>
<td>2 du</td>
</tr>
<tr>
<td>22</td>
<td>4041 Sawtelle Boulevard</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>3 du</td>
</tr>
<tr>
<td>23</td>
<td>3906 Tilden Avenue</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>2 du</td>
</tr>
<tr>
<td>24</td>
<td>4095 Sawtelle Boulevard</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>3 du</td>
</tr>
<tr>
<td>25</td>
<td>11469 Jefferson Boulevard</td>
<td>City of Culver City</td>
<td>Hotel</td>
<td>183 Rooms</td>
</tr>
<tr>
<td>26</td>
<td>4233 East Boulevard</td>
<td>City of Culver City</td>
<td>Apartments</td>
<td>3 du</td>
</tr>
<tr>
<td>27</td>
<td>11620 Washington Boulevard</td>
<td>City of Culver City</td>
<td>Assisted Living</td>
<td>72 du</td>
</tr>
</tbody>
</table>

du = dwelling units; ksf = thousand square feet

a Related projects list based on information provided by the City of Culver City (dated October 2020), the Los Angeles Department of Transportation (on September 28, 2020), and the Los Angeles County (April 24, 2019).

Related Projects Map

SOURCE: Fehr and Peers, 2020

11111 Jefferson Boulevard Mixed-Use Project

Figure 3-1
This page intentionally left blank
CHAPTER 4
Environmental Impacts Analysis

Introduction

The focus of Chapter 4 is on the potential impacts that could occur as a result of the Project. The sections included are those that have the potential to result in significant adverse impacts to the physical environment. The following sections are included in this chapter:

- Air Quality (Section 4.1)
- Cultural Resources: Historical Resources and Archaeological Resources (Sections 4.2.1 and 4.2.2)
- Energy (Section 4.3)
- Geology and Soils - Paleontological Resources (Section 4.4)
- Greenhouse Gas Emissions (Section 4.5)
- Hazards and Hazardous Materials (Section 4.6)
- Land Use and Planning (Section 4.7)
- Noise (Section 4.8)
- Population and Housing (Section 4.9)
- Public Services: Fire Protection and Police Protection (Sections 4.10.1 and 4.10.2)
- Transportation (Section 4.11)
- Tribal Cultural Resources (Section 4.12)

Based on the Initial Study, which is contained in Appendix A-2 of this Draft EIR, public comments received during the NOP circulation period, and input received during the EIR Scoping Meeting, it was determined that several issue areas would not be subject to significant impacts due to implementation of the Project. Generally, these issue areas include Aesthetics, Agricultural and Forestry Resources, Biological Resources, Cultural Resources (Human Remains), Geology and Soils (all except Paleontological Resources), Hydrology and Water Quality, Mineral Resources, Public Services (Schools, Parks, and Libraries), Recreation, Utilities and Service Systems, and Wildfire. Please see Subsection 6.5, Effects Found Not to be Significant, of Chapter 6, Other CEQA Considerations, of this Draft EIR for a discussion of those issue areas for which a detailed analysis is not included and the basis for those determinations.
Environmental Impact

Each section in this chapter addresses a specific environmental issue area as listed above and includes the following components:

- **Existing Setting:** This subsection describes the physical characteristics and existing environmental conditions within and in the vicinity of the Project area.

- **Regulatory Setting:** This subsection presents information on the laws, regulations, plans, and policies that relate to the issue area being discussed. Regulations originating from federal, State, regional, and local levels are discussed as appropriate.

- **Methodology:** This subsection provides a description of the methodology used for the analysis of the environmental issue addressed in the section.

- **Thresholds of Significance:** This subsection presents the criteria established by the Lead Agency to identify at what level an impact would be considered significant and require implementation of mitigation measures.

- **Project Design Features:** This subsection presents any relevant Project Design Features (PDFs) applicable to the environmental issue addressed in the section. PDFs are specific design elements or Project commitments that have been voluntarily incorporated into the Project that serve to minimize or avoid significant environmental effects. Because PDFs have been incorporated into the Project, they are accounted for in determining the significance of Project, and do not constitute mitigation measures, as defined by CEQA Guidelines Section 15126.4. However, the PDFs will be included in the Mitigation Monitoring and Reporting Program (MMRP) for the EIR to ensure their implementation is tracked and confirmed as the Project is carried out.

- **Analysis of Project Impacts:** This subsection provides an analysis of the nature and extent of potential Project impacts. These analyses address direct (or primary) effects of the Project as well as the indirect (or secondary) impacts. This subsection also provides any mitigation measures (beyond the PDFs) used to reduce or eliminate Project impacts that have been determined significant based on the established thresholds of significance.

- **Cumulative Impacts:** A discussion of the effects of the Project when combined with the effects of related projects, which include other past, present and future probable projects is provided. The approach to addressing cumulative impacts, including a list of related projects, is described in Chapter 3, *Environmental Setting*, of this Draft EIR.

- **Mitigation Measures:** This subsection provides mitigation measures, if necessary, to reduce significant impacts identified in the analysis of the Project.

- **Level of Significance after Mitigation:** A discussion of the significance of each impact after mitigation is provided.
Terminology Used in This EIR

In evaluating the impacts of the Project, the impact is determined by applying the evaluation criteria, or threshold of significance, presented for each resource area. The following terms are used to describe the effect:

- **Threshold of significance**: A threshold of significance is a criterion applied by the Lead Agency to identify significant adverse environmental impacts. A threshold is defined by a Lead Agency based on guidance found in CEQA or the CEQA Guidelines, scientific and factual data relative to the Lead Agency jurisdiction, views of the public in affected areas, the policy/regulatory environment of affected jurisdictions, and other factors.

- **Less than significant impact**: A less than significant impact does not result in a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project, including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance (see CEQA Guidelines Section 15382). Impacts determined to be less than significant do not require mitigation measures.

- **Significant impact**: Public Resources Code (PRC) Section 21068 defines a significant impact as “a substantial, or potentially substantial, adverse change in the environment.” The environmental checklist included as Appendix G of the CEQA Guidelines provides additional guidance for determining which impacts would be regarded as significant. This EIR applies the thresholds contained within Appendix G and identified in each section’s “Thresholds of Significance,” and uses the CEQA definition of “significant impact.” Feasible mitigation measures or alternatives to the Project must be identified and adopted if they would avoid or substantially reduce the significant impact.

- **Significant and unavoidable impact**: A significant and unavoidable impact is a substantial adverse effect on the environment that cannot be avoided or mitigated to a less than significant level. A project with significant and unavoidable impacts could still proceed, but the City would be required to prepare a statement of overriding considerations, pursuant to CEQA Guidelines Section 15093, explaining what factors the City considered in approving the project notwithstanding the potential for significant environmental impacts.

As indicated above, the proposed Project includes a number of PDFs which are features or commitments voluntarily committed to as part of the Project that serve to reduce or avoid environmental impacts. PDFs are accounted for in the Draft EIR analyses prior to determining the significance of Project impacts on a given environmental issue area. Table 2-2, which is provided in Chapter 2, Project Description, of this Draft EIR provides a summary of the PDFs. The PDFs in their entirety are provided within each section of the applicable environmental issue area.

Mitigation measures are measures identified to avoid or reduce a significant impact that has been identified through environmental analysis. Mitigation measures generally include provisions for:

- Avoiding the impact by not taking a certain action or parts of an action;
- Minimizing the impact by limiting the degree or magnitude of the action and its implementation;
- Rectifying the impact by repairing, rehabilitating or restoring the affected environment;
• Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action; and
• Compensating for the effect by replacing or providing substitute resources or environments.

Both PDFs and mitigation measures will be adopted as part of the MMRP so that their implementation can be tracked by the City to ensure compliance.
4.1 Air Quality

4.1.1 Introduction

This section evaluates the Project’s potential air quality impacts, including potential cumulative impacts generated by construction and operation of the Project. This section estimates the air pollutant emissions generated by Project construction and operation and assesses whether Project emissions would conflict with or obstruct implementation of the air quality policies set forth within the South Coast Air Quality Management District’s (SCAQMD) Air Quality Management Plan (AQMP); result in a cumulatively considerable net increase of any criteria pollutant in non-attainment of federal or State ambient air quality standard; or, expose sensitive receptors to substantial pollutant concentrations. This section relies on the information, data, assumptions, calculation worksheets, and model outputs provided in the Air Quality Technical Appendix, provided in Appendix B of this Draft EIR.

4.1.2 Environmental Setting

Existing Conditions

Regional Context

The Project Site is located within the South Coast Air Basin (Air Basin), which is an approximately 6,745-square-mile area bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east. The Air Basin consists of Orange County, Los Angeles County (excluding the Antelope Valley portion), and the western, non-desert portions of San Bernardino and Riverside counties, in addition to the San Gorgonio Pass area in Riverside County. The terrain and geographical location determine the distinctive climate of the Air Basin, as it is a coastal plain with connecting broad valleys and low hills. Figure 4.1-1, Boundaries of the South Coast Air Quality Management District, illustrates the location of the Air Basin.

The Air Basin lies in the semi-permanent high-pressure zone of the eastern Pacific Ocean. The usually mild climatological pattern is interrupted by periods of hot weather, winter storms, or Santa Ana winds. The extent and severity of pollutant concentrations in the Air Basin is a function of the area’s natural physical characteristics (weather and topography) and man-made influences (development patterns and lifestyle). Factors such as wind, sunlight, temperature, humidity, rainfall, and topography all affect the accumulation and dispersion of pollutants throughout the Air Basin, making it an area of high pollution potential.
Figure 4.1-1

Boundaries of the South Coast Air Quality Management District
The Air Basin’s meteorological conditions, in combination with regional topography, are conducive to the formation and retention of ozone, which is a secondary pollutant that forms through photochemical reactions in the atmosphere. Thus, the greatest air pollution impacts throughout the Air Basin typically occur from June through September. This condition is generally attributed to the emissions occurring in the Air Basin, light winds, and shallow vertical atmospheric mixing. These factors reduce the potential for pollutant dispersion causing elevated air pollutant levels. Pollutant concentrations in the Air Basin vary with location, season, and time of day. Concentrations of ozone, for example, tend to be lower along the coast, higher in the near inland valleys, and lower in the far inland areas of the Air Basin and adjacent desert.

Pollutants and Related Health Effects

Criteria Pollutants

Certain air pollutants have been recognized to cause notable health problems and consequential damage to the environment either directly or in reaction with other pollutants due to their presence in elevated concentrations in the atmosphere. Such pollutants have been identified and regulated as part of the overall endeavor to prevent further deterioration and facilitate improvement in air quality. The following pollutants are regulated by the United States Environmental Protection Agency (USEPA) and are subject to emissions control requirements adopted by federal, state and local regulatory agencies. These pollutants are referred to as “criteria air pollutants” as a result of the specific standards, or criteria, which have been adopted for them. A description of the health effects of these criteria air pollutants are provided below.

Ozone (O₃): Ozone is a secondary pollutant formed by the chemical reaction of volatile organic compounds (VOCs) and nitrogen oxides (NOₓ) in the presence of sunlight under favorable meteorological conditions, such as high temperature and stagnation episodes. Ozone concentrations are generally highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable. According to the USEPA, ozone can cause the muscles in the airways to constrict potentially leading to wheezing and shortness of breath.¹ Ozone can make it more difficult to breathe deeply and vigorously; cause shortness of breath and pain when taking a deep breath; cause coughing and sore or scratchy throat; inflame and damage the airways; aggravate lung diseases, such as asthma, emphysema, and chronic bronchitis; increase the frequency of asthma attacks; make the lungs more susceptible to infection; continue to damage the lungs even when the symptoms have disappeared; and cause chronic obstructive pulmonary disease.² Long-term exposure to ozone is linked to aggravation of asthma, and is likely to be one of many causes of asthma development and long-term exposures to higher concentrations of ozone may also be linked to permanent lung damage, such as abnormal lung development in children.³ According to the California Air Resources Board (CARB), inhalation of ozone causes inflammation and irritation of the tissues lining human airways, causing and worsening a variety of symptoms and exposure to

² USEPA, Health Effects of Ozone Pollution.

³ USEPA, Health Effects of Ozone Pollution.
ozone can reduce the volume of air that the lungs breathe in and cause shortness of breath. The USEPA states that people most at risk from breathing air containing ozone include people with asthma, children, older adults, and people who are active outdoors, especially outdoor workers. Children are at greatest risk from exposure to ozone because their lungs are still developing, and they are more likely to be active outdoors when ozone levels are high, which increases their exposure. According to CARB, studies show that children are no more or less likely to suffer harmful effects than adults; however, children and teens may be more susceptible to ozone and other pollutants because they spend nearly twice as much time outdoors and engaged in vigorous activities compared to adults. Children breathe more rapidly than adults and inhale more pollution per pound of their body weight than adults and are less likely than adults to notice their own symptoms and avoid harmful exposures. Further research may be able to better distinguish between health effects in children and adults.

Volatile Organic Compounds (VOCs): Volatile Organic Compounds (VOCs) are organic chemical compounds of carbon and are not “criteria” pollutants themselves; however, they contribute with NO\textsubscript{X} to form ozone, and are regulated to prevent the formation of ozone. According to CARB, some VOCs are highly reactive and play a critical role in the formation of ozone, other VOCs have adverse health effects, and, in some cases, VOCs can be both highly reactive and have adverse health effects. VOCs are typically formed from combustion of fuels and/or released through evaporation of organic liquids, internal combustion associated with motor vehicle usage, and consumer products (e.g., architectural coatings, etc.).

Nitrogen Dioxide (NO\textsubscript{2}) and Nitrogen Oxides (NO\textsubscript{X}): NO\textsubscript{X} is a term that refers to a group of compounds containing nitrogen and oxygen. The primary compounds of air quality concern include nitrogen dioxide (NO\textsubscript{2}) and nitric oxide (NO). Ambient air quality standards have been promulgated for NO\textsubscript{2}, which is a reddish-brown, reactive gas. The principal form of NO\textsubscript{X} produced by combustion is NO, but NO reacts quickly in the atmosphere to form NO\textsubscript{2}, creating the mixture of NO and NO\textsubscript{2} referred to as NO\textsubscript{X}. Major sources of NO\textsubscript{X} include emissions from cars, trucks and buses, power plants, and off-road equipment. The terms NO\textsubscript{X} and NO\textsubscript{2} are sometimes used interchangeably. However, the term NO\textsubscript{X} is typically used when discussing emissions, usually from

5. USEPA, Health Effects of Ozone Pollution.

6. USEPA, Health Effects of Ozone Pollution.

7. CARB, Ozone & Health, Health Effects of Ozone.

8. CARB, Ozone & Health, Health Effects of Ozone.

9. CARB, Ozone & Health, Health Effects of Ozone.

14. CARB, Nitrogen Dioxide & Health.

combustion-related activities, and the term NO\textsubscript{2} is typically used when discussing ambient air quality standards. Where NO\textsubscript{X} emissions are discussed in the context of the thresholds of significance or impact analyses, the discussions are based on the conservative assumption that all NO\textsubscript{X} emissions would oxidize in the atmosphere to form NO\textsubscript{2}. According to the USEPA, short-term exposures to NO\textsubscript{2} can potentially aggravate respiratory diseases, particularly asthma, leading to respiratory symptoms (such as coughing, wheezing or difficulty breathing), hospital admissions and visits to emergency rooms, while longer exposures to elevated concentrations of NO\textsubscript{2} may contribute to the development of asthma and potentially increase susceptibility to respiratory infections.\footnote{USEPA, Nitrogen Dioxide (NO\textsubscript{2}) Pollution.} According to CARB, controlled human exposure studies show that NO\textsubscript{2} exposure can intensify responses to allergens in allergic asthmatics.\footnote{CARB, Nitrogen Dioxide & Health.} In addition, a number of epidemiological studies have demonstrated associations between NO\textsubscript{2} exposure and premature death, cardiopulmonary effects, decreased lung function growth in children, respiratory symptoms, emergency room visits for asthma, and intensified allergic responses.\footnote{CARB, Nitrogen Dioxide & Health.} Infants and children are particularly at risk from exposure to NO\textsubscript{2} because they have disproportionately higher exposure to NO\textsubscript{2} than adults due to their greater breathing rate for their body weight and their typically greater outdoor exposure duration, while in adults, the greatest risk is to people who have chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease.\footnote{CARB, Nitrogen Dioxide & Health.} CARB states that much of the information on distribution in air, human exposure and dose, and health effects is specifically for NO\textsubscript{2} and there is only limited information for NO and NO\textsubscript{X}, as well as large uncertainty in relating health effects to NO or NO\textsubscript{X} exposure.\footnote{CARB, Nitrogen Dioxide & Health.}

Carbon Monoxide (CO): Carbon monoxide (CO) is primarily emitted from combustion processes and motor vehicles due to the incomplete combustion of fuel, such as natural gas, gasoline, or wood, with the majority of outdoor CO emissions from mobile sources.\footnote{CARB, Carbon Monoxide & Health, https://ww2.arb.ca.gov/resources/carbon-monoxide-and-health. Accessed October 1, 2020.} According to the USEPA, breathing air with a high concentration of CO reduces the amount of oxygen that can be transported in the blood stream to critical organs like the heart and brain and at very high levels, which are possible indoors or in other enclosed environments, CO can cause dizziness, confusion, unconsciousness and death.\footnote{USEPA, Carbon Monoxide (CO) Pollution in Outdoor Air, https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution. Accessed October 1, 2020.} Very high levels of CO are not likely to occur outdoors; however, when CO levels are elevated outdoors, they can be of particular concern for people with some types of heart disease since these people already have a reduced ability for getting oxygenated blood to their hearts and are especially vulnerable to the effects of CO when exercising or under increased stress.\footnote{USEPA, Carbon Monoxide (CO) Pollution in Outdoor Air.} In these situations, short-term exposure to elevated CO may result in reduced oxygen to the heart accompanied by chest pain also known as angina.\footnote{USEPA, Carbon Monoxide (CO) Pollution in Outdoor Air.} According to CARB, the most common effects of CO exposure are fatigue, headaches, confusion, and dizziness due to inadequate...
oxygen delivery to the brain. For people with cardiovascular disease, short-term CO exposure can further reduce their body’s already compromised ability to respond to the increased oxygen demands of exercise, exertion, or stress; inadequate oxygen delivery to the heart muscle leads to chest pain and decreased exercise tolerance. Unborn babies, infants, elderly people, and people with anemia or with a history of heart or respiratory disease are most likely to experience health effects with exposure to elevated levels of CO.

Sulfur Dioxide (SO₂): According to the USEPA, the largest source of sulfur dioxide (SO₂) emissions in the atmosphere is the burning of fossil fuels by power plants and other industrial facilities, while smaller sources of SO₂ emissions include industrial processes, such as extracting metal from ore; natural sources, such as volcanoes; and locomotives, ships and other vehicles and heavy equipment that burn fuel with a high sulfur content. In 2006, California phased-in the ultra-low-sulfur diesel regulation limiting vehicle diesel fuel to a sulfur content not exceeding 15 parts per million, down from the previous requirement of 500 parts per million, substantially reducing emissions of sulfur from diesel combustion. According to the USEPA, short-term exposures to SO₂ can harm the human respiratory system and make breathing difficult. According to CARB, health effects at levels near the State one-hour standard are those of asthma exacerbation, including bronchoconstriction accompanied by symptoms of respiratory irritation, such as wheezing, shortness of breath and chest tightness, especially during exercise or physical activity, and exposure at elevated levels of SO₂ (above one part per million (ppm)) results in increased incidence of pulmonary symptoms and disease, decreased pulmonary function, and increased risk of mortality. Children, the elderly, and those with asthma, cardiovascular disease, or chronic lung disease (such as bronchitis or emphysema) are most likely to experience the adverse effects of SO₂.

Particulate Matter (PM10 and PM2.5): Particulate matter air pollution is a mixture of solid particles and liquid droplets found in the air. Some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the naked eye, while other particles are so small they can only be detected using an electron microscope. Particles are defined by their diameter for air quality regulatory purposes: inhalable particles with diameters that are generally ten micrometers (μm) and smaller (PM10); and fine inhalable particles with diameters that are generally 2.5 μm and smaller (PM2.5). Thus, PM2.5 comprises a portion or a subset of PM10. Sources of PM10

25 CARB, Carbon Monoxide & Health.
26 CARB, Carbon Monoxide & Health.
27 CARB, Carbon Monoxide & Health.
29 CARB, Final Regulation Order, Amendments to the California Diesel Fuel Regulations, Amend Section 2281, Title 13, California Code of Regulations (CCR), Adopted May 2024, approved July 15, 2004.
30 USEPA, Sulfur Dioxide (SO₂) Pollution.
32 CARB, Sulfur Dioxide & Health.
33 USEPA, Sulfur Dioxide (SO₂) Pollution.
35 USEPA, Particulate Matter (PM) Pollution.
36 USEPA, Particulate Matter (PM) Pollution.
emissions include dust from construction sites, landfills and agriculture, wildfires and brush/waste burning, industrial sources, and wind-blown dust from open lands. Sources of PM2.5 emissions include combustion of gasoline, oil, diesel fuel, or wood. PM10 and PM2.5 may be either directly emitted from sources (primary particles) or formed in the atmosphere through chemical reactions of gases (secondary particles), such as SO2, NOX, and certain organic compounds. According to CARB, both PM10 and PM2.5 can be inhaled, with some depositing throughout the airways; PM10 is more likely to deposit on the surfaces of the larger airways of the upper region of the lung, while PM2.5 is more likely to travel into and deposit on the surface of the deeper parts of the lung, which can induce tissue damage, and lung inflammation. Short-term (up to 24 hours duration) exposure to PM10 has been associated primarily with worsening of respiratory diseases, including asthma and chronic obstructive pulmonary disease, leading to hospitalization and emergency department visits. The effects of long-term (months or years) exposure to PM10 are less clear, although studies suggest a link between long-term PM10 exposure and respiratory mortality. The International Agency for Research on Cancer published a review in 2015 that concluded that particulate matter in outdoor air pollution causes lung cancer. Short-term exposure to PM2.5 has been associated with premature mortality, increased hospital admissions for heart or lung causes, acute and chronic bronchitis, asthma attacks, emergency room visits, respiratory symptoms, and restricted activity days and long-term exposure to PM2.5 has been linked to premature death, particularly in people who have chronic heart or lung diseases, and reduced lung function growth in children. According to CARB, populations most likely to experience adverse health effects with exposure to PM10 and PM2.5 include older adults with chronic heart or lung disease, children, and asthmatics and children and infants are more susceptible to harm from inhaling pollutants such as PM10 and PM2.5 compared to healthy adults because they inhale more air per pound of body weight than do adults, spend more time outdoors, and have developing immune systems.

Lead (Pb): Major sources of lead emissions include ore and metals processing, piston-engine aircraft operating on leaded aviation fuel, waste incinerators, utilities, and lead-acid battery manufacturers. In the past, leaded gasoline was a major source of lead emissions; however, the removal of lead from gasoline has resulted in a decrease of lead in the air by 98 percent between 1980 and 2014. Lead can adversely affect the nervous system, kidney function, immune system, reproductive and developmental systems and the cardiovascular system, and affects the oxygen carrying capacity of blood. The lead effects most commonly encountered in current populations

38 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
39 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
40 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
41 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
42 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
43 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
44 CARB, Inhalable Particulate Matter and Health (PM2.5 and PM10).
46 USEPA, Lead Air Pollution.
47 USEPA, Lead Air Pollution.
are neurological effects in children, such as behavioral problems and reduced intelligence, anemia, and liver or kidney damage.48 Excessive lead exposure in adults can cause reproductive problems in men and women, high blood pressure, kidney disease, digestive problems, nerve disorders, memory and concentration problems, and muscle and joint pain.49

\textbf{Other Criteria Pollutants (California Only)}

The California Ambient Air Quality Standards (CAAAQS) regulate the same criteria pollutants as the National Ambient Air Quality Standards (NAAQS) but, in addition, regulate State-identified criteria pollutants, including sulfates, hydrogen sulfide, visibility-reducing particles, and vinyl chloride.50 A description of the health effects of the State-identified criteria air pollutants relevant to the Project is provided below. As the Project would not generate emissions of hydrogen sulfide or vinyl chloride, they are not discussed.

\textbf{Sulfates} (SO_4^{2-}): Sulfates in the environment occur as a result of SO_2 (sulfur dioxide) being converted to SO_4^{2-} compounds in the atmosphere where sulfur is first oxidized to SO_2 during the combustion process of sulfur containing, petroleum-derived fuels (e.g., gasoline and diesel fuel).51 Exposure to SO_4^{2-}, which are part of PM2.5, results in health effects similar to those from exposure to PM2.5 including reduced lung function, aggravated asthmatic symptoms, and increased risk of emergency department visits, hospitalizations, and death in people who have chronic heart or lung diseases.52 Population groups with higher risks of experiencing adverse health effects with exposure to SO_4^{2-} include children, asthmatics, and older adults who have chronic heart or lung diseases.53

\textbf{Visibility-Reducing Particles}: Visibility-reducing particles come from a variety of natural and manmade sources and can vary greatly in shape, size and chemical composition. Visibility reduction is caused by the absorption and scattering of light by the particles in the atmosphere before it reaches the observer. Certain visibility-reducing particles are directly emitted to the air, such as windblown dust and soot, while others are formed in the atmosphere through chemical transformations of gaseous pollutants (e.g., sulfates, nitrates, organic carbon particles), which are the major constituents of particulate matter. As the number of visibility reducing particles increases, more light is absorbed and scattered, resulting in less clarity, color, and visual range.54 Exposure to some haze-causing pollutants have been linked to adverse health impacts similar to PM10 and PM2.5 as discussed above.55

49 CARB, Lead & Health.
52 CARB, Sulfate & Health.
53 CARB, Sulfate & Health.
55 CARB, Visibility-Reducing Particles and Health.
Air Toxics

Toxic Air Contaminants

Toxic air contaminants (TACs), or hazardous air pollutants (HAPs) as defined by the USEPA, as those contaminants that are known or suspected to cause serious health problems, but do not have a corresponding ambient air quality standard. For consistency within this document they will be referred to as TACS. TACs are also defined as an air pollutant that may increase a person’s risk of developing cancer and/or other serious health effects. TACs are emitted by a variety of industrial processes such as petroleum refining, electric utility and chrome plating operations, commercial operations such as gasoline stations and dry cleaners, and motor vehicle exhaust. TACs may exist as PM10 and PM2.5 or as vapors (gases). TACs include metals, other particles, gases absorbed by particles, and certain vapors from fuels and other sources. The emission of a TAC does not automatically create a health hazard. Other factors, such as the amount of the TAC, its toxicity, how it is released into the air, the weather, and the terrain, all influence whether the emission could be hazardous to human health. Emissions of TACs into the air can be damaging to human health and to the environment. Human exposure to TACs at sufficient concentrations and durations can result in cancer, poisoning, and rapid onset of sickness, such as nausea or difficulty in breathing. Other less measurable effects include immunological, neurological, reproductive, developmental, and respiratory problems. TACs deposited onto soil or into lakes and streams affect ecological systems and eventually human health through consumption of contaminated food. The carcinogenic potential of TACs is a particular public health concern because many scientists currently believe that there is no "safe" level of exposure to carcinogens. Any exposure to a carcinogen poses some risk of contracting cancer.

The public’s exposure to TACs is a significant public health issue in California. The Air Toxics “Hotspots” Information and Assessment Act is a State law requiring facilities to report emissions of TACs to air districts. The program is designated to quantify the amounts of potentially TACs released, the location of the release, the concentrations to which the public is exposed, and the resulting health risks. The State Air Toxics Program (Assembly Bill [AB] 2588) identified over 200 TACs, including the 188 TACs identified in the Clean Air Act (CAA).

The USEPA has assessed this expansive list and identified 21 TACs as Mobile Source Air Toxics (MSATs). MSATs are compounds emitted from highway vehicles and non-road equipment. Some toxic compounds are present in fuel and are emitted to the air when the fuel evaporates or passes through the engine unburned. Other toxics are emitted from the incomplete combustion of

fuels or as secondary combustion products. Metal air toxics also result from engine wear or from impurities in oil or gasoline. USEPA also extracted a subset of these 21 MSAT compounds that it now labels as the nine priority MSATs: 1,3-butadiene, acetaldehyde, acrolein, benzene, diesel particulate matter (DPM)/diesel exhaust organic gases, ethylbenzene, naphthalene, and polycyclic organic matter (POM). While these nine MSATs are considered the priority transportation toxics, USEPA stresses that the lists are subject to change and may be adjusted in future rules.62

Diesel Exhaust

According to the California Almanac of Emissions and Air Quality, the majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from the exhaust of diesel-fueled engines, i.e., DPM.63 DPM differs from other TACs in that it is not a single substance, but rather a complex mixture of hundreds of substances.

Diesel exhaust is composed of two phases, gas and particle, and both phases contribute to the health risk. The gas phase is composed of many of the urban HAPs, such as acetaldehyde, acrolein, benzene, 1,3-butadiene, formaldehyde and polycyclic aromatic hydrocarbons. The particle phase is also composed of many different types of particles by size or composition. Fine and ultra-fine diesel particulates are of the greatest health concern and may be composed of elemental carbon with adsorbed compounds such as organic compounds, sulfate, nitrate, metals and other trace elements. Diesel exhaust is emitted from a broad range of diesel engines; the on-road diesel engines of trucks, buses and cars and the off-road diesel engines that include locomotives, marine vessels and heavy-duty equipment. Although DPM is emitted by diesel-fueled internal combustion engines, the composition of the emissions varies depending on engine type, operating conditions, fuel composition, lubricating oil, and whether an emission control system is present.

The most common exposure to DPM is breathing air that contains diesel exhaust. The fine and ultra-fine particles are respirable (similar to PM2.5), which means that they can avoid many of the human respiratory system defense mechanisms and enter deeply into the lung. Exposure to DPM comes from both on-road and off-road engine exhaust that is either directly emitted from the engines or lingering in the atmosphere.

Diesel exhaust causes health effects from long-term chronic exposures. The type and severity of health effects depends upon several factors including the amount of chemical exposure and the duration of exposure. Individuals also react differently to different levels of exposure. There is limited information on exposure to only DPM, but there is enough evidence to indicate that inhalation exposure to diesel exhaust causes chronic health effects as well as having cancer-causing potential.

Because it is part of PM2.5, DPM also contributes to the same non-cancer health effects as PM2.5 exposure. These effects include premature death, hospitalizations and emergency department visits.

for exacerbated chronic heart and lung disease, including asthma, increased respiratory symptoms, and decreased lung function in children. Several studies suggest that exposure to DPM may also facilitate development of new allergies. Those most vulnerable to non-cancer health effects are children whose lungs are still developing and the elderly who often have chronic health problems.64

Gasoline Exhaust

Similar to diesel exhaust, gasoline is composed of two phases, gas and particle, and both phases contribute to the health risk. The gas phase is composed of the same HAPs, such as acetaldehyde, acrolein, benzene, 1,3-butadiene, formaldehyde and polycyclic aromatic hydrocarbons. The particle phase is also composed of many different types of particles by size or composition. Fine and ultra-fine diesel particulates are of the greatest health concern and may be composed of elemental carbon with adsorbed compounds such as organic compounds, sulfate, nitrate, metals and other trace elements. Gasoline exhaust is primarily emitted from light-duty passenger vehicles. The compounds in the gas and particles phases can cause health effects from short- and long-term exposures.

Existing Conditions

Regional Air Quality

The Air Basin’s meteorological conditions, in combination with regional topography, are conducive to the formation and retention of ozone. Pollutant concentrations in the Air Basin vary with location, season, and time of day. Concentrations of ozone, for example, tend to be lower along the coast, higher in the near inland valleys, and lower in the far inland areas of the Air Basin and adjacent desert.65 The worst air pollution conditions throughout the Air Basin typically occur from June through September.

Attainment Status

California Health and Safety Code section 39607(e) requires CARB to establish and periodically review area designation criteria. **Table 4.1-1** provides a summary of the attainment status of the Los Angeles County portion of the Air Basin with respect to the federal and State standards. As shown in Table 4.1-1, the Air Basin is designated under federal or State ambient air quality standards as nonattainment for ozone, PM10, and fine particulate matter PM2.5. It is noteworthy to mention that air quality in the Air Basin has improved substantially over the years, primarily due to the impacts of air quality control programs at the federal, State and local levels. The ozone and particulate matter levels have fallen significantly compared to the worst years and are expected to continue to trend downward in the future despite increases in the economy and population in the Air Basin.66

TABLE 4.1-1

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Federal Standards</th>
<th>California Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_3 (1-hour standard)</td>
<td>N/Aa</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>O_3 (8-hour standard)</td>
<td>Non-attainment – Extreme</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>CO</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>PM10</td>
<td>Attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Non-attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>Lead (Partial, Los Angeles County)b</td>
<td>Attainment</td>
<td></td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>N/A</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Sulfates</td>
<td>N/A</td>
<td>Attainment</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>N/A</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>N/Ac</td>
<td>N/Ac</td>
</tr>
</tbody>
</table>

N/A = not applicable

a The NAAQS for 1-hour ozone was revoked on June 15, 2005, for all areas except Early Action Compact areas.

b Partial Nonattainment designation – Los Angeles County portion of the Air Basin only for near-source monitors.

c In 1990, CARB identified vinyl chloride as a TAC and determined that it does not have an identifiable threshold. Therefore, CARB does not monitor or make status designations for this pollutant.

The Project would not emit in any appreciable quantities the State-identified criteria pollutants hydrogen sulfide and vinyl chloride. Trace amounts of hydrogen sulfide may be emitted by common municipal solid waste such as household food wastes. Vinyl chloride is used in the process of making polyvinyl chloride (PVC) plastic and vinyl products and is primarily emitted from industrial processes.67 Vinyl chloride would not be emitted directly during operations or during construction; therefore, there would be no project emissions of vinyl chloride. Most land developments, such as the Project, only emit trace amounts or otherwise account for sulfates and visibility-reducing particles through other criteria pollutants. As previously stated, sulfates are associated with SO$_2$ emissions and visibility-reducing particles are associated with particulate matter emissions. Therefore, these pollutants will not independently be evaluated as they are associated with other criteria pollutants.

Sources of Emissions

As detailed in the AQMP, the major sources of air pollution in the Air Basin are divided into four major source classifications: point stationary sources, area stationary sources, on-road mobile sources, and off-road mobile sources. Point and area sources are the two major subcategories of stationary sources.68 Point sources are permitted facilities that contain one or more emission sources

at an identified location (e.g., power plants, refineries, emergency generator exhaust stacks). Area sources consist of many small emission sources (e.g., residential water heaters, architectural coatings, and consumer products), which are distributed across the region. Mobile sources consist of two main subcategories: On-road sources (such as cars and trucks) and off-road sources (such as heavy construction equipment).

Local Air Quality

Existing Criteria Pollutants Levels at Nearby Monitoring Stations

The SCAQMD maintains a network of air quality monitoring stations located throughout the Air Basin to measure ambient pollutant concentrations. The Project Site is located in SCAQMD Source Receptor Area (SRA) 2; therefore, the monitoring station most representative of the Project Site is the Northwest Coastal LA County Monitoring Station. Criteria pollutants monitored at this station include ozone, NO$_2$, and CO. The Southwest Coastal LA County Monitoring Station, south of the Project Site was used to report data for SO$_2$, lead, and PM10. The Central LA station, located east of the Project Site, was used for PM2.5 monitoring data. The most recent data available from the SCAQMD for these monitoring stations are from years 2016 to 2019. The pollutant concentration data for these years are summarized in Table 4.1-2, *Ambient Air Quality Data*.

<table>
<thead>
<tr>
<th>Pollutant/Standard</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$ (1-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>0.085</td>
<td>0.099</td>
<td>0.098</td>
<td>0.086</td>
</tr>
<tr>
<td>Days > CAAQS (0.09 ppm)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O$_3$ (8-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>0.073</td>
<td>0.077</td>
<td>0.073</td>
<td>0.075</td>
</tr>
<tr>
<td>4th High 8-hour Concentration (ppm)</td>
<td>0.066</td>
<td>0.069</td>
<td>0.068</td>
<td>0.064</td>
</tr>
<tr>
<td>Days > CAAQS (0.070 ppm)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Days > NAAQS (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO$_2$ (1-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>0.055</td>
<td>0.056</td>
<td>0.065</td>
<td>0.049</td>
</tr>
<tr>
<td>98th Percentile Concentration (ppm)</td>
<td>0.049</td>
<td>0.046</td>
<td>0.046</td>
<td>0.043</td>
</tr>
<tr>
<td>NO$_2$ (Annual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Arithmetic Mean (0.030 ppm)</td>
<td>0.012</td>
<td>0.010</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>CO (1-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>2.2</td>
<td>2.0</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>CO (8-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>SO$_2$ (1-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>0.010</td>
<td>0.010</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td>99th Percentile Concentration (ppm)</td>
<td>0.006</td>
<td>0.07</td>
<td>0.005</td>
<td>0.004</td>
</tr>
<tr>
<td>SO$_2$ (24-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (ppm)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pollutant/Standard</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>PM10 (24-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (µg/m³)</td>
<td>43</td>
<td>46</td>
<td>45</td>
<td>62</td>
</tr>
<tr>
<td>Samples > CAAQS (50 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Samples > NAAQS (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM10 (Annual Average)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Arithmetic Mean (20 µg/m³)</td>
<td>21.6</td>
<td>19.8</td>
<td>20.5</td>
<td>19.2</td>
</tr>
<tr>
<td>PM2.5 (24-hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Concentration (µg/m³)</td>
<td>44.4</td>
<td>49.2</td>
<td>43.8</td>
<td>43.5</td>
</tr>
<tr>
<td>98th Percentile Concentration (µg/m³)</td>
<td>27.3</td>
<td>27.8</td>
<td>30.5</td>
<td>28.3</td>
</tr>
<tr>
<td>Samples > NAAQS (35 µg/m³)</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PM2.5 (Annual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Arithmetic Mean (12 µg/m³)</td>
<td>11.8</td>
<td>11.94</td>
<td>12.58</td>
<td>10.85</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 30-day average (µg/m³)</td>
<td>0.006</td>
<td>0.00</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

a ppm = parts per million; µg/m² = micrograms per cubic meter
b The monitoring station most representative of the Project Site is Station number 91 in Northwest Coastal LA County, which is used to establish ambient ozone, NO₂, and CO, levels. Since data for SO₂, lead, PM10 and PM2.5 are not monitored at this station, the Station in Southwest Coastal LA County was used to report data for SO₂, lead, and PM10 and the Central LA Station was used to report data for PM2.5. The most recent data available from SCAQMD for these monitoring stations are from years 2016 to 2019.
c CAAQS are based on a not to exceed standard. NAAQS are based on a 3-year average of the annual 4th highest daily maximum 8-hour concentration for ozone; 98th percentile of 1-hour daily maximum concentrations averaged over 3 years for 1-hr NO₂ and not to be exceeded more than once per year on average over 3 years for 24-hr PM.
d State annual average (AAM) PM10 standard is > 20 µg/m³. Federal annual PM10 standard (AAM > 50 µg/m³) was revoked in 2006.
e Both Federal and State standards are annual average (AAM) > 12.0 µg/m³.

Toxic Air Contaminants

To date, the most comprehensive study on air toxics in the Air Basin is the Multiple Air Toxics Exposure Study (MATES-IV), conducted by the SCAQMD. The monitoring program measured more than 30 air pollutants, including both gases and particulates. The monitoring study was accompanied by a computer modeling study in which SCAQMD estimated the risk of cancer from breathing toxic air pollution throughout the region based on emissions and weather data. MATES-IV found that the average background cancer risk from carcinogenic air pollutants is approximately 955 in 1 million at the Project Site, compared to an average Air Basin-wide risk of approximately 1,023 in 1 million. Approximately 90 percent of the risk is from DPM.69 The risk levels determined in the MATES-IV is approximately 65 percent lower than the risk levels in the previous MATES-III study, with DPM showing a reduction of approximately 70 percent.70 The reductions were attributed to air quality control regulations and improved emission control technologies.

70 SCAQMD, Final Report – Multiple Air Toxics Exposure Study in the South Coast Air Basin, pages ES-2, 2-11, and 6-1.
Existing Project Site Emissions

The Project Site is comprised of four parcels on approximately 3.43-acres of land. The Project Site is currently developed with three single story-commercial buildings, surface parking, and landscaping. The commercial buildings include a United States Post Office, a restaurant, and an auto repair shop.

Operation of these existing on-site businesses result in the emission of air pollutants associated with vehicle trips to and from the Project Site, on-site combustion of natural gas for heating and cooking, and fugitive emissions of VOCs from the use of aerosol products, coatings, and landscaping. However, data with respect to the exact activity level (i.e., utility consumptions) at each business may not be obtainable, so existing emissions were based on default values from the California Emissions Estimator Model (CalEEMod) software. CalEEMod was developed for the California Air Pollution Officers Association (CAPCOA) in collaboration with the California Air Districts. CalEEMod is a Statewide land use emission computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria air pollutant and greenhouse gas (GHG) emissions from a variety of land use projects. CalEEMod is the SCAQMD-recommended model for quantifying air quality and GHG impacts from land use projects throughout California. Building electricity and natural gas usage rates are adjusted to account for prior Title 24 Building Energy Efficiency Standards. Mobile source emissions associated with exiting Project Site operations were calculated using CARB’s updated version of the on-road vehicle emissions factor (EMFAC) model, EMFAC2017. These updated emission factors are incorporated into CalEEMod. The Project would remove all existing buildings and their associated emissions.

Table 4.1-3, Existing Site Operational Emissions, identifies the emissions from the Project Site’s existing usage to be removed due to the Project. The emissions removed from the existing conditions will be counted as credit for the proposed Project.

<table>
<thead>
<tr>
<th>Source</th>
<th>VOC</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Site Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Energy (Natural Gas)</td>
<td><1</td>
<td>0</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mobile</td>
<td>9</td>
<td>12</td>
<td>56</td>
<td><1</td>
<td>12</td>
<td><1</td>
</tr>
<tr>
<td>Total*</td>
<td>10</td>
<td>12</td>
<td>56</td>
<td><1</td>
<td>12</td>
<td><1</td>
</tr>
</tbody>
</table>

* Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix B.

SOURCE: ESA, 2020

Air Quality Sensitive Receptors and Locations

Certain population groups, such as children, elderly, and acutely and chronically ill persons (especially those with cardio-respiratory diseases), are considered more sensitive to the potential effects of air pollution than others. As a result, certain land uses that are occupied by these population groups, such as residences, schools, playgrounds and childcare center, hospitals, rehabilitation centers, convalescent centers, and retirement homes are considered to be air quality sensitive land uses, i.e., air quality sensitive receptors. Sensitive land uses within approximately one-quarter mile (1,320 feet) of the Project Site are shown in Figure 4.1-2, Air Quality Sensitive Receptors, and include the following:

- North (Residential): Single-family residential uses within the Heritage Park neighborhood are located approximately 80 feet to the north of the Project Site, across Machado Road.
- North (School): The private K-12 school, Exceptional Children’s Foundation Kayne Eras Center (ECF), is located approximately 80 feet to the north of the Project Site across Machado Road.
- West and Southwest (Residential): Single-family residential uses within the Sunkist Park neighborhood and multi-family residential uses at the Studio Village Townhomes are located approximately 300 feet to the west and southwest of the Project Site across Sepulveda Boulevard.
- West (School, Temple): Temple Akiba (which includes a childhood center, temple sanctuary, and other classrooms) is located approximately 100 feet to the west of the Project Site across Sepulveda Boulevard.
- East and Southeast (Residential): Single-family residential uses are located approximately 750 feet to the east of the Project Site, along Stever Street and Kinston Avenue and 610 feet to the southeast of the Project Site, south of Sawtelle Boulevard.
- East (School and Park): El Rincon Elementary School and adjoining Blanco Park are located approximately 750 feet to the east of the Project Site on the north side of Sawtelle Boulevard.

All other air quality sensitive receptors are located at greater distances from the Project Site, and would be less impacted by Project emissions. Impacts are quantified for the sensitive receptors listed here.

Figure 4.1-2
Air Quality Sensitive Receptors

SOURCE: Nearmap, 2020
4.1.3 Regulatory Framework

This section provides a summary of pertinent federal, State, and local statutes, regulations, plans, and policies that have been adopted that address air quality.

Federal

The CAA of 1963 was the first federal legislation regarding air pollution control and has been amended numerous times in subsequent years, with the most recent amendments occurring in 1990. At the federal level, USEPA is responsible for implementation of certain portions of the CAA including mobile source requirements. Other portions of the CAA, such as stationary source requirements, are implemented by state and local agencies.

The CAA establishes federal air quality standards and specifies future dates for achieving compliance. The CAA also mandates that the state submit and implement a State Implementation Plan (SIP) for areas not meeting these standards. SIPs must include pollution control measures that demonstrate how the NAAQS will be met. The 1990 amendments to the CAA identify specific emission reduction goals for areas not meeting the NAAQS. These amendments require both a demonstration of reasonable further progress toward attainment and incorporation of additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA which are most applicable to the Project include Title I (Nonattainment Provisions).

Title I requirements are implemented for the purpose of attaining NAAQS for the following criteria air pollutants: O₃; NO₂; CO; SO₂; PM10; and lead. The NAAQS were amended in July 1997 to include an 8-hour standard for O₃ and to adopt a NAAQS for PM2.5. The NAAQS were also amended in September 2006 to include an established methodology for calculating PM2.5 as well as revoking the annual PM10 threshold. Table 4.1-4 shows the NAAQS currently in effect for each criteria air pollutant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average Time</th>
<th>California Standards</th>
<th>National Standards</th>
<th>Method</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>1 Hour</td>
<td>0.09 ppm (180 µg/m³)</td>
<td>—</td>
<td>Ultraviolet Photometry</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8 Hour</td>
<td>0.070 ppm (137 µg/m³)</td>
<td>0.070 ppm (137 µg/m³)</td>
<td>Ultraviolet Photometry</td>
<td>—</td>
</tr>
<tr>
<td>PM10</td>
<td>24 Hour</td>
<td>50 µg/m³</td>
<td>150 µg/m³</td>
<td>Same as Primary Standard</td>
<td>Inertial Separation and Gravimetric Analysis</td>
</tr>
<tr>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m³</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1-4
Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average Time</th>
<th>California Standards<sup>a</sup></th>
<th>National Standards<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration<sup>c</sup></td>
<td>Method<sup>d</sup></td>
<td>Primary<sup>c,e</sup></td>
</tr>
<tr>
<td>PM2.5</td>
<td>24 Hour</td>
<td>No Separate State Standard</td>
<td>35 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravimetric or Beta Attenuation</td>
<td>12.0 µg/m³<sup>k</sup></td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>12 µg/m³</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>1 Hour</td>
<td>20 ppm (23 mg/m³)</td>
<td>35 ppm (40 mg/m³)</td>
</tr>
<tr>
<td></td>
<td>8 Hour</td>
<td>9.0 ppm (10 mg/m³)</td>
<td>9 ppm (10 mg/m³)</td>
</tr>
<tr>
<td></td>
<td>8 Hour (Lake Tahoe)</td>
<td>6 ppm (7 mg/m³)</td>
<td></td>
</tr>
<tr>
<td>NO<sub>x</sub><sup>h</sup></td>
<td>1 Hour</td>
<td>0.18 ppm (339 µg/m³)</td>
<td>100 ppb (188 µg/m³)</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>0.030 ppm (57 µg/m³)</td>
<td>53 ppb (100 µg/m³)</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>1 Hour</td>
<td>0.25 ppm (655 µg/m³)</td>
<td>75 ppb (196 µg/m³)</td>
</tr>
<tr>
<td></td>
<td>3 Hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24 Hour</td>
<td>0.04 ppm (105 µg/m³)</td>
<td>0.14 ppm (for certain areas)<sup>j</sup></td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>—</td>
<td>0.030 ppm (for certain areas)<sup>j</sup></td>
</tr>
<tr>
<td>Lead<sup>i</sup></td>
<td>30 Day Average</td>
<td>1.5 µg/m³</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>—</td>
<td>1.5 µg/m³ (for certain areas)<sup>lh</sup></td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>—</td>
<td>0.15 µg/m³</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8 Hour</td>
<td>See footnote n</td>
<td>Beta Attenuation and Transmittance through Filter Tape</td>
</tr>
<tr>
<td>Sulfates (SO<sub>4</sub>)</td>
<td>24 Hour</td>
<td>25 µg/m³</td>
<td>Ion Chromatography</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm (42 µg/m³)</td>
<td>Ultraviolet Fluorescence</td>
</tr>
<tr>
<td>Vinyl Chloride<sup>j</sup></td>
<td>24 Hour</td>
<td>0.01 ppm (26 µg/m³)</td>
<td>Gas Chromatography</td>
</tr>
</tbody>
</table>

^aConcentration

^bMethod

^cPrimary

^dSecondary

^eSame as Primary Standard

^fInertial Separation and Gravimetric Analysis

^gNon-Dispersive Infrared Photometry (NDIR)

^hGas Phase Chemiluminescence

ⁱAtomic Absorption

^jHigh Volume Sampler and Atomic Absorption

^kNo Federal Standards

^lSee footnote n

^mSame as Primary Standard

ⁿBeta Attenuation and Transmittance through Filter Tape

^oIon Chromatography

^pUltraviolet Fluorescence

^qGas Chromatography
State

California Clean Air Act

The California Clean Air Act (CCAA), signed into law in 1988, requires all areas of the State to achieve and maintain the CAAQS. The CAAQS are established to protect the health of the most sensitive groups and apply to the same criteria air pollutants as the federal CAA and also includes State-identified criteria air pollutants, which are sulfates, visibility-reducing particles, hydrogen sulfide, and vinyl chloride. 76 Table 4.1-4, provided above, shows the CAAQS currently in effect for each of the federally identified criteria air pollutants as well as state recognized pollutants, such as sulfates, visibility-reducing particles, hydrogen sulfide, and vinyl chloride.

Mobile Source Regulations

Mobile sources are a significant contributor to the air pollution in California. CARB has established exhaust emission standards for automobiles, which are more stringent than the federal emissions standards. Through its Mobile Sources Program, CARB has developed programs and policies to reduce emissions from on-road heavy-duty diesel vehicles. Specifically, the Truck and Bus regulation requires diesel trucks and buses that operate in the State to reduce NOx, PM10, and

PM2.5 emissions (CCR Title 13, Section 2025). By January 1, 2023, nearly all vehicles must have engines certified to 2010 model year engines or equivalent. The Innovative Clean Transit Program (ICT) sets emissions reduction standards for new public transit vehicles and requires major transit agencies to only purchase zero emission (ZE) buses after 2029. The Solid Waste Collection Vehicle Regulation requires solid waste collection vehicles and heavy diesel-fueled on-road single engine cranes to be upgraded. The Rule for On-Road Heavy-Duty Diesel-Fueled Public and Utility Fleets requires fleets to install emission control devices on vehicles or purchase vehicles that run on alternative fuels or use advanced technologies to achieve emissions requirements by specified implementation dates. CARB also established an In-Use Off-Road Diesel-Fueled Fleets Regulation to impose limits on idling and require fleets to retrofit or replace older engines.

California Air Resources Board On-Road and Off-Road Vehicle Rules

In 2004, CARB adopted an Airborne Toxic Control Measure (ATCM) to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to DPM and other TACs. The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure does not allow diesel-fueled commercial vehicles to idle for more than 5 minutes at any given time.

In 2006, CARB regulations (CCR Title 13, Section 2281) required that the sulfur content of diesel fuel be reduced from 500 ppm to 15 ppm – commonly referred to as ultra-low sulfur diesel. The regulation reduces sulfur emissions from diesel fuel combustion and allows for DPM filter technologies to be installed on diesel-fueled vehicles and equipment without premature risk of failure.

In 2008, CARB approved the Truck and Bus regulation to reduce NO\(_X\), PM10, and PM2.5 emissions from existing diesel vehicles operating in California. The requirements were amended in December 2010 and apply to nearly all diesel fueled trucks and busses with a gross vehicle weight rating greater than 14,000 pounds. For the largest trucks in the fleet, those with a gross vehicle weight rating greater than 26,000 pounds, there are two methods to comply with the requirements. The first way is for the fleet owner to retrofit or replace engines, starting with the oldest engine model year, to meet 2010 engine standards, or better. This is phased over 8 years, starting in 2015 and would be fully implemented by 2023, meaning that all trucks operating in the State subject to this option would meet or exceed the 2010 engine emission standards for NO\(_X\) and particulate matter by 2023. The second option, if chosen, requires fleet owners, starting in 2012, to retrofit a portion of their fleet with diesel particulate filters achieving at least 85 percent removal efficiency, so that by January 1, 2016 their entire fleet is equipped with diesel particulate filters. However, diesel particulate filters do not typically lower NO\(_X\) emissions. Thus, fleet owners choosing the second option must still comply with the 2010 engine emission standards for their trucks and busses by 2020.

In addition to limiting exhaust from idling trucks, CARB recently promulgated emission standards for off-road diesel construction equipment of greater than 25 horsepower such as bulldozers, loaders, backhoes and forklifts, as well as many other self-propelled off-road diesel vehicles. The regulation adopted by the CARB on July 26, 2007, aims to reduce emissions by installation of
diesel soot filters and encouraging the retirement, replacement, or repower of older, dirtier engines with newer emission-controlled models. Implementation is staggered based on fleet size (which is the total of all off-road horsepower under common ownership or control), with the largest fleets to begin compliance by January 1, 2014. Each fleet must demonstrate compliance through one of two methods. The first option is to calculate and maintain fleet average emissions targets, which encourages the retirement or repowering of older equipment and rewards the introduction of newer cleaner units into the fleet. The second option is to meet the Best Available Control Technology (BACT) requirements by turning over or installing Verified Diesel Emission Control Strategies (e.g., engine retrofits) on a certain percentage of its total fleet horsepower. The compliance schedule requires that BACT turn overs or retrofits be fully implemented by 2023 in all equipment in large and medium fleets and across 100 percent of small fleets by 2028.

California Air Toxics Program

The California Air Toxics Program was established in 1983, when the California Legislature adopted AB 1807 to establish a two-step process of risk identification and risk management to address potential health effects from exposure to toxic substances in the air. In the risk identification step, CARB and the Office of Environmental Health Hazard Assessment (OEHHA) determine if a substance should be formally identified, or “listed”, as a TAC in California. Since inception of the program, a number of such substances have been listed. In 1993, the California Legislature amended the program to identify the 189 federal HAPs as TACs. The SCAQMD has not adopted guidance applicable to land use projects that requires a quantitative health risk assessment be performed for construction exposures to TAC emissions.

In the risk management step, CARB reviews emission sources of an identified TAC to determine whether regulatory action is needed to reduce risk. Based on the results of that review, CARB has promulgated a number of ATCMs, both for mobile and stationary sources. As discussed above, in 2004, CARB adopted an ATCM to limit idling of heavy-duty diesel motor vehicles weighing greater than 10,000 pounds to no more than 5 minutes at any location in order to reduce public exposure to DPM and other TACs.

The AB 1807 program is supplemented by the AB 2588 Air Toxics “Hot Spots” program, which was established by the California Legislature in 1987. Under this program, facilities are required to report their air toxics emissions, assess health risks, and notify nearby residents and workers of significant risks if present. In 1992, the AB 2588 program was amended by Senate Bill (SB) 1731 to require facilities that pose a significant health risk to the community to reduce their risk through implementation of a risk management plan.

Regional

South Coast Air Quality Management District

The SCAQMD is primarily responsible for planning, implementing, and enforcing air quality standards for the Air Basin.

Air Quality Management Plan

The SCAQMD has adopted Air Quality Management Plans (AQMPs) to meet the CAAQS and NAAQS. The SCAQMD Governing Board adopted the 2016 AQMP on March 3, 2017. Key elements of the 2016 AQMP include implementing fair-share emissions reductions strategies at the federal, State, and local levels; establishing partnerships, funding, and incentives to accelerate deployment of zero and near-zero-emissions technologies; and taking credit from co-benefits from greenhouse gas, energy, transportation and other planning efforts. The strategies included in the 2016 AQMP build on the strategies from the previous 2012 AQMP and are intended to demonstrate attainment of the NAAQS, which are set at levels considered safe to protect public health, including the health of sensitive populations such as asthmatics, children, and the elderly with a margin of safety; and to protect public welfare, including against decreased visibility and damage to animals, crops, vegetation, and buildings, for the federal non-attainment pollutants ozone and PM2.5 while accounting for regional growth, increasing development, and maintaining a healthy economy. In general, SCAQMD’s criteria for evaluating control strategies for stationary and mobile sources is based on the following: (1) cost-effectiveness; (2) emissions reduction potential; (3) enforceability; (4) legal authority; (5) public acceptability; (6) rate of emission reduction; and (7) technological feasibility. The AQMP contains a total of 15 control strategies to reduce mobile source emissions. Noteworthy control strategies with potential applicability to reducing short-term emissions from construction activities associated with the Project include strategies denoted in the 2016 AQMP as MOB-08 and MOB-10, which are intended to reduce emissions from on-road and off-road heavy-duty vehicles and equipment. Descriptions of measures MOB-08 and MOB-10 are provided below:

- **MOB-08 – Accelerated Retirement of Older On-Road Heavy-Duty Vehicles**: This measure seeks to replace up to 2,000 heavy-duty vehicles per year with newer or new vehicles that at a minimum, meet the 2010 on-road heavy-duty NOX exhaust emissions standard of 0.2 grams per brake horsepower-hour (g/bhp-hr).

- **MOB-10 – Extension of the SOON Provision for Construction/Industrial Equipment**: This measure continues the Surplus Off-Road Option for NOX (SOON) provision of the statewide In-Use Off-Road Fleet Vehicle Regulation through the 2031 timeframe.

81 SCAQMD, Final 2016 Air Quality Management Plan.
The 2016 AQMP is used in the analyses in this section, since it has been adopted by both SCAQMD and CARB. The SCAQMD is currently working on the 2022 AQMP which will represent a comprehensive analysis of emissions, meteorology, and regional air quality modeling, regional growth projections and the impacts from existing and proposed control measures within their jurisdiction.84

SCAQMD CEQA Guidelines

SCAQMD’s CEQA guidelines are voluntary initiatives recommended for consideration by local planning agencies. The CEQA Air Quality Handbook published by SCAQMD provides local governments with guidance for analyzing and mitigating project-specific air quality impacts.85 SCAQMD is currently updating some of the information and methods in the CEQA Air Quality Handbook, such as the screening tables for determining the air quality significance of a project and the on-road mobile source emission factors. While this process is underway, SCAQMD recommends using other approved models to calculate emissions from land use projects, such as CalEEMod.86

The SCAQMD Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning considers impacts to air quality sensitive receptors from TAC-emitting facilities.87 SCAQMD’s siting distance recommendations are the same as those provided by CARB (e.g., a 500-foot siting distance for air quality sensitive receptors proposed in proximity to freeways and high-traffic roads, and the same siting criteria for distribution centers and dry cleaning facilities).

The SCAQMD Final Localized Significance Threshold Methodology and Final Methodology to Calculate Particulate Matter (PM) 2.5 and PM2.5 Significance Thresholds provides guidance when evaluating the localized effects of emissions in the CEQA evaluation.88,89 These guidance documents were promulgated by the SCAQMD Governing Board as a tool to assist lead agencies to analyzed localized impacts associated with project-specific level proposed projects. The guidance documents establish mass emission rate “look up tables” as significance thresholds for projects that are five acres or less.

SCAQMD Rules and Regulations

Several SCAQMD rules adopted to implement portions of the AQMP may apply to the Project. The Project may be subject to the following SCAQMD rules and regulations:

85 SCAQMD, CEQA Air Quality Handbook.
89 SCAQMD, Final – Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds, October 2006.
Regulation IV – Prohibitions: This regulation sets forth the restrictions for visible emissions, odor nuisance, fugitive dust, various air emissions, fuel contaminants, start-up/shutdown exemptions and breakdown events. The following is a list of rules which may apply to the Project:

- Rule 401 – Visible Emissions: This rule states that a person shall not discharge into the atmosphere from any single source of emission whatsoever any air contaminant for a period or periods aggregating more than three minutes in any one hour which is as dark or darker in shade as that designated No. 1 on the Ringelmann Chart or of such opacity as to obscure an observer's view.

- Rule 402 – Nuisance: This rule states that a person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property.

- Rule 403 – Fugitive Dust: This rule requires projects to prevent, reduce or mitigate fugitive dust emissions from a site. Rule 403 restricts visible fugitive dust to the project property line, restricts the net PM10 emissions to less than 50 micrograms per cubic meter (µg/m³) and restricts the tracking out of bulk materials onto public roads. Additionally, projects must utilize one or more of the best available control measures (identified in the tables within the rule). Mitigation measures may include adding freeboard to haul vehicles, covering loose material on haul vehicles, watering, using chemical stabilizers and/or ceasing all activities. Finally, a contingency plan may be required if so determined by the USEPA.

Regulation XI – Source Specific Standards: Regulation XI sets emissions standards for specific sources. The following is a list of rules which may apply to the Project:

- Rule 1113 – Architectural Coatings: This rule requires manufacturers, distributors, and end users of architectural and industrial maintenance coatings to reduce VOC emissions from the use of these coatings, primarily by placing limits on the VOC content of various coating categories.

- Rule 1121 – Control of Nitrogen Oxides from Residential Type, Natural Gas-Fired Water Heaters: This rule specifies NOX emission limits for natural gas-fired water heaters, with heat input rates less than 75,000 British thermal units (BTUs) per hour.

- Rule 1146.1 – Emissions of Oxides of Nitrogen from Small Industrial, Institutional, and Commercial Boilers, Steam Generators, and Process Heaters: This rule requires manufacturers, distributors, retailers, refurbishers, installers, and operators of new and existing units to reduce NOX emissions from natural gas-fired boilers, steam generators, and process heaters as defined in this rule.

- Rule 1146.2 – Emissions of Oxides of Nitrogen from Large Water Heaters and Small Boilers and Process Heaters: This rule requires manufacturers, distributors, retailers, refurbishers, installers, and operators of new and existing units to reduce NOX emissions from natural gas-fired water heaters, boilers, and process heaters as defined in this rule.

- Rule 1186 – PM10 Emissions from Paved and Unpaved Roads, and Livestock Operations: This rule applies to owners and operators of paved and unpaved roads and livestock operations. The rule is intended to reduce PM10 emissions by requiring the cleanup of material deposited onto paved roads, use of certified street sweeping equipment, and treatment of high-use unpaved roads (see also Rule 403).
4. Environmental Impacts Analysis

4.1 Air Quality

Regulation XIV – Toxics and Other Non-Criteria Pollutants: Regulation XIV sets requirements for new permit units, relocations, or modifications to existing permit units which emit toxic air contaminants or other non-criteria pollutants. The following is a list of rules which may apply to the Project:

- **Rule 1403 – Asbestos Emissions from Demolition/Renovation Activities**: This rule requires owners and operators of any demolition or renovation activity and the associated disturbance of asbestos-containing materials, any asbestos storage facility, or any active waste disposal site to implement work practice requirements to limit asbestos emissions from building demolition and renovation activities, including the removal and associated disturbance of asbestos-containing materials.

- **Rule 1470 – Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engines**: This rule applies to stationary compression ignition engine greater than 50 brake horsepower and sets limits on emissions and operating hours. In general, new stationary emergency standby diesel-fueled engines greater than 50 brake horsepower are not permitted to operate more than 50 hours per year for maintenance and testing.

Southern California Association of Governments

The Southern California Association of Governments (SCAG) is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial Counties and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG is the federally designated Metropolitan Planning Organization for the majority of the Southern California region and is the largest Metropolitan Planning Organization in the nation. With regard to air quality planning, SCAG adopted the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) in April 2016, which addresses regional development and growth forecasts and forms the basis for the land use and transportation control portions of the AQMP. The growth forecasts, which are based on projections originating within local jurisdictions, are used in the preparation of the air quality forecasts and consistency analysis included in the AQMP. On September 3, 2020, SCAG’s Regional Council voted to approve and adopt the 2020-2045 RTP/SCS, which is an update to the previous 2016-2040 RTP/SCS.90

The 2016-2040 RTP/SCS and 2020-2045 RTP/SCS provide specific strategies for reducing per capita passenger vehicle emissions. These strategies include supporting projects that encourage infill development, diverse job opportunities for a variety of skills and education, recreation, cultures, and a full-range of shopping, entertainment and services all within a relatively short distance; encouraging employment development around current and planned transit stations and neighborhood commercial centers. The 2016-2040 RTP/SCS and 2020-2045 RTP/SCS emphasize the importance of focusing on high density development in High Quality Transit Areas (HQTAs) that allows for high quality housing with consideration of urban design, construction and durability,

and potential increased ridership on important public transit investments, and can help the region achieve greater mobility, an improved economy and sustainable growth.\footnote{SCAG, 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (2016-2040 RTP/SCS), April 2016, page 8.}

Local

Local jurisdictions, such as the City of Culver City, have the authority and responsibility to reduce air pollution through its police power and decision-making authority. The City reviews project plans for consistency with environmental regulations and other conditions applicable to proposed development. The City is also responsible for the implementation of transportation control measures as outlined in the AQMP. Examples of such measures include bus turnouts, energy-efficient streetlights, and synchronized traffic signals. In accordance with CEQA, the City has the authority to obtain input from other local agencies and may consult with any person with special expertise relating to the Project environmental impacts to assess air quality impacts of new development projects. If significant impacts are found, the City has the authority to require mitigation of potentially significant air quality impacts for discretionary projects along with associated monitoring and implementation of such mitigation measures.

The City’s General Plan includes nine elements that have been updated at various points between 1968 and 2014. The current General Plan does not have an Air Quality Element. However, the Circulation Element of the General Plan (amended through 1995) contains objectives and associated policies focused on traffic flow (Objective #1), public transit (Objective #2), bikeways (Objective #3), pedestrian access (Objective #4), participating in regional system improvements (Implementation Measure #1), and roadway improvement (Implementation Measure #2).\footnote{City of Culver City, Culver City General Plan, Circulation Element, 1995.} Consistency with these objectives and associated polices would have the potential to reduce single occupancy vehicle trips and vehicle miles traveled (VMT), thus reducing air pollutants from mobile sources. The growth projections within the General Plan inform the development of SCAQMD’s AQMP. The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The process was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022.\footnote{City of Culver City, General Plan 2045, Frequently Asked Questions, https://www.pictureculvercity.com/faq. Accessed December 1, 2020.} However, since the General Plan Update is not yet adopted, the analysis in this section compares the Project to the current General Plan.

In 2009, the City adopted the Green Building Program which contains a number of features that would indirectly reduce air pollution emissions through features such as enhanced building insulation, low-flow fixtures, efficient lighting and heating, ventilation, and air conditioning (HVAC) systems.\footnote{City of Culver City, Municipal Code Chapter 15.02.1100, Green Building Program and Requirements.} The City’s Green Building Program also includes a specific feature for parking garages which requires all new lighting to be motion sensor controlled and minimum base level lighting is permitting using efficient lighting.
4.1.4 Environmental Impacts

Methodology

The evaluation of potential impacts to regional and local air quality that may result from the construction and long-term operations of the Project were conducted in accordance SCAQMD’s CEQA Air Quality Handbook. The CEQA Air Quality Handbook was published by SCAQMD in November 1993 to provide local governments with guidance for analyzing and mitigating project-specific air quality impacts. The CEQA Air Quality Handbook provides standards, methodologies, and procedures for conducting air quality analyses in EIRs and was used extensively in the preparation of this analysis. As the CEQA Air Quality Handbook is a living document, portions of the document become obsolete and updated information regarding methodology and models for assessing emissions are made available electronically through the SCAQMD’s website.

Consistency with Air Quality Management Plan

SCAQMD is required, pursuant to the CAA, to reduce emissions of criteria pollutants for which the Air Basin is in non-attainment of the NAAQS (e.g., ozone and PM2.5). The SCAQMD’s AQMP contains a comprehensive list of pollution control strategies directed at reducing emissions and achieving the NAAQS. These strategies are developed, in part, based on regional growth projections prepared by the SCAG. Thus, projects, uses, and activities that are consistent with the applicable growth projections and control strategies used in the development of the AQMP would not jeopardize attainment of the air quality levels identified in the AQMP, even if they exceed the SCAQMD’s numeric thresholds for criteria air pollutants.

Construction Impacts

Construction of the Project has the potential to generate temporary criteria pollutant emissions through the use of heavy-duty construction equipment, such as excavators, backhoes, dozers, loaders, tractors, pavers, forklifts, and through vehicle trips generated from workers and haul trucks traveling to and from the Project Site. In addition, fugitive dust emissions (such as PM10 and PM2.5) would result from demolition and various soil-handling activities including grading and excavation. Mobile source emissions, primarily NOX and PM, would result from the use of construction equipment such as excavators, dozers, and loaders. Construction emissions can vary substantially from day to day, depending on the level of activity, the specific type of construction activity and construction equipment used, and prevailing weather conditions.

Daily regional emissions during construction are forecasted by assuming a conservative estimate of construction activities (i.e., assuming all construction occurs at the earliest feasible date within the boundaries of the Project Site) and applying the mobile source and fugitive dust emissions factors. These assumptions also assume all equipment for a particular phase would be operational.

Environmental Impacts Analysis

4.1 Air Quality

City of Culver City

4.1-29

11111 Jefferson Boulevard Mixed Use Project

May 2021

The emissions are estimated using CalEEMod (Version 2016.3.2) software, an emissions inventory software program recommended by the SCAQMD. CalEEMod is based on outputs from OFFROAD and CARB’s EMFAC model, which are emissions estimation models developed by CARB and used to calculate emissions from construction activities, heavy-duty off-road equipment, and on-road vehicles. Construction haul and vendor truck emissions during the grading, concrete pour and building construction phases were evaluated outside of CalEEMod using regional heavy-duty truck emission factors from EMFAC2017. Daily truck trips and default trip length data were used to assess roadway emissions from truck exhaust, as well as idling emissions based on typical idling activities in CalEEMod. The input values used in this analysis were adjusted to be Project-specific based on equipment types, construction phasing, and the construction schedule provided by the Project’s construction representative. These values were then used in the criteria pollutant analysis to generate criteria pollutant emissions values for each type identified construction activity.

Project construction would occur in one phase and is anticipated to commence as early as the second quarter of 2022 and be completed by the third quarter of 2024 for a total of approximately 26 months. Sub-phases of construction would include demolition of most of the existing on-site structures and features, grading, excavation, and building construction. Demolition activities would remove approximately 35,011 square feet (sf) of existing buildings and generate approximately 2,051 tons of additional hardscape demolition debris (asphalt, etc.). The Project would export approximately 88,000 cubic yards of soil during grading and excavation activities. The majority of soil excavation and export would be associated with the construction of the one subterranean level in the parking garage for parking and building infrastructure. Heavy-duty equipment, vendor supply trucks and concrete trucks would be used during construction of foundations, parking structure, and building. Landscaping and architectural coating would occur during the finishing activities. The maximum daily regional emissions from these activities are estimated by construction phase and compared to the SCAQMD significance thresholds. As previously stated, the maximum daily regional emissions are predicted values for the worst-case day and do not represent the emissions that would occur for every day of Project construction.

The localized effects from the on-site portion of the construction emissions are evaluated at nearby sensitive receptor locations potentially impacted by the Project according to the SCAQMD’s Localized Significance Threshold (LST) Methodology. The localized significance thresholds are only applicable to NO\textsubscript{X}, CO, PM10, and PM2.5. LSTs represent the maximum emissions from a project site that are not expected to result in an exceedance of Federal or State AAQS. LSTs are based on the ambient concentrations of that pollutant within the SCAQMD SRA where a project is located and the distance to the nearest sensitive receptor.

The SCAQMD has established screening criteria for projects that disturb five acres or less that can be used to determine the maximum allowable daily emissions that would satisfy the localized significance thresholds and therefore not cause or contribute to an exceedance of the applicable ambient air quality standards without project-specific dispersion modeling. The localized analysis

is based on this SCAQMD screening criteria. The screening criteria depend on: (1) the area in which the Project is located, (2) the size of the Project Site, and (3) the distance between the Project Site and the nearest sensitive receptor. The Project Site is located in the SCAQMD SRA 2 (Northwest Coastal LA County) and could disturb up to a maximum of 3.43 acres on a given day. SCAQMD LST screening tables contain screening criteria for projects of one acre, two acres and five acres, with higher thresholds for larger projects (i.e., the allowed maximum daily emission rates increase as the project size increases from one to five acres). As the area of disturbance from the Project would be between two and five acres, it has been conservatively evaluated using the more stringent criteria. Therefore, the SCAQMD LST screening criteria applicable to a 2-acre site in SRA 2 with sensitive receptors located within 25 meters to the Project Site was used.

Sensitive receptors include residences and schools that are sensitive to adverse air quality. As previously discussed, sensitive receptors are located in proximity to the Project Site and have the potential to be exposed to localized construction and operational emissions.

Operational Impacts

Operation of the Project would generate criteria pollutant emissions from Project-generated vehicles trips traveling to and from the Project Site, energy sources on-site such as natural gas combustion, area sources such as landscaping equipment and use of consumer products including solvents used in non-industrial applications which emit VOCs during their product use, such as cleaning supplies and kitchen aerosols. The Project would also produce criteria pollutant emissions from the onsite diesel-fueled emergency generator and transport refrigeration units (TRUs) used in delivery trucks. Operational impacts were assessed for the first full Project buildout year (i.e., as early as 2025 assuming construction begins at the earliest possible time in the second quarter of 2022 and is completed in the third quarter of 2024).

The operational emissions are also estimated using the CalEEMod software. CalEEMod was used to forecast the Project’s daily regional emissions from area sources that would occur during long-term Project operations. Mobile source emissions are estimated based on EMFAC2017 model. Mobile source emissions are based on the trip generation rates provided in the Project’s Memorandum of Understanding for Transportation Study (MOU), which accounts for trip reductions from public transportation options as well as internal capture. In calculating mobile-source emissions, the trip length values were based on the distances provided in CalEEMod.

Area source emissions are based on natural gas (building heating and water heaters), landscaping equipment, and consumer product usage rates provided in CalEEMod. Natural gas usage factors in CalEEMod were based on the California Energy Commission California Commercial End Use Survey (CEUS) data set, which provides energy demand by building type and climate zone. However, since the data from the CEUS is from 2002, correction factors were incorporated into

99 Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.

An emergency generator is also included as part of the project. The 500kW generator would have an EPA rated Tier 2 engine with a DPF filter. Air quality emissions from the emergency generator were quantified using provided emission factors or CalEEMod default emission factors as detailed in Appendix F. The emergency generator is anticipated to operate for a maximum of 2 hours per day and 50 hours per year for maintenance and testing.

Operational air quality impacts are assessed based on the incremental increase in emissions compared to baseline conditions. As discussed previously, the Project Site is currently developed with a postal office, a restaurant, and an auto repair shop which are currently in use and have existing operational emissions, see Table 4.1-3. Therefore, the Project’s operational emissions analysis subtracts the emissions from the existing uses that would be removed as part of the Project to estimate the total net new emissions from the Project. The maximum daily net emissions from operation of the Project are compared to the SCAQMD daily regional significance thresholds.

The localized effects from the onsite portion of the operational emissions are evaluated at nearby sensitive receptor locations potentially impacted by the Project according to the SCAQMD’s LST methodology, which relies on on-site mass emission rate screening tables and project-specific dispersion modeling, where appropriate. Similar to construction, the SCAQMD LST screening criteria applicable to a 2-acre site in SRA 2 with sensitive receptors located within 25 meters was used.

A significant impact may occur if a project would add a cumulatively considerable contribution of a federal or California non-attainment pollutant. Because the Los Angeles County portion of the Air Basin is currently in non-attainment for ozone, PM10, and PM2.5, cumulative projects could exceed an air quality standard or contribute to an existing or projected air quality exceedance. Cumulative impacts to air quality are evaluated under two sets of thresholds for CEQA and the SCAQMD. In particular, CEQA Guidelines Section 15064(h)(3) provides guidance in determining the significance of cumulative impacts as detailed under the construction analysis above.

For purposes of the cumulative air quality analysis with respect to CEQA Guidelines Section 15064(h)(3), the Project’s incremental contribution to cumulative air quality impacts is determined based on compliance with the SCAQMD’s adopted AQMP.

Nonetheless, SCAQMD no longer recommends relying solely upon consistency with the AQMP as an appropriate methodology for assessing cumulative air quality impacts. The SCAQMD recommends that project-specific air quality impacts be used to determine the potential cumulative impacts to regional air quality.
4. Environmental Impacts Analysis

4.1 Air Quality

Toxic Air Contaminants Impacts

The greatest potential for TAC emissions during Project construction would be related to DPM emissions associated with heavy-duty equipment during demolition, excavation, grading, and building construction activities. Construction activities associated with the Project would be sporadic, transitory, and short term in nature. OEHHA is responsible for developing and revising guidelines for performing health risk assessments (HRAs) under the State’s the Air Toxics Hot Spots Program Risk Assessment (AB 2588) regulation. In March 2015, OEHHA adopted revised guidelines that update the previous guidance by incorporating advances in risk assessment with consideration of infants and children using Age Sensitivity Factors (ASF). The construction HRA was performed in accordance with the revised OEHHA Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments (OEHHA Guidance). The analysis incorporates the estimated construction emissions, as previously discussed, and dispersion modeling using the USEPA AERMOD model with meteorological data from the closest SCAQMD monitoring station.

During long-term operations, TACs could be emitted as part of periodic maintenance operations, cleaning, painting, etc., the testing and maintenance of the emergency generator, and from periodic visits from delivery trucks, delivery trucks with TRUs, and service vehicles. However, these uses are expected to be occasional and result in minimal exposure to off-site sensitive receptors. As the Project consists of residences, restaurants, office space, a market, and retail, the Project would not include sources of substantive TAC emissions identified by the SCAQMD or CARB siting recommendations (i.e. distribution center). Thus a qualitative analysis for operational impacts is appropriate.

Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to Air Quality if it would:

- **AIR-1** Conflict with or obstruct implementation of the applicable air quality plan;
- **AIR-2** Result in a cumulatively considerable net increase of any criteria air pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard;\(^{103}\)
- **AIR-3** Expose sensitive receptors to substantial pollutant concentrations; or
- **AIR-4** Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The City determined in the Initial Study that the following environmental issue area would result in a less-than-significant impact and, therefore, is scoped out of this Draft EIR. Please refer to

\(^{103}\) For the purposes of this Draft EIR, the City has included analysis of all regulated criteria pollutants, regardless of attainment status, for exceedances of applicable federal or state ambient air quality standards.
Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue area:

- **AIR-4 Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.**

As detailed in the Initial Study, Project construction would comply with SCAQMD Rule 1113, which limits the amount of VOCs from architectural coatings and solvents, and Rule 402, which prohibits the emissions of nuisance air contaminants or odorous compounds. Additionally, according to the SCAQMD CEQA Air Quality Handbook, construction equipment is not a typical source of odors. Therefore, through adherence with mandatory compliance with SCAQMD Rules and State measures, construction activities and materials would not result in other emissions that create objectionable odors. According to the SCAQMD CEQA Air Quality Handbook, land uses associated with odor complaints typically include agricultural uses, wastewater treatment plants, landfills, food processing plants, chemical plants, composting, refineries, landfills, dairies, and fiberglass molding. The Project would not involve elements related to these types of uses. The Project would otherwise include proper housekeeping practices for trash receptacles and other components or activities such that adverse odor impacts would be avoided similar to other like residential and commercial uses in the City. As such, the Project would not result in other emissions (such as those leading to odors) adversely affecting a substantial number of people. No further analysis of this issue is therefore included in this Draft EIR.

Conflict or Obstruct Implementation of the Applicable Air Quality Plan

In accordance with the SCAQMD’s CEQA Air Quality Handbook, the following criteria were used to evaluate the Project’s potential to conflict with or obstruct implementation of the SCAQMD 2016 AQMP:

- **Criterion 1:** Will the Project result in any of the following:
 - An increase in the frequency or severity of existing air quality violations; or
 - Cause or contribute to new air quality violations; or
 - Delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP.

- **Criterion 2:** Will the Project exceed the assumptions utilized in preparing the AQMP?

Regional Criteria Air Pollutant Emissions Thresholds

SCAQMD has established numerical significance thresholds for regional emissions during construction and operation. The numerical significance thresholds are based on the recognition that the Air Basin is a distinct geographic area with a critical air pollution problem for which ambient air quality standards have been promulgated to protect public health.\(^{104}\)

\(^{104}\) SCAQMD, CEQA Air Quality Handbook, November 1993.
Given that construction impacts are temporary, SCAQMD has established significance thresholds specific to construction activity. Regional construction emissions from both direct and indirect sources would exceed any of the following SCAQMD prescribed daily emissions thresholds:\(^{105}\)

- 75 pounds a day for VOC
- 100 pounds per day for NO\(_X\)
- 550 pounds per day for CO
- 150 pounds per day for SO\(_X\)
- 150 pounds per day for PM10
- 55 pounds per day for PM2.5

SCAQMD has also established numeric significance thresholds for operations. SCAQMD has established significance thresholds in part based on CAA Section 182(e), which identifies 10 tons per year of VOC and NO\(_X\) as a significance level for stationary source emissions in extreme non-attainment areas for ozone. The numeric significance thresholds for other pollutants are also based on federal major source thresholds, which vary depending on regional attainment status. For example, the Air Basin is in attainment for carbon monoxide, which yields a corresponding major source threshold of 100 tons per year, or 550 pounds per day.\(^{106}\) These “major source” significance thresholds were developed under the Federal Title V Operating Permit Program.\(^{107}\) SCAQMD converted these significance levels to pounds per day. The attainment status designation is based on the healthfulness of air quality and the corresponding significance thresholds are intended to be health protective.\(^{108}\)

A similar approach is applied to PM2.5, where the daily limit of 55 pounds per day is based on the USEPA proposed rule to implement a PM2.5 NAAQS, with a significant emission rate of 10 tons per year.\(^{109}\)

The proposed Project would potentially cause or contribute to an exceedance of an ambient air quality standard if regional operational emissions exceed any of the following SCAQMD prescribed daily emissions thresholds:\(^{110}\)

- 55 pounds a day for VOC
- 55 pounds per day for NO\(_X\)
- 550 pounds per day for CO

\(^{109}\) SCAQMD, Final – Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds.

\(^{110}\) SCAQMD, SCAQMD Air Quality Significance Thresholds.
• 150 pounds per day for SO\(_X\),
• 150 pounds per day for PM10, and
• 55 pounds per day for PM2.5.

SCAQMD has set its CEQA significance threshold for NO\(_X\) and VOC at 10 tons per year (expressed as 55 lb/day) because the federal CAA defines a major stationary source for extreme ozone nonattainment areas such as SCAQMD as one emitting 10 tons/year.\(^{111}\) Under the federal CAA, such sources are subject to enhanced control requirements,\(^{112}\) so SCAQMD determined that 55 lb/day was an appropriate threshold for making a CEQA significance finding and requiring feasible mitigation. As, SCAQMD has stated:

"... a project source that emits 10 tons/year of NO\(_X\) or VOC is small enough that its regional impact on ambient ozone levels may not be detected in the regional air quality models that are currently used to determine ozone levels. Thus, in this case it would not be feasible to directly correlate project emissions of VOC or NO\(_X\) with specific health impacts from ozone."\(^{113}\)

Therefore, lead agencies that use SCAQMD thresholds of significance may determine that projects have a significant air quality impact and correspondingly are required to implement all feasible mitigation measures, yet are not able to correlate the project impact to quantifiable health effects from ozone.

Localized Significance Thresholds

SCAQMD published its Final Localized Significance Threshold Methodology in June 2003, (revised July 2008) and Final Methodology to Calculate Particulate Matter (PM) 2.5 and PM2.5 Significance Thresholds in October 2006, recommending that all air quality analyses include a localized assessment of both construction and operational impacts on the air quality of nearby air quality sensitive receptors.\(^{114,115}\) LSTs represent the maximum emissions from a project site that are not expected to result in an exceedance of a NAAQS or CAAQS. LSTs are based on the ambient concentrations of that pollutant within the SRA where a project is located and the distance to the nearest air quality sensitive receptor. LSTs are only applicable to the following criteria air pollutants: NO\(_X\), CO, PM10, and PM2.5. As previously stated, the Project Site is located in the central portion of SRA 2 (Northwest Coastal LA County).\(^{116}\)

The Basin is in attainment for NO\(_2\) and CO, meaning their ambient concentrations are below their respective air quality standards. When evaluating localized impacts for NO\(_2\) and CO, the local ambient concentrations and the Project related concentrations are summed and then compared to the

\(^{111}\) 42 U.S.C. §§ 75ll(a)(e), 7511(a)(f); CAA §§ 182(e), 182(f)
\(^{112}\) 42 U.S.C. §§ 7502(c)(5), 7503; CAA §§ 172(c)(5), 173
\(^{114}\) SCAQMD, Final Localized Significance Threshold Methodology.
\(^{115}\) SCAQMD, Final Localized Significance Threshold Methodology.
NAAQS and CAAQS. If the sum of the ambient concentrations and Project concentrations are greater than the air quality standard, this would result in a significant impact.

The Basin is in nonattainment for PM10 and PM2.5, meaning their ambient concentrations are above their respective air quality standards. If ambient levels already exceed a NAAQS or CAAQS, then project impacts may be considered significant if they increase ambient concentrations in excess of the allowable increase established by SCAQMD. This would apply to PM10 and PM2.5, both of which are nonattainment pollutants in the Basin. For these latter two pollutants, the significance criteria are the pollutant concentration thresholds presented in SCAQMD Rules 403 and 1301. The Rule 403 threshold of 10.4 µg/m\(^3\) applies to construction emissions (and may apply to operational emissions at aggregate handling facilities). The Rule 1301 threshold of 2.5 µg/m\(^3\) applies to non-aggregate handling operational activities.

However, as discussed previously, the SCAQMD has developed screening tables to determine the potential for projects to result in localized impacts. If the on-site emissions of NO\(_x\), CO, PM10, or PM2.5 exceed the LST screening levels identified for the Project area, then the Project could result in localized impacts and a refined analysis would be required. If Project emissions do not exceed the following screening levels then the Project would not be considered to be less than significant for localized impacts. As stated above, the LSTs are specific for the Project area and the Project is located in SRA 2, and would be compared to the screening levels for a site of 2 acres with receptors within 25 meters.

- **Construction:**
 - 85 pounds per day for NO\(_x\),
 - 827 pounds per day for CO,
 - 6 pounds per day for PM10, and
 - 4 pounds per day for PM2.5.

- **Operational:**
 - 85 pounds per day for NO\(_x\),
 - 827 pounds per day for CO,
 - 2 pounds per day for PM10, and
 - 1 pound per day for PM2.5.

Toxic Air Contaminants

Based on criteria set forth by the SCAQMD, the Project would expose sensitive receptors to substantial concentrations of TACs if any of the following were to occur:117

- The Project would emit carcinogenic materials or TACs that exceed the maximum incremental cancer risk of 10 in one million or a cancer burden greater than 0.5 excess cancer cases (in areas greater than or equal to 1 in 1 million) or an acute or chronic hazard index of 1.0.

117 SCAQMD, CEQA Air Quality Handbook, Chapter 6 (Determining the Air Quality Significance of a Project) and Chapter 10 (Assessing Toxic Air Pollutants); SCAQMD, Air Quality Significance Thresholds.
As discussed in the Methodology section above, construction impacts from TACs are evaluated quantitatively in a refined HRA due to the use of heavy-duty, diesel equipment. For operations, the impacts are analyzed qualitatively due to the limited and minimal sources of TACs associated with operation of the proposed land uses.

Carbon Monoxide Hotspots

Emissions of CO are generated in greatest quantities from motor vehicle combustion of fossil fuels, and are usually concentrated at or near ground level because they do not readily disperse into the atmosphere, particularly under cool, stable (i.e., low or no wind) atmospheric conditions. Localized areas where ambient concentrations exceed State and/or federal standards are termed CO hotspots.

The potential for the Project to cause or contribute to the formation of offsite CO hotspots are evaluated based on prior dispersion modeling of the four busiest intersections in the SCAB that has been conducted by SCAQMD for its CO Attainment Demonstration Plan in the AQMP. SCAQMD conducted CO modeling for the 2003 AQMP for the four worst-case intersections in the Air Basin that include: Wilshire Boulevard and Veteran Avenue; Sunset Boulevard and Highland Avenue; La Cienega Boulevard and Century Boulevard; and Long Beach Boulevard and Imperial Highway. In the 2003 AQMP, SCAQMD notes that the intersection of Wilshire Boulevard and Veteran Avenue is the most congested intersection in Los Angeles County, with an average daily traffic volume of approximately 100,000 vehicles per day. This intersection is located near the on- and off-ramps to Interstate (I) 405 in Westwood. The evidence provided in Table 4-10 of Appendix V of the 2003 AQMP shows that the peak modeled CO concentration due to vehicle emissions at these four intersections was 4.6 ppm (1-hour average) and 3.2 (8-hour average) at Wilshire Boulevard and Veteran Avenue. When added to the existing background CO concentrations, the screening values would be 7.6 ppm (1-hour average) and 5.6 ppm (8-hour average). Project-impacted intersections with peak-hour traffic volumes that are lower than the intersections modeled by SCAQMD, in conjunction with lower background CO levels, would result in lower overall CO concentrations compared to the SCAQMD modeled values in its AQMP.

With respect to the formation of CO hotspots, the Project would be considered significant if the following would occur:

- The Project would cause or contribute to an exceedance of the CAAQS one-hour or eight-hour CO standards of 20 or 9.0 parts per million (ppm), respectively.

Based on the SCAQMD’s 2003 AQMP CO hotspot analysis as discussed above, a screening level of 100,000 vehicles per day through an intersection would result in less than significant localized CO impacts. Therefore, any intersection that does not exceed 100,000 vehicles per day would not have the potential to exceed the CAAQS.

118 The 2003 AQMP is the most current AQMP that provides modeling and attainment demonstration for CO.

Project Characteristics and Project Design Features

Project Characteristics

As previously described in Chapter 2, *Project Description*, of this Draft EIR, the Project is currently occupied by a United States Post Office (27,225 sf), Coco’s Bakery Restaurant (6,064 sf), Valvoline Instant Oil Change (1,722 sf) and surface parking. The Project would demolish and replace the existing commercial buildings and improvements on the Project Site with 230 residential units and 66,500 sf of commercial uses, including a market, gym/studio fitness center, retail/restaurant uses and office uses. Air filtration would be incorporated into the parking structure as required by the California Building Code.

The Project would represent an urban infill development, since it would be undertaken on a currently developed property, and would be located near existing public transit stops, which would result in reduced vehicle trips and VMT compared to model default assumptions. The MOU includes transit credit from public transit stops in the form of 5 percent reduced trips compared to default trips rates in the Institute of Transportation Engineers, Trip Generation, 10th Edition. An additional 10 percent reduction was applied to new net trips internal capture due to the mixed-use nature of the Project. These transit credits and associated emissions reductions are accounted for in the operational emissions modeling.

Project Design Features

There are certain practices and features of the Project that would serve to reduce or avoid environmental impacts. The following Project Design Feature (PDF) implemented as part of the Project would serve to reduce or avoid potential impacts associated with air quality and has been accounted for in the impact analysis.

PDF-TRAF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant's proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another.

120 Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.
FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:
 1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.
 2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.
 3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.
 4. Procedures for the training and certification of flag persons.
5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.

6. The location of temporary power, portable toilet and trash and materials storage locations.

7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.

8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.

Analysis of Project Impacts

Air Quality Management Plan

Threshold AIR-1: The Project would have a potentially significant impact on air quality if it would conflict with or obstruct the implementation of the applicable air quality plan.

Impact Statement AIR-1a: Project construction would increase the frequency or severity of an existing violation for pollutant emissions, but would not exceed the assumptions utilized in preparation of the Air Quality Management Plan. Impacts associated with Project construction are therefore considered potentially significant, and mitigation measures are required.

Construction

Criterion 1: Air Quality Violations or Delay Attainment

With respect to the first criterion, as discussed in more detail under the analysis for Threshold AIR-3 below, localized concentrations of NO$_2$ as NO$_X$, CO, PM10, and PM2.5 have been analyzed for the Project. SO$_2$ emissions would be negligible during construction and long-term operations, in part due to the ultra-low sulfur diesel regulations (CCR Title 13, Section 2281), and, therefore, would not have the potential to cause or effect a violation of the SO$_2$ ambient air quality standard. Since VOCs are not a criteria pollutant, there is no ambient standard or localized threshold for VOCs. However, due to the role VOCs play in ozone formation, it is classified as a precursor pollutant, and only a regional emissions threshold has been established.

The Project’s NO$_X$, CO, PM10, and PM2.5 emissions during construction were analyzed: (1) to ascertain potential effects on localized concentrations; and (2) to determine if there is a potential for such emissions to cause or effect a violation of the ambient air quality standards for NO$_2$, CO, PM10, and PM2.5. As shown in Table 4.1-7 in Threshold AIR-3 below, localized maximum daily
Project construction emissions would exceed SCAQMD localized construction emissions thresholds for NO\textsubscript{X}, PM10, and PM2.5. However, as explained in greater detail in Threshold AIR-3 below, the health-based ambient air quality standards for ozone are measured as concentrations of ozone and not as tonnages of their precursor pollutants (i.e., NO\textsubscript{X} and VOCs). Thus it is not necessarily the tonnage of precursor pollutants that causes human health effects, but the concentration of resulting ozone or particulate matter.

CEQA criteria pollutants significance thresholds from the air district were set at emission levels tied to the region’s attainment status; they are emission levels at which stationary pollution sources permitted by the air district must offset their emissions and CEQA projects must use feasible mitigations, and they are not intended to be indicative of any localized human health impact that a project may have.121-122 Therefore, just because a project exceeds the mass regional emissions threshold (i.e., pounds per day NO\textsubscript{X} thresholds) from project-related activities does not necessarily indicate that a project will cause or contribute to the exposure of sensitive receptors to ground-level concentrations in excess of health-protective levels.

The primary health concern with exposure to NO\textsubscript{X} emissions is the secondary formation of ozone. Based on discussions with air quality management district staff, and as the *amicus curiae* brief submitted for the *Sierra Club v. County of Fresno* case (Friant Ranch Case) suggested, because of the complexity of ozone formation and given the state of environmental science modeling in use at this time, it is infeasible to determine whether, or the extent to which, a single project’s precursor (i.e., NO\textsubscript{X} and VOCs) emissions would potentially result in the formation of secondary ground-level ozone and the geographic and temporal distribution of such secondary formed emissions.123 As previously stated, meteorology, the presence of sunlight, seasonal impacts, and other complex chemical factors all combine to determine the ultimate concentration and location of ozone. Furthermore, available models today are designed to determine regional, population-wide health impacts, and cannot accurately quantify ozone-related health impacts caused by NO\textsubscript{X} or VOCs emissions from local level (project-level). Notwithstanding these scientific constraints, the disconnect between project-level NO\textsubscript{X} emissions and ozone-related health impact cannot be bridged at this time.

Therefore, in response to Criterion 1, Project construction could increase the frequency or severity of an existing violation or cause or contribute to new violations for these pollutants emissions and impacts are potentially significant without mitigation.

Criterion 2: Exceed AQMP Assumptions

Under this criterion, the SCAQMD recommends that lead agencies demonstrate that a project would not directly obstruct implementation of an applicable air quality plan and that a project be

121 SCAQMD, Amicus Brief in Support of Neither Party, *Sierra Club v. County of Fresno*, April 6, 2015.

123 Models available today are designed to determine regional, population-wide health impacts, and cannot accurately quantify ozone-related health impacts caused by NO\textsubscript{X} or VOC emissions from a project level.
consistent with the assumptions (typically land-use related, such as resultant employment or residential units) upon which the air quality plan is based. The Project would generate short-term construction jobs, but it would not necessarily add new employees, since construction workers typically travel amongst construction sites within the region and are not typically brought from other areas to work on developments such as the Project. Moreover, these jobs would be temporary in nature. Therefore, construction jobs under the Project would not conflict with the long-term employment projections upon which the AQMP are based.

Project construction would also comply with SCAQMD Rule 403 requirements and the ATCM to limit heavy duty diesel motor vehicle idling to no more than 5 minutes at any given time. These measures would also be imposed on other construction projects in the Air Basin as required, which would include each of the cumulative projects in the Project Area. Compliance with these requirements is consistent with and meets or exceeds the AQMP requirements for control strategies intended to reduce emissions from construction equipment and activities. As a result, in response to Criterion 2, Project construction would not exceed the assumptions utilized in preparing the AQMP.

Impact Statement AIR-1b: Project operations would not increase the frequency or severity of an existing air quality violation for pollutant emissions and would not conflict with or obstruct implementation of relevant air quality policies in the adopted Air Quality Management Plan. Therefore, operational impacts would be less than significant.

Operations

Criterion 1: Air Quality Violations or Delay Attainment

Because the Project would not introduce any substantial stationary sources of emissions, CO is the appropriate benchmark pollutant for assessing local area air quality impacts from post-construction motor vehicle operations.\(^{124}\) As indicated below in Threshold AIR-3, no intersections would result in a CO hotspot in excess of the ambient air quality standards. In addition, as shown in Table 4.1-8 in Threshold AIR-3 below, localized maximum daily Project operational emissions would not exceed SCAQMD localized operational emissions thresholds for NO\(_X\), CO, PM10, and PM2.5. Thus, impacts would be less than significant.

Therefore, in response to Criterion 1, Project operations would not increase the frequency or severity of an existing air quality violation or cause or contribute to new air quality violations and impact would be less than significant.

Criterion 2: Exceed AQMP Assumptions

The AQMP was prepared to accommodate growth, reduce the levels of pollutants within the areas under the jurisdiction of SCAQMD, return clean air to the region, and minimize the impact on the economy. Projects that are considered consistent with the AQMP would not interfere with attainment because this growth is included in the projections used in the formulation of the AQMP. The Project Site is generally bounded by Jefferson Boulevard to the east, Machado Road to the north and Sepulveda Boulevard to the west. The Project Site is surrounded by the Sunkist Park neighborhood to the west and southwest, the Heritage Park and Lindberg Park neighborhoods to

\(^{124}\) SCAQMD, CEQA Air Quality Handbook, Chapter 12 (Assessing Consistency with Applicable Regional Plans).
the north, the Studio Village Shopping Center to the east, and the Blanco Park neighborhood to the southeast. The Project would include a mixed-use residential and commercial development to serve a range of household sizes adjacent to existing roadway improvements, service connections, and near existing transit.

The Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. The ground floor retail uses at the corner of Sepulveda Boulevard and Jefferson Boulevard, along with the market, would serve as pedestrian points of interest on the Project Site. The Paseo Courtyard, located between the retail uses at Sepulveda Boulevard and Jefferson Boulevard would provide open space for people to gather and interact with the retail. The Culver City Bus has multiple stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Los Angeles County Metropolitan Transportation Authority (Metro) E (Expo) Line Light Rail at the La Cienega Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro C (Green) Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service to the Metro E (Expo) Line Light Rail at the Expo/Sepulveda Station.

The Project is well served by existing bicycle routes and would install 71 long-term and 26 short-term parking spaces. There are currently 10 driveways surrounding the Project Site: 5 on Sepulveda Boulevard, 3 on Jefferson Boulevard, and 2 on Machado Road. The Project would change the locations of and remove 7 driveways, resulting in 3 remaining driveways to serve the Project Site. The removal of driveways would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site. Bicyclist would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market by the surface parking spaces for the retail uses. Bicycle lockers would be provided for residents in the subterranean parking level. Separate from the Project, the City intends to implement a bicycle share facility adjacent to the Machado Park. The bicycle share facility would allow for connections to the City’s proposed bicycle lanes along Jefferson Boulevard and Sepulveda Boulevard as part of the City’s Bicycle & Pedestrian Action Plan.

The Project would generate indirect growth associated with construction employment and up to 112 new employees (refer to Section 4.9, Population and Housing, of this Draft EIR for additional details regarding new employees generated by the Project). According to SCAG, Culver City’s forecast population, household, and employment growth of 1,293 persons, 862 households, and 4,137 jobs is predicted between 2020 and 2045, respectively. As such, the estimated 112 new employees generated by the Project are within SCAG’s employment growth assumptions of Culver City. The Project would provide up to 230 residences, including 19 affordable units for very low income households, which would result in 529 residents. The Project’s increase in population would represent approximately 27 percent of the household growth and 41 percent of the population growth projected for the City in 2045. The Project’s increase in approximately 529 new residents is consistent with SCAG’s growth projections for the period between 2020 and 2045, the RTP/SCS horizon year, for the City as a whole. Further, as discussed in Section 4.9, Population and Housing,
of this Draft EIR, the Project would also help the City meet the City’s share of the State mandated Regional Housing Needs Assessment (RHNA), under the previous cycle (185 units) through 2021 and under the current cycle (862 units) through 2045.125 As such, the Project would not generate growth beyond the range of development anticipated within the established SCAG regional forecast for Culver City. The Project would not increase or induce residential density growth not otherwise anticipated.

As previously stated, the Project would concentrate employment growth in an area served by the Culver City Bus which has multiple stops that travel along the Project Site frontages. In addition, the City intends to implement a bicycle share facility adjacent to the Machado Park. As such, the Project would be consistent with SCAG’s 2020-2045 RTP/SCS policies for the concentration of growth in proximity to transit.

Therefore, the Project would not spur additional growth other than that already anticipated for Culver City and would not eliminate impediments to growth. Consequently, the Project would not foster growth inducing impacts.

The 2016 AQMP was prepared to accommodate growth, reduce the levels of pollutants within the areas under the jurisdiction of SCAQMD, return clean air to the region, and minimize the impact on the economy. Projects that are considered consistent with the AQMP would not interfere with attainment because this growth is included in the projections used in the formulation of the AQMP. As detailed in Threshold AIR-2 below and shown in Table 4.1-6, the Project’s net operational emissions would not exceed the SCAQMD’s regional significance thresholds. As a result, in response to Criterion 2, the Project would not conflict with or obstruct implementation of the AQMP. Therefore, operational impacts would be less than significant.

Regional Impacts

Threshold AIR-2: The Project would have a potentially significant impact on air quality if it would result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard.

Impact Statement AIR-2a: The South Coast Air Basin is designated as non-attainment for ozone, PM10, and PM2.5 under federal and/or state ambient air quality standards. Construction of the Project would not exceed the applicable SCAQMD significance thresholds for VOC, PM10, or PM2.5. However, construction of the Project would exceed the applicable SCAQMD significance threshold for NOx. Therefore, impacts associated with construction emissions are considered potentially significant, and mitigation measures are required.

The Project would result in emissions of criteria air pollutants for which the region is in non-attainment during both construction and operation. The Air Basin fails to meet the NAAQS for O3 and PM2.5, and therefore is considered a federal “non-attainment” area for these pollutants. The

Air Basin also does not meet the CAAQS for PM10. The SCAQMD has designed significance thresholds to assist the region in attaining the applicable CAAQS and NAAQS, and apply to both primary (criteria and precursor) and secondary pollutants (ozone).

Construction

The maximum daily construction emissions were estimated for each construction activity and emissions are combined for construction activities that have the potential to overlap. It was assumed that during foundation pouring there could be extended days resulting in doubling of the equipment activity. This was taken into account in the modeling scenarios and is not considered an overlap. Overlap scenarios analyzed include: (1) Demolition and site preparation; (2) Drainage/utilities/trenching with foundation pouring (2a represents a typical foundation pouring day, 2b represents an extended foundation pouring day); and (3) Building construction with both paving and architectural coating. The maximum daily emissions are predicted values for the worst-case day and do not represent the emissions that would occur for every day of construction. The emissions calculations include dust control measures required to be implemented during each phase of development, as required by SCAQMD Rule 403 (Control of Fugitive Dust). A summary of the maximum daily unmitigated construction emissions of the criteria pollutant calculations for each construction year are presented in Table 4.1-5, *Unmitigated Regional Maximum Daily Construction Emissions*. Detailed emissions calculations are provided in Appendix B of this Draft EIR.

<table>
<thead>
<tr>
<th>Source</th>
<th>VOC</th>
<th>NO<sub>x</sub></th>
<th>CO</th>
<th>SO<sub>2</sub></th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>3</td>
<td>38</td>
<td>31</td>
<td><1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>6</td>
<td>107</td>
<td>52</td>
<td><1</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Grading/Excavitation</td>
<td>5</td>
<td>99</td>
<td>50</td>
<td><1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td>2</td>
<td>19</td>
<td>21</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Foundation Pour (Typical Day)</td>
<td>11</td>
<td>231</td>
<td>126</td>
<td>1</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Foundation Pour (Extended Day)</td>
<td>23</td>
<td>462</td>
<td>253</td>
<td>1</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>Building Construction</td>
<td>6</td>
<td>51</td>
<td>70</td>
<td><1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Paving</td>
<td>1</td>
<td>12</td>
<td>17</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>39</td>
<td>5</td>
<td>8</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Overlap 1<sup>b</sup></td>
<td>10</td>
<td>145</td>
<td>82</td>
<td><1</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>Overlap 2a<sup>b</sup></td>
<td>13</td>
<td>250</td>
<td>147</td>
<td>1</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Overlap 2b<sup>b</sup></td>
<td>24</td>
<td>481</td>
<td>274</td>
<td>1</td>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>Overlap 3</td>
<td>46</td>
<td>69</td>
<td>95</td>
<td><1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Regional Construction Emissions</td>
<td>46</td>
<td>481</td>
<td>274</td>
<td>1</td>
<td>44</td>
<td>17</td>
</tr>
<tr>
<td>SCAQMD Significance Thresholds</td>
<td>75</td>
<td>100</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
As shown in Table 4.1-5, regional maximum daily construction emissions would exceed the SCAQMD regional threshold for construction activities for NO\(_x\). Therefore, impacts would be significant without mitigation.

With respect to the Project’s short-term construction-related air quality emissions and cumulative conditions, SCAQMD has developed strategies to reduce criteria pollutant emissions outlined in the AQMP pursuant to the federal CAA mandates. Construction of the Project would comply with SCAQMD Rule 403 fugitive dust control requirements and the ATCM to limit heavy duty diesel motor vehicle idling to no more than 5 minutes at any location. These measures would also be imposed on construction projects in the Air Basin, which would include the cumulative projects in the Project Area. Since the Project’s construction-related air emissions would exceed the SCAQMD’s regional significance thresholds for NO\(_x\), cumulative construction impacts would be potentially significant without mitigation.

Impact Statement AIR-2b: The South Coast Air Basin is designated as non-attainment for ozone, PM10, and PM2.5 under federal and/or state ambient air quality standards. Operation of the Project would not exceed the applicable SCAQMD significance thresholds for ozone precursor emissions (i.e., VOCs and NO\(_x\)), PM10, or PM2.5 and operational impacts would be less than significant.

Operation

The SCAQMD’s approach for assessing cumulative impacts related to operations or long-term implementation is based on attainment of ambient air quality standards in accordance with the requirements of the CAA and CCAA. As discussed earlier, the SCAQMD has developed a comprehensive plan, the AQMP, which addresses the region’s cumulative air quality condition.

Operational emissions were assessed for area, energy, mobile, and stationary sources. Operational criteria pollutant emissions were calculated for the first full Project buildout year of operations in 2025.\(^{126}\) Daily trip generation rates for the Project were provided in the MOU and include trips associated with the proposed land uses.\(^{127}\)

Results of the criteria pollutant calculations are presented in **Table 4.1-6, Unmitigated Regional Maximum Daily Operational Emissions.** The net increase in operational-related daily emissions (Project emissions minus existing emissions) for the criteria and precursor pollutants (VOC, NO\(_x\),

\(^{126}\) The Project would be operational in the third quarter of 2024. Therefore, the first full buildout year of operations is 2025.

\(^{127}\) Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.
CO, SO\textsubscript{X}, PM10, and PM2.5) would not exceed the SCAQMD threshold of significance for any non-attainment pollutants. Therefore, impacts would be less than significant.

TABLE 4.1-6

UNMITIGATED REGIONAL MAXIMUM DAILY OPERATIONAL EMISSIONS (POUNDS PER DAY)

<table>
<thead>
<tr>
<th>Source</th>
<th>VOC</th>
<th>NO\textsubscript{X}</th>
<th>CO</th>
<th>SO\textsubscript{2}</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areab</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Energy (Natural Gas)</td>
<td><1</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Generator</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mobile</td>
<td>16</td>
<td>16</td>
<td>86</td>
<td><1</td>
<td>25</td>
<td><1</td>
</tr>
<tr>
<td>Project Total Regional Operational Emissions</td>
<td>28</td>
<td>34</td>
<td>109</td>
<td><1</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Existing Emissions</td>
<td>10</td>
<td>12</td>
<td>56</td>
<td><1</td>
<td>12</td>
<td><1</td>
</tr>
<tr>
<td>Net Regional Operational Emissions</td>
<td>18</td>
<td>22</td>
<td>53</td>
<td><1</td>
<td>14</td>
<td><1</td>
</tr>
<tr>
<td>SCAQMD Significance Thresholds</td>
<td>55</td>
<td>55</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix B.b Modeling provided in Appendix B included a 15,000 sf Park. Machado Park, as described in this Draft EIR, is now 13,200 sf, and the modeling estimates presented are conservative as a reduction in open space would similarly result in a decrease in area emissions as well as solid waste and water consumption.

SOURCE: ESA, 2020.

Expose Sensitive Receptors to Substantial Pollutant Concentrations

Threshold AIR-3: The Project would have a potentially significant impact on air quality if it would expose sensitive receptors to substantial pollutant concentrations.

Impact Statement AIR-3a: Construction of the Project would have the potential to exceed localized significance thresholds at off-site sensitive receptors. Therefore, localized construction impacts are considered potentially significant, and mitigation measures are required.

Localized Construction

The localized impacts for the short-term construction activities were quantified using CalEEMod, as detailed above, and compared to the applicable LST thresholds. As previously discussed, SCAQMD recommends the evaluation of localized air quality impacts to sensitive receptors in the immediate vicinity of the Project. The results of the analysis are presented in **Table 4.1-7**

Unmitigated Localized Construction Emissions.

As shown in Table 4.1-7, localized maximum daily Project construction emissions would exceed SCAQMD localized construction emissions thresholds for NO\textsubscript{x}, PM10, and PM2.5. Therefore, impacts would be potentially significant without mitigation.
TABLE 4.1-7

UNMITIGATED LOCALIZED CONSTRUCTION EMISSIONS (POUNDS PER DAY)

<table>
<thead>
<tr>
<th>Source</th>
<th>NO\textsubscript{X}</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>30</td>
<td>27</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>41</td>
<td>24</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>33</td>
<td>23</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td>18</td>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Foundation Pour (Typical Day)</td>
<td>39</td>
<td>47</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Foundation Pour (Extended Day)</td>
<td>78</td>
<td>93</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Building Construction</td>
<td>50</td>
<td>57</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Paving</td>
<td>12</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>5</td>
<td>6</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Overlap 1b</td>
<td>71</td>
<td>51</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Overlap 2b</td>
<td>58</td>
<td>67</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Overlap 2bb</td>
<td>97</td>
<td>114</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Overlap 3</td>
<td>68</td>
<td>78</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Localized Construction Emissions</td>
<td>97</td>
<td>114</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>SCAQMD Significance Thresholds</td>
<td>82</td>
<td>827</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix B.

b Overlap scenarios are as follows: (1) Demolition and site preparation; (2) Drainage/utilities/trenching with foundation pouring (2a represents a typical foundation pouring day, 2b represents an extended foundation pouring day); and (3) Building construction with both paving and architectural coating.

SOURCE: ESA, 2020.

The health-based ambient air quality standards for ozone are measured as concentrations of ozone and not as tonnages of their precursor pollutants (i.e., NO\textsubscript{X} and VOCs). It is not necessarily the tonnage of precursor pollutants that causes human health effects, but the concentration of resulting ozone or particulate matter. Because of the complexity of ozone formation and the non-linear relationship of ozone concentration with its precursor gases, and given the state of environmental science modeling in use at this time, it is infeasible to convert specific emission levels of NO\textsubscript{X} or VOCs emitted in a particular area to a particular concentration of ozone in that area. Meteorology, the presence of sunlight, seasonal impacts, and other complex chemical factors all combine to determine the ultimate concentration and location of ozone.128-129

As expressed in the *amicus curiae* brief submitted for the Friant Ranch Case, the CEQA criteria pollutants significance thresholds from the air district were set at emission levels tied to the region’s attainment status, they are emission levels at which stationary pollution sources permitted by the

128 SCAQMD, Application of the South Coast Air Quality Management District for Leave to File Brief of Amicus Curiae in Support of Neither Party and Brief of Amicus Curiae. In the Supreme Court of California. Sierra Club, Revive the San Joaquin, and League of Women Voters of Fresno v. County of Fresno.

129 SJVAPCD, Application for Leave to File Brief of Amicus Curiae Brief of San Joaquin Valley Unified Air Pollution Control District in Support of Defendant and Respondent, County of Fresno and Real Party In Interest and Respondent, Friant Ranch, L.P. In the Supreme Court of California. Sierra Club, Revive the San Joaquin, and League of Women Voters of Fresno v. County of Fresno.
air district must offset their emissions and CEQA projects must use feasible mitigations, and they are not intended to be indicative of any localized human health impact that a project may have.130,131 Therefore, just because a project exceeds the mass regional emissions threshold (i.e., pounds per day \(\text{NO}_x \) thresholds) from project-related activities does not necessarily indicate that a project will cause or contribute to the exposure of sensitive receptors to ground-level concentrations in excess of health-protective levels.

As previously stated, meteorology, the presence of sunlight, seasonal impacts, and other complex chemical factors all combine to determine the ultimate concentration and location of ozone. Furthermore, available models today are designed to determine regional, population-wide health impacts, and cannot accurately quantify ozone-related health impacts caused by \(\text{NO}_x \) or VOCs emissions from local level (project-level). Notwithstanding these scientific constraints, the disconnect between project-level \(\text{NO}_x \) emissions and ozone-related health impact cannot be bridged at this time. However, given that \(\text{NO}_x \) emissions exceed the SCAQMD’s localized impacts, it cannot be stated for certain that health impacts would not occur. Therefore, impacts are potentially significant without mitigation.

Impact Statement AIR-3b: Operation of the Project would not exceed the localized significance thresholds at off-site sensitive receptors. Therefore, operational impacts would be less than significant.

Localized Operations

The localized impacts for the operation activities were quantified using CalEEMod and compared to the applicable LST thresholds. The results of the analysis are presented in Table 4.1-8, Maximum Unmitigated Localized Operational Emissions. As shown in Table 4.1-8, the maximum localized operational emissions for sensitive receptors would not exceed the localized thresholds for \(\text{NO}_x \), CO, PM10, and PM2.5. Therefore, impacts related to localized operational emissions would be less than significant. Additionally, as operation of the Project would not exceed the localized significance thresholds, the Project is not anticipated to contribute to localized health impacts related to these pollutants.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\text{NO}_x)</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Operational Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>4</td>
<td>20</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Energy</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Generator</td>
<td>13</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Maximum Localized Operational Emissions</td>
<td>18</td>
<td>22</td>
<td>1</td>
<td><1</td>
</tr>
</tbody>
</table>

130 SCAQMD, Application of the South Coast Air Quality Management District for Leave to File Brief of Amicus Curiae in Support of Neither Party and Brief of Amicus Curiae. In the Supreme Court of California. Sierra Club, Revive the San Joaquin, and League of Women Voters of Fresno v. County of Fresno.

131 SJVAPCD, Application for Leave to File Brief of Amicus Curiae Brief of San Joaquin Valley Unified Air Pollution Control District in Support of Defendant and Respondent, County of Fresno and Real Party In Interest and Respondent, Friant Ranch, L.P. In the Supreme Court of California. Sierra Club, Revive the San Joaquin, and League of Women Voters of Fresno v. County of Fresno.
4. Environmental Impacts Analysis

4.1 Air Quality

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAQMD Significance Thresholds</td>
<td>82</td>
<td>827</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Exceeds Thresholds?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

| **a** Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix B. |

Impact Statement AIR-3c: Project construction would not cause or contribute to an exceedance of the CAAQS one-hour or eight-hour CO standards of 20 or 9.0 (ppm), respectively. Therefore, CO hotspots impacts would be less than significant.

Carbon Monoxide Hotspots

The potential for the Project to cause or contribute to CO hotspots is evaluated by comparing Project intersections (both intersection geometry and traffic volumes) with prior studies conducted by SCAQMD in support of their AQMPs and considering existing background CO concentrations. As discussed below, this comparison demonstrates that the Project would not cause or contribute considerably to the formation of CO hotspots, that CO concentrations at Project impacted intersections would remain well below the ambient air quality standards, and that no further CO analysis is warranted or required.

As shown previously in Table 4.1-2, CO levels in the Project area are substantially below the federal and state standards. Maximum CO levels in recent years are 2.2 ppm or less (one-hour average) and 1.3 ppm or less (eight-hour average) compared to the thresholds of 20 ppm (one-hour average) and 9.0 ppm (eight-hour average). As detailed under the Section 4.1.4 Methodology, above, a screening threshold of 100,000 vehicles per day is used to determine potential significance with result to intersection analysis for CO hotspots.

Based on the Project’s traffic data, of the studied intersections, Sepulveda Boulevard and Culver Boulevard would have peak traffic volumes of 61,180 per day, which is substantially below the 100,000 trip per day screening threshold. As a result, CO concentrations are expected to be less than those estimated in the 2003 AQMP, which would not exceed the thresholds. Thus, this comparison demonstrates that the Project would not contribute considerably to the formation of CO hotspots and no further CO analysis is required. The Project would result in less than significant impacts with respect to CO hotspots.

Toxic Air Contaminants

Impact Statement AIR-3d: Construction of the Project would generate substantial short-term TAC emissions from DPM that would exceed the health risk threshold for cancer risk.

132 Fehr & Peers, Transportation Study, Figure 18. Provided in Appendix J of this Draft EIR. To determine the average daily traffic for an intersection, the PM peak hour traffic (which is the sum of all traffic going into the intersection and based off of Figure 18 from the Transportation Study) is multiplied by 10. This is an industry standard technique for estimating the average daily traffic at intersections when only peak hour values are available.
Therefore, construction impacts would be considered potentially significant, and mitigation measures are required.

Construction
The resulting health risk calculations were performed using a spreadsheet tool consistent with the OEHHA guidance. The spreadsheet tool incorporates the algorithms, equations, and a variable described above as well as in the OEHHA Guidance, and incorporates the results of the AERMOD dispersion model. Table 4.1-9, *Unmitigated Maximum Health Risk Impacts for Off-Site Sensitive Receptors* below summarize the carcinogenic chronic risk for the maximum impacted sensitive receptors.

Table 4.1-9
Unmitigated Maximum Health Risk Impacts for Off-Site Sensitive Receptors

<table>
<thead>
<tr>
<th>Receptor Type</th>
<th>Cancer Risk</th>
<th>Non-Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>76.12</td>
<td>0.15</td>
</tr>
<tr>
<td>School</td>
<td>73.60</td>
<td>0.25</td>
</tr>
<tr>
<td>SCAQMD Significance Thresholds</td>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td>Exceeds Thresholds?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

For carcinogenic exposures, the cancer risk from DPM emissions from construction is estimated to result in a maximum carcinogenic risk at the residential uses within the Heritage Park Neighborhood, just to the north of Project Site. Cancer risk from construction DPM emissions is estimated to result in a maximum carcinogenic risk for school uses at the ECF, just north of the Project Site. Other nearby schools (e.g., Temple Akiba) would be exposed to risk levels less than those reported for the maximum risk location. As discussed previously, the lifetime exposure under the OEHHA Guidance takes into account early life (infant and children) exposure.

The calculated cancer risk is estimated for outdoor exposure and assumes that sensitive receptors (residential uses) would not have any mitigation such as mechanical filtration and that residential uses would have continuously open windows. As the maximum impact would be greater than the risk threshold of 10.0 in one million, impacts would be potentially significant without mitigation. Potential non-cancer effects of chronic (i.e., long term) DPM exposures were evaluated using the Hazard Index approach as described in the OEHHA Guidance. A hazard index equal to or greater than 1.0 represents a significant chronic health hazard. The Project does not exceed the hazard index threshold of 1 for non-cancer risk, and therefore, the Project’s chronic risk impact would be less than significant.

Impact Statement AIR-3e: Operation of the Project would not include permanent sources (equipment, etc.) that would generate substantial long-term TAC emissions in excess of the health risk thresholds. Therefore, operational impacts would be less than significant.

Operations
SCAQMD recommends that health risk assessments be conducted for substantial sources of TAC emissions (e.g., truck stops and warehouse distribution facilities) and has provided guidance for
analyzing mobile source diesel emissions. The Project is not anticipated to generate a substantial number of daily truck trips, nor would it result in the emission of other TACs at a level where concern would be raised regarding health risk. The minor use of TACs onsite would be consistent with, or less than, what is currently used under the existing conditions. Additionally, the emergency generator associated with the operation of the Project would be required to be permitted by the SCAQMD and therefore would not be permitted to emit TAC emissions in excess of regulatory thresholds. Therefore, the Project would not warrant the need for a health risk assessment associated with on-site operational activities, and potential TAC impacts are expected to be less than significant.

Typical sources of acutely and chronically hazardous TACs include industrial manufacturing processes and automotive repair facilities. The Project would remove the existing automotive repair facility, and would not add a new TAC source. Minimal emissions of TAC are expected from diesel trucks (less than 100 per day) and the use of consumer products (e.g., aerosol sprays). Therefore, the Project is not expected to release substantial amounts of TACs during operational activities, and no significant impact on human health would occur.

Cumulative Impacts

Chapter 3, *Environmental Setting*, of this Draft EIR provides a list of 27 related projects that are planned or are under construction within an approximately 1.5-mile radius of the Project Site. Of these 27 related projects, 21 are located within the City of Culver City and 6 are located within the City of Los Angeles. These projects are summarized in Table 3-1, Related Projects List, and shown on Figure 3-1, Related Projects Map, in Chapter 3.

The SCAQMD CEQA Air Quality Handbook states that the “Handbook is intended to provide local governments, project proponents, and consultants who prepare environmental documents with guidance for analyzing and mitigating air quality impacts of projects.”133 The SCAQMD CEQA Air Quality Handbook also states that “[f]rom an air quality perspective, the impact of a project is determined by examining the types and levels of emissions generated by the project and its impact on factors that affect air quality. As such, projects should be evaluated in terms of air pollution thresholds established by the District.”134 The SCAQMD has also provided guidance on an acceptable approach to addressing the cumulative impacts issue for air quality as discussed below:135

“As Lead Agency, the AQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR... Projects that exceed the Project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance

133 SCAQMD, CEQA Air Quality Handbook, page iii.
134 SCAQMD, CEQA Air Quality Handbook, page 6-1.
thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant.”

Because the City has not adopted specific Citywide significance thresholds for air quality impacts, it is appropriate to rely on thresholds established by the SCAQMD (refer to CEQA Guidelines Section 15064.7). While it may be possible to add emissions from the list of related projects and the Project, it would not provide meaningful data for evaluating cumulative impacts under CEQA because neither the City nor the SCAQMD have established numerical thresholds applicable to the summation of multiple project emissions for comparison purposes. Additionally, regional emissions from a project have the potential to affect the Air Basin as a whole and, unlike other environmental issues areas such as aesthetics or noise, it is not possible to establish a geographical radius from a specific project site where potential cumulative impacts from regional emissions would be limited. Meteorological factors, such as wind, can disperse pollutants, often times tens of miles downwind from a project site. Therefore, consistent with accepted and established SCAQMD cumulative impact evaluation methodologies, the potential for the Project to result in cumulative impacts from regional emissions is assessed based on the SCAQMD thresholds.

Construction

The Project would result in emissions of criteria air pollutants for which the region is in non-attainment during both construction and operation. The Air Basin fails to meet the NAAQS for ozone and PM2.5, and therefore is considered a federal “non-attainment” area for these pollutants. The Air Basin also does not meet the CAAQS for ozone, PM10 or PM2.5. The SCAQMD has designed significance thresholds to assist the region in attaining the applicable CAAQS and NAAQS, apply to both primary (criteria and precursor) and secondary pollutants (ozone). Since the Project Site is located in a region that is in non-attainment for ozone, PM10, and PM2.5, regional emissions associated with Project construction would be cumulatively considerable without mitigation, as the emissions would exceed SCAQMD daily regional significance thresholds for NOx as shown above in Table 4.1-5.

With respect to the Project’s short-term construction-related air quality emissions and cumulative conditions, SCAQMD has developed strategies to reduce criteria pollutant emissions outlined in the AQMP pursuant to the federal CAA mandates. Construction of the Project would comply with SCAQMD Rule 403 requirement, which focuses on reducing fugitive dust emissions and the ATCM to limit heavy duty diesel motor vehicle idling to no more than 5 minutes at any given time. In addition, the Project would utilize a construction contractor(s) that complies with required and applicable BACT and the In-Use Off-Road Diesel Vehicle Regulation. Per SCAQMD rules and mandates, as well as the CEQA requirement that significant impacts be mitigated to the extent feasible, these same requirements (i.e., Rule 403 compliance, the implementation of all feasible mitigation measures, and compliance with adopted AQMP emissions control measures) would also be imposed on construction projects in the Air Basin, which would include the cumulative projects in the Project Area. The related projects would be subject to these same requirements. The Construction Management Plan, provided as Project Design Feature PDF-TRAFF-1, which would be subject to review and approval by various City departments prior to issuance of any Project demolition, grading or excavation permit, would alleviate construction-period traffic impacts. Collaboration with surrounding developments would be required if Project construction would
occur simultaneously with surrounding construction activities. Furthermore, consistent with SCAQMD guidance for cumulative impacts, regional and localized emissions would exceed SCAQMD significance thresholds as shown above in Table 4.1-5 and Table 4.1-7. As such, the Project’s contribution to cumulatively significant construction impacts to air quality would be cumulatively considerable and cumulative impacts would be potentially significant without mitigation for regional and localized criteria pollutants during construction.

Operations

The SCAQMD’s approach for assessing cumulative impacts related to operations or long-term implementation is based on attainment of ambient air quality standards in accordance with the requirements of the CAA and CCAA. As discussed earlier, the SCAQMD has developed a comprehensive plan, the AQMP, which addresses the region’s cumulative air quality condition.

A significant impact may occur if a project would add a cumulatively considerable contribution of a federal or California non-attainment pollutant. Because the Los Angeles County portion of the Air Basin is currently in non-attainment for ozone, NO₂, PM10, and PM2.5, cumulative projects could exceed an air quality standard or contribute to an existing or projected air quality exceedance. Cumulative impacts to air quality are evaluated under two sets of thresholds for CEQA and the SCAQMD. In particular, Section 15064(h)(3) of the CEQA Guidelines provides guidance in determining the significance of cumulative impacts. Specifically, Section 15064(h)(3) states in part that:

A lead agency may determine that a project’s incremental contribution to a cumulative effect is not cumulatively considerable if the project will comply with the requirements in a previously approved plan or mitigation program which provides specific requirements that will avoid or substantially lessen the cumulative problem (e.g., water quality control plan, air quality plan, integrated waste management plan) within the geographic area in which the project is located. Such plans or programs must be specified in law or adopted by the public agency with jurisdiction over the affected resources through a public review process to implement, interpret, or make specific the law enforced or administered by the public agency.

For purposes of the cumulative air quality analysis with respect to CEQA Guidelines Section 15064(h)(3), the Project’s incremental contribution to cumulative air quality impacts is determined based on compliance with the SCAQMD-adopted AQMP. The Project would not conflict with or obstruct implementation of AQMP and would be consistent with the growth projections in the AQMP.

Nonetheless, SCAQMD no longer recommends relying solely upon consistency with the AQMP as an appropriate methodology for assessing cumulative air quality impacts. The SCAQMD recommends that project-specific air quality impacts be used to determine the potential cumulative impacts to regional air quality. The Project’s regional and localized emissions would be below SCAQMD significance thresholds as shown in Table 4.1-6 and Table 4.1-8. Therefore, the Project’s incremental contribution to long-term emissions of non-attainment pollutants and ozone precursors, considered together with cumulative projects, would not be cumulatively considerable, and therefore the cumulative impact of the Project would be less than significant.
4.1.5 Mitigation Measures

AIR-1: Construction of the Project shall incorporate the following conditions:

a. The Project shall use off-road diesel-powered construction equipment that meets or exceeds the CARB and USEPA Tier 4 off-road emissions standards for equipment rated at 50 horsepower or greater and not identified under b or c. below. Such equipment will be outfitted with Best Available Control Technology (BACT) devices, including a CARB-certified Level 3 Diesel Particulate Filter or equivalent. These requirements shall be included in applicable bid documents and successful contractor(s) must demonstrate the ability to supply such equipment.

b. During the site preparation and excavation/grading phases, watering must be conducted a minimum of 4 times per day. Alternatively, other fugitive dust emissions practices shall be implemented that will reduce fugitive dust to at least the same level.

c. On-road haul trucks, including delivery and those conveying excavated material, shall not exceed 120 truck trips (round trips, or 240 one-way trips) per day.

AIR-2: At a minimum, the following equipment shall be electric or non-diesel fueled: concrete/industrial saws, cranes, forklifts, plate compactors, pumps, welders, and cement and mortar mixers. Additionally, onsite electricity shall be used to power the equipment to the greatest extent possible. Where grid electricity cannot be used, a non-diesel powered generator shall be used and use of the generator shall be limited to only those activities necessary.

4.1.6 Level of Significance after Mitigation

As discussed under Threshold AIR-1, AIR-2, and AIR-3, NOx emissions would exceed regulatory thresholds without mitigation during Project construction. Implementation of Mitigation Measure AIR-1 would reduce NOx emissions through implementing cleaner, more efficient construction equipment and limiting the number of haul and vendor trucks that can access the site on a given day. As shown in Table 4.1-10, Mitigated Regional Maximum Daily Construction Emissions, with the implementation of Mitigation Measure AIR-1, NOx emissions would be reduced to below regulatory thresholds. Therefore, the Project would result in less than significant impacts following implementation of mitigation.

<table>
<thead>
<tr>
<th>Source</th>
<th>VOC</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>1</td>
<td>10</td>
<td>34</td>
<td><1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>3</td>
<td>69</td>
<td>54</td>
<td><1</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>3</td>
<td>70</td>
<td>56</td>
<td><1</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
4. Environmental Impacts Analysis

4.1 Air Quality

City of Culver City

SCH No. 2020090329

May 2021

<table>
<thead>
<tr>
<th>Source</th>
<th>VOC</th>
<th>NOₓ</th>
<th>CO</th>
<th>SO₂</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td><1</td>
<td>3</td>
<td>22</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Foundation Pour (Typical Day)</td>
<td>3</td>
<td>46</td>
<td>72</td>
<td><1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Foundation Pour (Extended Day)</td>
<td>5</td>
<td>91</td>
<td>145</td>
<td><1</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Building Construction</td>
<td>2</td>
<td>8</td>
<td>73</td>
<td><1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Paving</td>
<td><1</td>
<td>3</td>
<td>19</td>
<td><1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>38</td>
<td>2</td>
<td>8</td>
<td><1</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>Overlap 1ᵇ</td>
<td>4</td>
<td>79</td>
<td>88</td>
<td><1</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Overlap 2ᵃᵇ</td>
<td>3</td>
<td>49</td>
<td>94</td>
<td><1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Overlap 2ᵇ</td>
<td>5</td>
<td>94</td>
<td>167</td>
<td><1</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Overlap 3</td>
<td>40</td>
<td>14</td>
<td>101</td>
<td><1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Daily Emissions</td>
<td>40</td>
<td>94</td>
<td>167</td>
<td>0</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Threshold</td>
<td>75</td>
<td>100</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
</tbody>
</table>

| Does Threshold Exceed? | No | No | No | No | No | No |

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix B.
b Overlap scenarios are as follows: 1. Demolition and site preparation; 2. Drainage/utilities/trenching with foundation pouring (2a is a typical foundation pouring day, 2b is an extended foundation pouring day); and 3. Building construction with both paving and architectural coating.

As discussed under Threshold AIR-3, NOₓ, PM10 and PM2.5 emissions would exceed regulatory screening levels without mitigation. Implementation of Mitigation Measure AIR-1 would reduce emissions through implementing cleaner, more efficient construction equipment, increasing watering to 4 times per day during site preparation and grading phases, and by limiting the number of haul and vendor trucks that can access the site on a given day. As shown in Table 4.1-11, Mitigated Localized Construction Emissions, with the implementation of Mitigation Measure AIR-1, NOₓ, PM10 and PM2.5 emissions would be reduced to below regulatory thresholds. Therefore, the Project would result in less than significant impacts with mitigation. Additionally, as localized concentrations would be reduced to below the localized significance thresholds, the Project is not anticipated to contribute to localized health impacts related to these pollutants.

<table>
<thead>
<tr>
<th>Source</th>
<th>NOₓ</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>2</td>
<td>30</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>3</td>
<td>27</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>4</td>
<td>28</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td>3</td>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Foundation Pour (Typical Day)</td>
<td>7</td>
<td>50</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Foundation Pour (Extended Day)</td>
<td>13</td>
<td>100</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Building Construction</td>
<td>7</td>
<td>61</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Paving</td>
<td>3</td>
<td>18</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

4.1 Air Quality

Source

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>2</td>
<td>6</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Overlap 1(^a)</td>
<td>5</td>
<td>56</td>
<td>5.69</td>
<td>3</td>
</tr>
<tr>
<td>Overlap 2a(^b)</td>
<td>10</td>
<td>72</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Overlap 2b(^b)</td>
<td>16</td>
<td>122</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Overlap 3</td>
<td>12</td>
<td>84</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Maximum Daily Emissions</td>
<td>16</td>
<td>122</td>
<td>5.69</td>
<td>3</td>
</tr>
<tr>
<td>Threshold</td>
<td>82</td>
<td>827</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

| Exceeds Threshold? | No | No | No | No |

\(^a\) Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix A.

\(^b\) Overlap scenarios are as follows: 1. Demolition and site preparation; 2. Drainage/utilities/trenching with foundation pouring (2a is a typical foundation pouring day, 2b is an extended foundation pouring day); and 3. Building construction with both paving and architectural coating.

As discussed under Threshold AIR-3, cancer risk for both residential and school receptors would exceed regulatory thresholds without mitigation. Implementation of Mitigation Measure AIR-1 would reduce DPM emissions through implementing cleaner, more efficient construction equipment. As shown in Table 4.1-12, *Mitigated Maximum Health Risk Impacts for Off-Site Sensitive Receptors*, with the implementation of Mitigation Measure AIR-1, cancer risk would remain above the regulatory threshold for residential receptors. With implementation of Mitigation Measures AIR-1 and AIR-2, cancer risk would be reduced to below regulatory thresholds for both residential and school receptors. Therefore, the Project would result in less than significant impacts with implementation of mitigation. While cancer risk exceeds the threshold prior to implementation of Mitigation Measures AIR-1 and AIR-2, the cancer risk was based on the assumption that the worst day scenario for each construction phase occurs every day, representing a highly conservative risk estimate. When accounting for the typical daily activities that occur on the Project Site, the average daily emissions would be lower than what was used to quantify risk. Therefore, since the conservative risk scenario was reduced to below regulatory thresholds with implementation of mitigation measures, the actual risk based on an average construction day would also be below the regulatory threshold and would most likely be substantially lower than the risk presented in Table 4.1-12.

Table 4.1-12

Mitigated Maximum Health Risk Impacts for Off-Site Sensitive Receptors

<table>
<thead>
<tr>
<th>Receptor Type</th>
<th>Cancer Risk</th>
<th>Non-Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Implementation of Mitigation Measure AIR-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>13.94</td>
<td>0.01</td>
</tr>
<tr>
<td>School</td>
<td>5.76</td>
<td>0.02</td>
</tr>
<tr>
<td>SCAQMD Significance Threshold</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
4. Environmental Impacts Analysis

4.1 Air Quality

<table>
<thead>
<tr>
<th>Receptor Type</th>
<th>Cancer Risk</th>
<th>Non-Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Implementation of Mitigation Measures AIR-1 and AIR-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>3.55</td>
<td>0.01</td>
</tr>
<tr>
<td>School</td>
<td>1.53</td>
<td>0.02</td>
</tr>
<tr>
<td>SCAQMD Significance Threshold</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Exceeds Thresholds?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

As discussed previously in Thresholds AIR-2 and AIR-3, NOX, PM10 and PM2.5 emissions during Project construction would exceed regulatory screening levels without mitigation. Implementation of Mitigation Measure AIR-1 would reduce emissions through implementing cleaner, more efficient construction equipment, increasing watering to 4 times per day during site preparation and grading phases, and by limiting the number of haul and vendor trucks that can access the site on a given day. Consistent with SCAQMD guidance for cumulative impacts, with implementation of Mitigation Measure AIR-1, regional and localized emissions would be reduced to below SCAQMD significance thresholds as shown above in Table 4.1-10 and Table 4.1-11. As such, the Project’s contribution to cumulatively significant construction impacts to air quality would not be cumulatively considerable and cumulative impacts would be less than significant for regional and localized criteria pollutants during construction.

With implementation of the above mitigation measures, potentially significant impacts to air quality during Project construction would be reduced to less-than-significant levels.
4.2.1 Historical Resources

4.2.1.1 Introduction

This section evaluates potential impacts on historical resources. In particular, the analysis addresses the potential for impacts due to demolition of the Culver City United States Post Office Building (Post Office Building) and the former Bob’s Big Boy Restaurant (today operating as a Coco’s Bakery Restaurant). The analysis is based on the 11111 Jefferson Boulevard Mixed Use Project Cultural Resources Assessment Report (Assessment Report) prepared by ESA,1 that is provided in Appendix C of this Draft EIR:

4.2.1.2 Environmental Setting

As further described in Chapter 2, Project Description, of this Draft EIR, the Project Site is located in Culver City, California, and sits on a city block that is triangular in its configuration. The Project Site is bounded by Machado Road to the north, Jefferson Boulevard to the east, and Sepulveda Boulevard—which has a diagonal orientation relative to the two aforementioned roads that each have an orthogonal orientation—to the southwest. The Project Site is approximately 3.43 acres in size, and includes four parcels from north to south.

The northernmost parcel (APN 4215-001-020) consists of a surface parking lot with 34 parking spaces used by the Exceptional Children’s Foundation (ECF) as off-site parking. The northern central parcel (APN 4215-001-016) is occupied by the 27,225 square feet (sf), Post Office Building built in 1961. The next parcel to the south (APN 4215-001-010) is a 6,064 sf restaurant building originally constructed in 1967 as a Bob’s Big Boy Restaurant but now operating as Coco’s Bakery Restaurant. Because the original name of the building is the one typically used for historic evaluation/designation, it is the historic name—Bob’s Big Boy Restaurant—that will be used throughout this section, rather than its current name. The southernmost parcel (APN 4215-001-013) is occupied by a 1,722 sf Valvoline Instant Oil Change building, built in the 2000s, after the preexisting gas station was demolished in 1994.

The surrounding area consists of retail, commercial, and residential properties. To the north, the Project Site is bordered by a fenced private parking lot beyond Machado Road, residential properties, and a private school. To the east is Jefferson Boulevard and beyond is the Studio Village Shopping Center. To the south is the intersection of Jefferson Boulevard and Sepulveda Boulevard, followed by commercial and retail properties. Presented below is a brief description of the potentially eligible historical resources located on the Project Site and in the surrounding area that may be affected by the Project.

Buildings Located within the Project Site

Both the Post Office Building and the Bob’s Big Boy Restaurant Building are more than 45 years of age and were therefore evaluated in the Assessment Report for their potential eligibility as

1 Environmental Science Associates, 11111 Jefferson Boulevard Mixed-Use Project, Culver City, California, Cultural Resource Assessment, prepared for Jefferson Park LLC, December 2020. Provided in Appendix C of this Draft EIR.
historical resources. The Valvoline Instant Oil Change building located on the southernmost parcel was built in the 2000s; therefore, it does not meet the 45-year threshold for evaluation as a historical resource that is recommended by the California State Office of Historic Preservation (OHP) or the 50-year threshold for eligibility to either the National Register or the California Register. Accordingly, the Valvoline Instant Oil Change building was not evaluated for its potential eligibility as a historic resource and is not included in this analysis.

Historical Background of the Project Site

The Project Site was first developed in 1961 when the Post Office Building and its associated parking lot were constructed at 11111 Jefferson Boulevard. Six years later, in 1967, another portion of the Project Site was developed with the construction of the Bob’s Big Boy Restaurant Building and its associated parking lot as located at 5350 Sepulveda Boulevard. Other structures were constructed on the Project Site over time, and most recently, in the 2000s, a Valvoline Instant Oil Change building was constructed at 5380 Sepulveda Boulevard on the southern portion of the Project Site; it replaced a gas station that was previously in this location that was demolished in 1994. As previously stated, the analysis provided below is focused solely on the Post Office Building and the Bob’s Big Boy Restaurant Building as they are both more than 45 years of age and were, therefore, evaluated for their potential eligibility as historical resources.

Culver City United States Post Office Building (11111 Jefferson Boulevard)

Historical Background

The Post Office Building is located at the southwest corner of Machado Road and Jefferson Boulevard. It was constructed by private developers—business partners Seymour Rubin and Erwin Kane—and leased to the federal government upon its construction in 1961. Construction plans were to be approved by federal government officials in Washington, D.C., prior to construction commencement. Constructed as a “one-roof mail processing facility,” original building plans indicate that the building was designed with a large open workspace toward the center for mail processing and distribution, and a rear loading dock. This layout is consistent with what is described and identified as the processing and distribution center post office type (P&DC) in URS Group Inc.’s *USPS Nationwide Historic Context Study: Postal Facilities Constructed or Occupied Between 1940 and 1971* (USPS Context Study), although it is smaller in scale than many other P&DCs built across the nation during the 40s, 50s and 60s.

The construction of the Post Office Building was prompted by the fact that in the post-war period, Culver City’s former main post office, the Gateway Station Post Office, which was constructed in 1940 and located at 9942 Culver Boulevard, became too small to accommodate the large volume of mail it was processing. Since the new Post Office Building at 11111 Jefferson Boulevard opened in September 1961, it has operated as Culver City’s main post office, supplanting the role of the Gateway Station Post Office, which became a postal substation.

Architectural Description

The 1-story Post Office Building is an example of the Mid-Century Modern architectural style. The building has smooth concrete exterior walls, while some areas have decorative scored concrete, which emulates the appearance of concrete masonry units. The Post Office Building features a rectangular footprint, and is constructed on a concrete foundation. It has a flat roof with metal flashing, which varies in height at different portions of the building. Prefabricated tapered steel girders comprise the roof structure. The roof is lowered along the east façade and a portion of the south elevation, and rises slightly to encapsulate higher ceilings at the remainder of the building to the west, forming a brise-soleil over the entrance walkway. The east façade is asymmetrically organized with the majority of the elevation clad in concrete; the central portion of the east façade includes glazed metal double doors with a transom, and a floor-to-ceiling metal window assembly. A shallow northern projection at this elevation includes narrow clerestory windows and original metal signage that reads as follows: “UNITED STATES POST OFFICE CULVER CITY, CALIFORNIA 90230.” A United States Postal Service emblem, rendered in metal, sits immediately to the north of the signage. A concrete planter with a scored pattern sits to the north of the east elevation, which is surmounted by an extending flat roof overhang.

The north elevation includes regularly spaced bays, delineated by structural piers. The walls at these elevations are articulated in scored concrete. The height of the building increases along the north elevation. Ribbon window groupings comprised of five-fixed metal windows with single hopper windows below sit within each bay at the north elevation. Each grouping has metal security bars affixed to them (alteration). A similar window configuration is also present at a portion of the south elevation, where the roofline is higher.

A loading dock sits to the rear, west elevation of the Post Office Building abutting the parking lot. The parking lot includes post office truck loading and parking, as well as employee parking. A shed roof extends from the west elevation and is supported by simple metal posts and concrete columns at either end. The shed roof is clad in metal paneling and sits on a raised concrete loading dock. There are various openings on the west elevation, including solid single metal doors. A concrete ramp sits to the north of the loading dock, and leads from the loading dock to the parking lot.

The south elevation is articulated with a concrete masonry unit water table. Part of the windows at the south elevation include metal casement assemblies with transoms above and hopper windows below, all of which are covered in metal security bars (alteration). Double hung windows with transoms above, and casement windows with hopper windows below punctuate the remaining eastern portion of the south elevation beginning near a change in roof height which occurs at the end of the roof overhang. The overhang continues from the east façade along the western portion of the south elevation.

The Post Office Building is accessible to the public from along Jefferson Boulevard. Upon entering the building, an enclosed hallway leads to post office boxes to the north, and a customer service area to the west. The customer service area is utilitarian in character, and includes no decoration or ornamentation. As noted in the USPS Context Study, the P&DC post office building type includes a customer service area, but contains a much larger portion of the footprint for mail processing and distribution. Accessible to employees through the public customer service area, and more fully
4. Environmental Impacts Analysis

4.2.1 Historical Resources

City of Culver City

Bob’s Big Boy Restaurant Building (5350 Sepulveda Boulevard)

Historical Background

The building that is today known and operated as the Coco’s Bakery Restaurant Building, located at 5350 Sepulveda Boulevard, was originally constructed as a Bob’s Big Boy Restaurant in 1967 by contractor M. J. Brock & Sons, Inc. This contracting firm was known for building single-family homes in the Sacramento area. No architect was identified with the construction of the building. The Bob’s Big Boy Restaurant was in operation at this location for 25 years. However, in 1992, the restaurant underwent a change in ownership. At that time, it became the location of a different restaurant chain, a Coco’s Bakery Restaurant, which it remains to the present day.

Architectural Description

The Bob’s Big Boy Restaurant Building is located to the north of the intersection of Sepulveda Boulevard and Jefferson Boulevard. The 1-story restaurant building has elements of the Googie architectural style, which was known for its exuberant playfulness of form. Landscaping is contained to several concrete curbs that surround the building along the south and east elevations, and along the southern portion of the west elevation. The curbs contain grass, shrubs, and trees. A sidewalk surrounds the building along the south and east elevations, and parking spaces surround the building on all sides.

The building has a concrete foundation and is rectangular in footprint. There is a shed roof on the southern portion, and a flat roof on the northern portion. The shed roof is clad in composition roofing with a metal fascia terminating it. The east and west elevations of the building have parapet walls that rise to meet the shed roof toward the center, giving the illusion of a gabled roof from the street view. The building walls are composed of split-faced concrete masonry units that comprise the majority of the east and west elevations.

A similar split-faced veneer material clads regularly spaced structural piers along the southern façade, which has an asymmetrical composition. The shed roof terminates with metal fascia boards that span between the structural piers. The metal fascia boards are exaggerated in their size and are uniquely configured relative to the fascia boards of other buildings constructed at the time and canted toward one another. A bank of metal ribbon windows sits to the east behind the structural piers, while a recessed double door entrance sits to the west.

3 The original floor plans for the building do not show any details of the workspace. Moreover, there is no evidence at the building or in the permit history to suggest that such machinery was ever present at this facility. It is possible, of course, that the facility was originally built with such machinery and that it was removed in the intervening years since the building’s construction; however, it seems unlikely that such a facility would move away from mechanization towards the more laborious process of hand-sorting mail.
In the center of both the east and west elevations, which are mirror images of one another in terms of their massing, a wing wall extends from the ground to the roof peak, protruding out from the façade at a ninety-degree angle and breaking up the façade into two distinct halves. The asymmetrically-organized east and west elevations both include flat metal overhangs supported by two split-faced concrete masonry piers. Three fixed windows sit on the wall below each overhang on either side of the building. Globe pendant lights also sit below each overhang, as suspended from its surface. On both the east and west elevations, three metal sconce light fixtures are affixed to the exterior of the northern half of the façade.

The rear, north elevation is largely unadorned and includes regularly spaced structural piers, similar to those found on the south façade, and a utilitarian roll up metal garage door. A garbage enclosure comprised of split-faced masonry units sits to the northwest of the building.

Historical Resources Identified within the Project Vicinity

In order to evaluate the potential for the Project to result in indirect impacts to historical resources, record searches were conducted to identify previously documented historical resources within approximately a 0.50-mile radius of the Project Site (Project Vicinity). These searches included a review of the National Register and its annual updates, determinations of eligibility for the National Register, the California Register, and the City of Culver City Cultural Resource designations inventory to determine previously identified historical resources within the Project Vicinity. In addition, the California Built Environment Resource Directory (BERD), as maintained by the OHP, was consulted in order to identify any additional historical resources that might exist within a 0.50-mile radius of the site.

The only previously recorded property located within the Project vicinity, approximately 1320 feet (0.25 mile) to the west of the Project Site, is the Ballona Creek Flood Control Channel and Drainage System. This resource was surveyed and recorded on a Department of Parks and Recreation (DPR) 523 form in 2000 by Dr. Diane Kane on behalf of the Army Corps of Engineers. At this time, it was assigned a California Historical Resource (CHR) Status Code of “4S1,” which meant that it “may become eligible for NR [National Register] as [a] separate [listing] when it becomes old enough.” However, three years after this status code was assigned, in 2003, the OHP revised their status codes, and this status code became outdated. According to guidance issued by the OHP, a “4S1” was then converted to a “7N1,” which meant that the potential historical resource needed “to be reevaluated...[it] may become eligible for NR [National Register] with restoration or when meets other specific criteria.” The resource was again resurveyed and recorded on an updated DPR523 form in November 2015 by Pamela Daly as part of an intensive level survey for the Ballona Wetlands Ecological Reserve Restoration Project. At that time, the resource was assigned a status code of “6Z,” meaning that it was “found ineligible for NR [National Register], CR [California Register] or Local designation through survey evaluation.”

4.2.1.3 Regulatory Framework

This section provides a summary of pertinent historical resources regulations affecting the Project at the federal, state and local levels.
Federal Level

National Register of Historic Places

The National Register was established by the National Historic Preservation Act (NHPA) of 1966, as “an authoritative guide to be used by Federal, State, and local governments, private groups and citizens to identify the Nation’s cultural resources and to indicate what properties should be considered for protection from destruction or impairment.” The National Register recognizes properties that are significant at the national, state and/or local levels.

To be eligible for listing in the National Register, a resource must possess significance in American history, architecture, archaeology, engineering, or culture. Four Criteria for Evaluation have been established to determine the significance present in districts, sites, buildings, structures, and objects:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or
B. That are associated with the lives of persons significant in our past; or
C. That embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. That has yielded, or may be likely to yield, information important in prehistory or history.

Districts, sites, buildings, structures, and objects of potential significance that are at least 50 years in age must meet one or more of the above criteria to be eligible for listing on the National Register. However, the National Register does not prohibit the consideration of properties less than 50 years in age whose exceptional contribution to the development of American history, architecture, archeology, engineering, and culture can clearly be demonstrated under National Register Criteria Consideration G. Under the National Register, a property can be significant not only for the way it was originally constructed, but also for the way it was adapted at a later period, or for the way it illustrates changing tastes, attitudes, and uses over a period of time. Within the concept of integrity, the National Register recognizes seven aspects or qualities that, in various combinations, define integrity: Location, Design, Setting, Materials, Workmanship, Feeling, and Association.

To retain historic integrity, a property will always possess most of the aspects and depending upon its significance, retention of specific aspects of integrity may be paramount for a property to convey its significance. Determining which of these aspects are most important to a particular property

4 36 Code of Federal Regulations (CFR) Section 60.2.
5 U.S. Department of Interior, National Park Service, Bulletin 15: How to Apply the National Register Criteria for Evaluation, Revised for Internet 1995, page 2. This publication explains how the National Park Service applies these criteria in evaluating the wide range of properties that may be significant in local, State, and national history.
7 The National Register defines a property as an “area of land containing a single historic resource or a group of resources, and constituting a single entry in the National Register of Historic Places.” A “Historic Property” is defined as “any prehistoric or historic district, site, building, structure, or object at the time it attained historic significance.”
requires knowing why, where and when a property is significant.8 For properties that are considered significant under National Register Criteria A and B, “a property that is significant for its historic association is eligible if it retains the essential physical features that made up its character or appearance during the period of its association with the important event, historical pattern, or person(s).”9 In assessing the integrity of properties that are considered significant under National Register Criterion C, National Register Bulletin 15 states, “a property important for illustrating a particular architectural style or construction technique must retain most of the physical features that constitute that style or technique.”10

In assessing a property's integrity, the National Register criteria recognize that properties change over time, therefore, it is not necessary for a property to retain all its historic physical features or characteristics. The property must retain, however, the essential physical features that enable it to convey its historic identity.11

State Level

The OHP, as an office of the DPR, implements the policies of the NHPA on a state-wide level. The OHP also carries out the duties as set forth in the PRC and maintains the California Historic Resources Inventory and the California Register of Historical Resources. The State Historic Preservation Officer (SHPO) is an appointed official who implements historic preservation programs within the state’s jurisdictions. Also implemented at the State level, CEQA requires projects to identify any substantial adverse impacts which may affect the significance of identified historical resources.

California Register of Historic Resources

The California Register was created by Assembly Bill (AB) 2881 which was signed into law on September 27, 1992. The California Register is “an authoritative listing and guide to be used by state and local agencies, private groups, and citizens in identifying the existing historical resources of the state and to indicate which resources deserve to be protected, to the extent prudent and feasible, from substantial adverse change.”12 The criteria for eligibility for the California Register are based upon National Register criteria.13 Certain resources are determined by the statute to be automatically included in the California Register, including California properties formally determined eligible for, or listed in, the National Register.14

8 U.S. Department of Interior, National Park Service, Bulletin 15: How to Apply the National Register Criteria for Evaluation, Revised for Internet 1995, page 44.
12 Public Resources Code (PRC) Section 5024.1(a).
13 PRC Section 5024.1(b).
14 PRC Section 5024.1(d).
The California Register consists of resources that are listed automatically and those that must be nominated through an application and public hearing process. The California Register automatically includes the following:

- California properties listed on the National Register of Historic Places and those formally Determined Eligible for the National Register of Historic Places;
- California Registered Historical Landmarks from No. 770 onward;
- Those California Points of Historical Interest that have been evaluated by the OHP and have been recommended to the State Historical Commission for inclusion on the California Register.\(^{15}\)

Other resources which may be nominated to the California Register include:

- Individual historical resources;
- Historical resources contributing to historic districts;
- Historical resources identified as significant in historical resources surveys with significance ratings of Category 1 through 5;
- Historical resources designated or listed as local landmarks, or designated under any local ordinance, such as an historic preservation overlay zone.\(^{16}\)

To be eligible for the California Register, a historic resource must be significant at the local, state, or national level, under one or more of the following four criteria:

1. Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage.
2. Is associated with the lives of persons important in our past.
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values.
4. Has yielded, or may be likely to yield, information important in prehistory or history.\(^{17}\)

Additionally, a historic resource eligible for listing in the California Register must meet one or more of the criteria of significance described above and retain enough of its historic character or appearance to be recognizable as a historic resource and to convey the reasons for its significance. Historical resources that have been rehabilitated or restored may be evaluated for listing.\(^{18}\)

Integrity is evaluated with regard to the retention of location, design, setting, materials, workmanship, feeling, and association. The resource must also be judged with reference to the particular criteria under which it is proposed for eligibility. It is possible that a historic resource may not retain sufficient integrity to meet the criteria for listing in the National Register, but it may

\(^{15}\) PRC Section 5024.1(d).
\(^{16}\) PRC Section 5024.1(e).
\(^{17}\) PRC Section 5024.1(c).
\(^{18}\) California Code of Regulations, Title 14, Chapter 11.5, Section 4852(c).
still be eligible for listing in the California Register. A resource that has lost its historic character or appearance may still have sufficient integrity for the California Register if it maintains the potential to yield significant scientific or historical information or specific data.

California Environmental Quality Act

Under CEQA, a “project that may cause a substantial adverse change in the significance of a historic resource is a project that may have a significant effect on the environment.” This statutory standard involves a two-part inquiry. The first involves a determination of whether the project involves a historic resource. If so, then the second part involves determining whether the project may involve a “substantial adverse change in the significance” of the resource. To address these issues, guidelines that implement the 1992 statutory amendments relating to historical resources were adopted on October 26, 1998 with the addition of CEQA Guideline Section 15064.5. The CEQA Guidelines 15064.5 provides that for the purposes of CEQA compliance, the term “historical resources” shall include the following:

- A resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the California Register.
- A resource included in a local register of historical resources, as defined in Section 5020.1(k) of the PRC or identified as significant in a historical resource survey meeting the requirements in Section 5024.1(g) of the PRC, shall be presumed to be historically or culturally significant. Public agencies must treat such resources as significant for purposes of CEQA unless the preponderance of evidence demonstrates that it is not historically or culturally significant.
- Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California may be considered to be a historical resource, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. Generally, a resource shall be considered by the lead agency to be ‘historically significant’ if the resource meets one of the criteria for listing on the California Register.
- The fact that a resource is not listed in, or determined to be eligible for listing in the California Register, not included in a local register of historical resources (pursuant to Section 5020.1(k) of the PRC), or identified in a historical resources survey (meeting the criteria in Section 5024.1(g) of the PRC) does not preclude a lead agency from determining that the resource may be a historical resource as defined in PRC Sections 5020.1(j) or 5024.1.”

19 California Code of Regulations, Title 14, Chapter 11.5, Section 4852(c).
20 California Code of Regulations, Title 14, Chapter 11.5, Section 4852(c).
21 PRC Section 21084.1.
22 California Code of Regulations, CEQA Guidelines, Title 14, Section 15064.5(a).
Local Level

City of Culver City

The City enacted a Historic Preservation Ordinance in 1991 which defines Cultural Resources. The Historic Preservation Ordinance (Chapter 15.05 of the City’s Municipal Code [CCMC]) is administered through the City’s Community Development Department by Cultural Affairs. The Ordinance outlines a designation process, criteria, and procedures for altering or modifying designated Cultural Resources. Pursuant to the City’s Ordinance, a Cultural Resource is a property that has aesthetic, cultural, architectural or historical significance to the city, state, or nation, and may have been designated as a Landmark Structure, Significant Structure, or Recognized Structure. After satisfying at least one of the threshold criteria, classification is based on a ranking system, currently outlined in Resolution No. 91-R015.

A Landmark Structure is defined as a structure designated as an exceptional example of the highest architectural, historical, or cultural significance of the community. A Landmark structure or district may be designated without owner consent.

A Significant Structure is defined as a structure designated as being of substantial architectural, historical, or cultural significance to the community. If residential, a “Significant” structure or district shall be designated with written consent of the owner, provided that the consent of only a majority of the owners shall be required for a “Significant District” designation. Once the designation has been made and the designation document has been filed for recondition, owner consent is irrevocable. If the owner consent is not obtained, a residential structure or district may be designated “Recognized.” If nonresidential, a structure may be designated without owner consent.

All structures with "Landmark" or "Significant" designations are required to display a plaque identifying that building or district as either "Landmark" or "Significant."

A Recognized Structure is defined as a structure designated as being of architectural, historical, or cultural interest. A structure or district may be designated as “Recognized” without the consent of the owner. No other requirements apply to Recognized structures.

The Ordinance also identifies historic districts as falling into one of three different types: a “Landmark District,” a “Significant District,” or a “Recognized District,” with similar criteria for designation for each one. A historic district is described as a designated area consisting of one (1) or more contiguous parcels improved with structures at which events occurred that made a significant contribution to the city, state, or national history or culture, or an area that contains structures that are collectively significant examples of period, style, or method of construction that provide distinguishing characteristics of the architectural type or period represented.

The Culver City Historic Preservation Ordinance (Section 15.02.020) establishes criteria for designating local historical resources and districts as Cultural Resources. To be considered for

4. Environmental Impacts Analysis

4.2 Historical Resources

4.2.1 Historical Resources

City of Culver City

4.2.1.4 Historic Resources Significance and Integrity Evaluations

Culver City United States Post Office Building (11111 Jefferson Boulevard)

The Culver City United States Post Office Building located at 11111 Jefferson Boulevard was evaluated under both the historical context and architectural themes, “Modern Post Office Facilities, 1945-1970,” and the “Mid-Century Modern Style, 1945-1970.” It was evaluated for listing in the National Register/California Register under criteria A/1-D/4, and as a Culver City Cultural Resource under Threshold Criterion A/1-2 and Assessment Criteria B/1-3.

Criterion A/1/B2: Events

According to building permits, the Post Office Building was constructed in 1961. The 1-story post office and mail processing facility was constructed in the Mid-Century Modern Style. The building was the first constructed on the Project Site, which was previously developed with agricultural land. Following World War II, Culver City, similar to other cities nationwide, experienced a large

increase in population and began to expand rapidly. Residential development encroached upon the Project Site by the mid-1950s, and commercial development to the immediate east of the Project Site, Studio Village Shopping Center, occurred by the early 1960s.

The history of post offices in Culver City includes three buildings. The first known post office was created in 1874 within an already-existing building, the Saenz Family Dry Goods store. This building was redeveloped in the 1950s and is no longer extant. Culver City’s second post office—which served as its main post office for a period of 21 years—was the Gateway Station Post Office, which was constructed in 1940. Built as the City’s first standalone post office building, the Gateway Station Post Office was constructed as a Works Progress Administration project and designed in the Moderne style by architect Louis Simon. However, by the early 1960s, the Gateway Station Post Office had outgrown its small facility, likely due to the post-war population boom, prompting the construction of a new main post office to serve Culver City as located at 11111 Jefferson Boulevard. The new post office—the Culver City United States Post Office—was constructed by private developers and leased to the Federal Government for use as a post office and to serve as a one-roof mail processing facility, which would process and distribute large volumes of incoming and outgoing mail. The Culver City United States Post Office replaced the Gateway Station Post Office in its function as the City’s main post office. The Gateway Station Post office then became a postal substation, and it continues to operate in this function to the present day.

Federal appropriations and the expansion of the lease authority to develop postal facilities during the 1960s resulted in a boom in postal facility construction. As there were many post office buildings constructed during the 1960s period throughout the country, according to the USPS Context Study, the Culver City United States Post Office Building is a smaller-scale example of a P&DC building type. However, it does not appear to be a fully-realized example of the P&DC building type, as it does not have the mechanized equipment that characterized the prototype. It does not appear to be significant on a national or state level, as many of these building types with the mechanized equipment remain in operation today throughout the country and several remain within the state. Furthermore, the building is not identified as an example of a P&DC within the USPS Context Study; Appendix A of this study purportedly lists all of the USPS’s real properties within the nation, as based on information derived from the USPS’s Electronic Facilities Management System database. It’s omission from this list may be due to its private ownership, rather than public ownership by USPS; nonetheless, its omission from the study is important in that it was not identified as a potentially eligible resource.

When evaluated under the City of Culver City’s eligibility criteria for local designation, the property meets the City’s Threshold Criteria A1, as the property is at least fifty years old. Culver City experienced a population boom following World War II, which was similarly occurring nationwide. This nationwide growth led the Post Office Department to place emphasis on developing both machinery and methods to enable processing an increased volume of mail. By 1959, the Postmaster General’s Annual Report noted that new building types were designed to include new machinery and processing methods to meet this need. One of the building types designed during this period was the P&DC, such as the Culver City United States Post Office Building. However, while the building was constructed to meet postwar growth demands – as is consistent with the USPS pattern of development - this building doesn’t fully fit the prototype as
there is no evidence of mechanized processing, or innovative processing methods at this building. Instead, based upon the fact that there is no evidence at the building or in the permit history to suggest that such machinery was ever present at this facility, it is assumed that larger scale hand sorting of mail has occurred here since the building’s opening. It is possible, of course, that the facility was originally built with such machinery and that it was removed in the intervening years since the building’s construction; however, it seems unlikely that such a facility would move away from mechanization towards the more laborious process of hand-sorting mail. Furthermore, the Post Office Building is not one of the two P&DC prototypes developed during the postwar period, and is not emblematic of a specific event.25 The Post Office Building was developed by private developers following USPS design guidelines, however, the building has never been owned by the USPS. Erected during a period of rapid City expansion, it was constructed more as a speculative office building or investment property by the private developer. The privately owned building does not imbue a sense of public civic pride as is present at the Works Progress Administration-era 1940 Gateway Post Office. The Gateway Post Office remains intact today, and better reflects the City’s civic and postal history. Despite the Post Office Building’s continued use today as the City’s main post office building and mail processing center, it does not have substantial historical or cultural significance in its utilitarian use or for its association with the mid-century USPS pattern of development, and, therefore, does not meet the City’s Evaluation Criteria under B2. Therefore, the Culver City United States Post Office is recommended ineligible for listing under National Register Criterion A and California Register Criterion 1 and under Culver City Cultural Resource Assessment Criterion B2.

Criterion B/2/B2: Significant Persons

There were no important persons or postmasters of national or state significance identified in association with the Post Office Building. It was constructed as part of the lease-purchase program which began in 1959. As part of the program, the USPS leased facilities that were constructed and owned by private developers. Developers and partners Seymour Rubin and Erwin Kane were both listed in the original building permit for the post office. Rubin, along with various associates over time, owned and developed nearly 70 other post offices around the country. Despite his involvement in developing many post offices throughout the nation, Rubin did not appear to be unique in his endeavors, as the lease-purchase program created thousands of post offices during this period. Very limited information was found on Kane. Therefore, neither Rubin nor Kane appear to be important persons of national, state, or local significance as identified with the Post Office Building. Therefore, the Post Office Building is recommended ineligible for listing under National Register Criterion B, California Register Criterion 2, and Culver City Cultural Resource Assessment Criterion B2.

25 As stated in the USPS Context Study, the two P&DC prototype buildings were developed in Providence, Rhode Island and Oakland, California in the late 1950s. The P&DC Rhode Island prototype, constructed in 1959, was known as “Project Turnkey,” and was the first automated/completely mechanized post office. Project Turnkey established essential elements of P&DC post offices, and included three work system zones, as follows: a parcel post machine system zone, a classified dispatch storage system zone; and a loading platform zone. The tri-partite zoning of the building prototype was intended to enhance its functionality by strictly separating different activities to discrete areas of the building. Even more important than the zoning of the building prototype, however, was the elaborate machinery placed to its interior that allowed for a smooth and uninterrupted workflow.
Criterion C/3/B1: Design/Construction

The Post Office Building is a P&DC, a property type which falls into the USPS’s utilitarian operational support facilities. The building includes a small public service space, which includes service counters, and post office boxes. The majority of the interior is dedicated to an ample work room with a mail sorting area. The Post Office Building was designed with sufficient delivery truck vehicle parking areas, and an extensive loading dock, spanning the entire west elevation. Character-defining features of the P&DC as defined in the USPS Context Study that are present at the Post Office Building include the following: metal windows, metal doors, a sprawling floor plan, a large work room, a multi-bay loading dock, and a service and post office box lobby. However, the building lacks physical evidence of postal sorting and distributing machinery, such as slides, chutes, conveyors and sorters, which are considered notable character-defining features of the building type. As a smaller example of a P&DC, the building does not have a lookout gallery, multi-bay loading dock, or a vehicle maintenance building, which are additional character defining features of the type. Further, the building is one of many processing and distribution centers constructed and occupied between 1960 and 1970, and as such, is one of many extant across the country. As such, the building is not a significant example of a P&DC property type at the national level, nor is it a rare property type. The building’s design has limited Mid-Century Modern detailing at the west, public facing facade, while it expresses its utilitarian function at its north, south and west elevations. As was typical for P&DCs, the Post Office Building would not have been designed by an architect, but instead by a construction contractor utilizing published guidelines for reference as to how to build the prototypical design. Architecturally, in terms of style, the building’s public-facing facade was designed to visually align with the latest design trends; however, these features do not continue around the entirety of the building, nor are some of the other features characteristic of the Mid-Century Modern Style present, such as a strong indoor-outdoor relationship. The Mid-Century Modern Style character-defining features present at the west facade include the following: simple geometric forms, a flat roof with an overhanging eave, steel framed windows, and scored concrete made to emulate brick. While the west facade includes several character-defining features of the Mid-Century Modern Style, the building as a whole does not embody the distinctive characteristics of the Mid-Century Modern Style, nor does the building possess high artistic value.

The Gateway Station Post Office has been recognized by the Culver City Council with “Recognition” status, it is a listed resource on the California Register, and it has been determined eligible for the National Register due to its architectural significance, intact integrity, and its use as a public post office building within the City. Within Culver City, the Gateway Station Post Office includes artwork and architectural detailing that were carefully crafted and oriented specifically toward community patrons, during a time when civic structures were constructed to evoke public pride. Comparatively, the Post Office Building is utilitarian in character and includes a small customer service area with much of its building footprint dedicated for mail processing and distribution. Although the Post Office Building has a small publicly accessible portion with service counters and lockboxes that is accessed directly off of Jefferson Boulevard, the building is largely dedicated to back of house mail processing, with a rear loading dock that extends the width of the building, and a generous parking lot for post office vehicles, which was common for mail processing facilities constructed in the 1960s. As discussed above, the building is not of architectural significance as an example of Modern architecture, nor is it significant as a smaller-
scale P&DC post office type. As a utilitarian federal lease hold structure, the building does not include integral artwork nor was it designed by an architect. Therefore, the property is recommended ineligible for listing under National Register Criterion C, California Register Criterion 3, and under Culver City Cultural Resource Assessment Criterion B1.

Criterion D/4: Data Potential

While most often applied to archaeological districts and sites, Criterion D/4 can also apply to buildings, structures, and objects that contain important information. In order for these types of properties to be eligible under Criterion D/4, they themselves must be, or must have been, the principal source of the important information. The Culver City United States Post Office Building does not appear to yield significant information that would expand our current knowledge or theories of design, methods of construction, operation, or other information that is not already known. Therefore, the Culver City United States Post Office Building is recommended ineligible for listing under National Register Criterion D, and California Register Criterion 4. There is no applicable criterion associated with data potential under the eligibility requirements for Culver City Cultural Resources.

Integrity Evaluation

The Post Office Building has undergone a few documented minor changes since its original construction in 1961 so that it today retains historic integrity. These changes include a 1970 concrete loading dock addition, which replaced an earlier wood structure. Interior changes occurred in the 1980s, which included interior partitions and walls to create additional lock boxes, interior wall and ceiling repairs, a bathroom expansion, and a new interior partition at an unknown location. A visual inspection of the exterior indicates it is largely intact and that there have not been extensive undocumented modifications to the exterior. As such, the building retains its integrity of design, materials, and workmanship. The building retains its integrity of location and association, as the building has not moved and has not changed uses since its original construction. The building largely retains its integrity of setting and feeling, as the residential housing to the north and the commercial development to the east have existed since its construction. For instance, the restaurant building located to the south, 5350 Sepulveda Boulevard, was constructed in 1967, six years after the construction of the Post Office Building. However, even though the Post Office Building has a high degree of integrity, it does not possess adequate significance to qualify it as eligible for listing on the National Register, State Register, or for local designation as a Culver City Cultural Resource.

Bob’s Big Boy Restaurant (5350 Sepulveda Boulevard)

The Bob’s Big Boy Restaurant Building located at 5350 Sepulveda Boulevard was evaluated under both the historical context and architectural theme, “Restaurants, 1880-1980,” and “Googie Style, 1935-1969.” It was evaluated for listing in the National Register/California Register under criteria A/1-D/4, and as a Culver City Cultural Resource under Threshold Criterion A/1-2 and Assessment Criteria B/1-3.

4. Environmental Impacts Analysis

4.2.1 Historical Resources

Criterion A/1/B2: Events

The Bob’s Big Boy Restaurant building was constructed in 1967, according to building permits. The 1-story restaurant building was originally constructed as a franchise of the Bob’s Big Boy Restaurant chain in a muted Googie style. The building is an example of an auto-oriented family restaurant. After the Bob’s Big Boy Restaurant’s tenure within the building, Coco’s Bakery Restaurant became the second occupant in the 1990s, and the restaurant remains open in this location to the present day.

Emblematic of the new type of development that occurred in Culver City in the post-war period—as well as in many other American cities across the nation—was the construction of Culver Center, a shopping center located along Overland Avenue between Venice Boulevard and Washington Boulevard, that was completed by 1950. Known as one of the first shopping centers in Southern California, the center included a combination of retail stores, as well as a local bakery, deli, and soda fountain. As discussed by many scholars, the development of large shopping malls in the post-war period had the effect of drawing retail away from the previously established shopping districts in downtown cores—such as Hollywood and downtown Los Angeles, in the case of Culver City—and creating new magnets for suburban development. The type of post-war suburban infill that followed the development of the Culver Center shopping center can be seen in the area immediately surrounding the Project Site, which included residential suburban neighborhoods constructed to the north of the Project Site in the 1950s, commercial development to the west and south in the early 1960s, and the Culver City United States Post Office Building located at 11111 Jefferson Boulevard to the immediate north in 1961.

By the time that the Bob’s Big Boy Restaurant was constructed in 1967 as a chain restaurant in the location of a former parking lot, the post-war development boom had run its course in the area, and the majority of the properties surrounding the Project Site had been infilled. The construction of the Bob’s Big Boy Restaurant Building appears to have followed a pattern of post-war development within the City; however, the building was not precedent-setting in establishing the pattern of commercial development in the City. Instead, developments such as the Culver Center shopping center were precedent setting in terms of establishing the pattern of post-war suburban development, a pattern to which the Bob’s Big Boy Restaurant Building merely responded when it was constructed seventeen years after the construction of Culver Center.

Therefore, the Bob’s Big Boy Restaurant Building is recommended ineligible for listing under National Register Criterion A, and California Register Criterion 1, and under Culver City Cultural Resource Assessment Criterion B2.

28 Julie Lugo Cerra, Looking Back: Culver Center was a mecca of activities, retail outlets after WWII, December 8, 2016.
29 See for example, the discussion of this phenomenon in John F. MacDonald, *Postwar Urban America: Demography, Economics and Social Politics*, 2014, page 87.
4.2.1 Historical Resources

Criterion B/2/B2: Significant Persons

The first owner and occupant of the building located at 5350 Sepulveda Boulevard was the Bob’s Big Boy Restaurant chain. The chain began in the 1930s as a single restaurant in Glendale, and expanded with multiple restaurants in southern California in the 1940s. The Bob’s Big Boy Restaurant chain was purchased by Marriot Corporation in 1967, the year that the Bob’s Big Boy Restaurant Building was constructed.

The building’s second owner and occupant was Coco’s Bakery Restaurant, another restaurant chain, beginning in 1992. The chain began in 1948 as The Snack Shop in Orange County, and expanded to become Coco’s Bakery Restaurant by 1965. Ownership of the restaurant chain has changed many times over the years, and today, the chain has over 70 restaurants in the western United States.

The property has been owned by restaurant-focused corporations since its construction. There do not appear to be any specific people associated with either of these two restaurant chain franchises at this location that had a significant impact on local, state, or national history. Bob Wian, who founded Bob’s Big Boy in Glendale, California as “Bob’s Pantry”, would be more closely associated with that first restaurant founded there in 1936. The founder of Coco’s Bakery Restaurant is unknown, but he or she would be most closely associated with the first restaurant in the chain, known as “The Snack Shop” as founded in 1948 in Corona del Mar, California. Moreover, although both of these restauranteurs were entrepreneurs who started successful restaurant business enterprises, there is no evidence to suggest that either of them had a significant impact on local, state, or national history.

Therefore, the Bob’s Big Boy Restaurant Building is recommended ineligible for listing under National Register Criterion B, and California Register Criterion 2 and Culver City Cultural Resource Assessment Criterion B2.

Criterion C/3/B1: Design/Construction

The Bob’s Big Boy Restaurant Building is a muted example of a Googie style restaurant building. The building has undergone several tenant improvement projects since its original construction in 1967. Character-defining features of the Googie style present at the building include the following: one-story, slung low toward the ground, displays sharp angles, surrounded by ample parking, capped by a prominent roofline, and an asymmetrical facade. The Googie style was influenced by the ascent of the car, and car culture, as is notable at the Bob’s Big Boy Restaurant Building, given its location at a highly visible commercial intersection in the City, and its ample surrounding parking. However, the Googie style had fallen out of favor as a choice for commercial architecture by the late 1960s when the Bob’s Big Boy Restaurant Building was built, as the nation’s architectural culture had changed. While the Bob’s Big Boy Restaurant Building has elements of a Googie style building, it is a muted example of the style, displaying none of the playful exuberance of the early buildings that came to define the style. Most likely, this is due to the fact that it was created toward the end of the style’s notable period, at a time when the style was already out of fashion for commercial construction. In this, the Bob’s Big Boy Restaurant Building does not possess high artistic value as a commercial restaurant building designed in the Googie style.
The Bob’s Big Boy Restaurant Building did not have an architect or designer attributed to it as did many of the other Googie style restaurants that were built during the period in which the style flourished. M. J. Brock & Sons, Inc. were the contractors responsible for the construction of the building, and the company likely may have designed it as well. The firm was known as a large builder of single-family homes in the Sacramento area. A remaining Bob’s Big Boy restaurant building constructed in 1949 in Burbank was designed by architect Wayne McAllister. The Burbank restaurant building was determined a California Point of Historical Interest for its architecture in 1991. Many of the Bob’s Big Boy restaurants were designed by architects Armet and Davis who were operating in Los Angeles at mid-century, and became known for their Googie-style commercial architecture. Armet and Davis are not attributed with designing the Bob’s Big Boy Restaurant Building located at 5350 Sepulveda Boulevard, nor is any other well-known architect associated with the Googie style. In this, the Bob’s Big Boy Restaurant Building located at 5350 Sepulveda Boulevard is not considered a work of a master.

The Bob’s Big Boy Restaurant Building is an example of an auto-oriented family restaurant, which was a ubiquitous building type in the Los Angeles-area by the mid-1950s. As a free-standing structure, the building had its own parking lot which reflected a shift toward neighborhood commerce based on automobile ownership. However, given that this restaurant building was constructed the same year that the Bob’s Big Boy restaurant chain was purchased by Marriott, it is possible that the building was designed as part of a branded identity, and was not unique to either the site or the City. The building as a stand-alone auto-oriented family restaurant does not embody the distinctive characteristics of a building type as it was constructed nearly two decades after the initial rise in the restaurant building type.

Therefore, the Bob’s Big Boy Restaurant Building located at 5350 Sepulveda Boulevard is recommended ineligible for listing under National Register Criterion C, California Register Criterion 3, and under Culver City Cultural Resource Assessment Criterion B1.

Criterion D/4: Data Potential

While most often applied to archaeological districts and sites, Criterion D/4 can also apply to buildings, structures, and objects that contain important information. In order for these types of properties to be eligible under Criterion D/4, they themselves must be, or must have been, the principal source of the important information. The Bob’s Big Boy Restaurant Building does not appear to yield significant information that would expand our current knowledge or theories of design, methods of construction, operation, or other information that is not already known. Therefore, the Bob’s Big Boy Restaurant Building is recommended ineligible for listing under National Register Criterion D, and California Register Criterion 4. There is no applicable criterion associated with data potential under the eligibility requirements for Culver City Cultural Resources.

Integrity Evaluation

The building retains integrity of its location and setting as the building has not moved, and its surroundings have remained mostly unchanged since construction, with the exception of the construction of the Valvoline Instant Oil Change building to the south in the 2000s. Changes to the interior over time have included the construction of a food bar and kitchen tenant improvements in the 1980s, with additional interior tenant improvements in the 1990s. Landscape modifications
were permitted in 1968, with the construction of two new signs, the construction of a low wall at the south elevation, and later with the construction of a 4-foot tall concrete block trash enclosure in 1999. A pole sign was constructed in the 1990s, and later signage was installed in 2010. As such, the building retains overall integrity of materials, workmanship, and design. The building retains feeling and association, as the building has remained a restaurant since its original construction. However, even though the Bob’s Big Boy Restaurant Building has a high degree of integrity, it does not possess adequate significance to qualify it as eligible for listing on the National Register, State Register, or for local designation as a Culver City Cultural Resource.

4.2.1.5 Environmental Impacts

Methodology

Under CEQA, a proposed development must be evaluated to determine how it may impact the potential eligibility of a structure(s) or a site for designation as a historic resource. Based on CEQA Guidelines Section 15064.5(b)(2) presented above, for purposes of this analysis the Project would have a significant impact on historical resources if it would demolish, destroy, relocate, or alter a historical resource or its setting such that its historical significance or integrity as a historical resource would be materially impaired, rendering it no longer eligible as a historical resource. The analysis of the Project’s potential impacts on historic resources is based on the Assessment Report, as provided in Appendix C. A general survey of the Project Site and vicinity was undertaken for the purpose of analyzing potential Project direct and indirect impacts to historical resources.

Thresholds of Significance

The significance threshold below is derived from the Environmental Checklist question in Appendix G of the CEQA Guidelines. Accordingly, a significant impact associated with historical resources would occur if the Project were to:

- **HIST-1**: Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.

Project Characteristics and Project Design Features

Project Characteristics

The Project would develop a mixed-use residential and commercial building on the Project Site. In addition to the demolition of the Valvoline Instant Oil Change building that exists on the Project Site, the Project would entail the demolition of both the Post Office Building and the Bob’s Big Boy Restaurant Building.

Project Design Features

There are no Project Design Features relative to historical resources.
Project Impacts

Threshold HIST-1: The Project would have a significant impact on historical resources if it were to cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.

Impact Statement HIST-1: No historical resources are present on the Project Site; therefore, the Project would not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5, and no impacts would occur.

Analysis of Potential Direct Impacts

As previously described, no historical resources are present on the Project Site. As all of the buildings located on the Project Site are considered non-eligible as historical resources, demolition of the buildings to develop the Project would not result in any direct impacts on historical resources.

Analysis of Potential Indirect Impacts

In assessing the potential for the Project’s new construction to have indirect effects on off-site historical resources due to incompatible design or changes to their historic setting, the only previously recorded historical resource in the Project Vicinity is the Ballona Creek Flood Control Channel and Drainage System, which is located approximately 0.25 miles to the west of the Project Site. However, the most recent evaluation of the Ballona Creek Flood Control Channel and Drainage System found it ineligible for NR [National Register], CR [California Register] or Local designation through survey evaluation. Furthermore, it is not located in the immediate surrounding vicinity (400 feet or less) of the Project Site, and has no direct or proximate views of the Project Site. Therefore, the Project would not result in any indirect impacts on historical resources.

Cumulative Impacts

Given that the Project would have neither a direct impact nor an indirect impact on historical resources it would not contribute to or have a cumulative impact on historic architectural resources.

4.2.1.6 Mitigation Measures

No mitigation measures are required, as the Project would have no impact on historical resources.

4.2.1.7 Level of Significance after Mitigation

Not applicable. The Project would have no impacts on historical resources.
4.2.2 Archaeological Resources

4.2.2.1 Introduction

This section evaluates potential impacts on archaeological resources. The analysis is based on the 11111 Jefferson Boulevard Mixed Use Project – Cultural Resources Assessment Report (Assessment Report) prepared by ESA,\(^1\) provided in Appendix C of this Draft EIR.

4.2.2.2 Environmental Setting

Prehistoric Setting

Based on recent research in the southern California region\(^2\), the following prehistoric chronology has been divided into four general time periods: the Paleocoastal Period (12,000 to 8,500 Before Present [B.P.]), the Millingstone Period (8,500 to 3,000 B.P.), the Intermediate Period (3,000 to 1,000 B.P.), and the Late Period (1,000 B.P. to Anno Domini [A.D.] 1542). This chronology is manifested in the archaeological record by particular artifacts and burial practices that indicate specific technologies, economic systems, trade networks, and other aspects of culture.

Paleocoastal Period (12,000–8,500 B.P.)

While it is not certain when humans first came to California, their presence in southern California by about 9,600 cal B.C. has been well documented. At Daisy Cave, on San Miguel Island, cultural remains have been radiocarbon dated to between 11,100 and 10,950 B.P. During this time period, the climate of southern California became warmer and more arid and the human population, residing mainly in coastal or inland desert areas, began exploiting a wider range of plant and animal resources.\(^3\) In the Project vicinity, evidence of Paleocoastal occupation is sparse, and none has been confirmed by scientific dating methods (such as radiocarbon dating).\(^4\)

Millingstone Period (8,500–3,000 B.P.)

During this time period, there is evidence for the processing of acorns for food and a shift toward a more generalized economy. The first evidence of human occupation in the Los Angeles area dates

\(^{1}\) Environmental Science Associates, 11111 Jefferson Boulevard Mixed-Use Project, Culver City, California, Cultural Resource Assessment, prepared for Jefferson Park LLC, December 2020. Provided in Appendix C of this Draft EIR.

to at least 9,000 years B.P. and is associated with the Millingstone cultures.5,6 Millingstone cultures were characterized by the collection and processing of plant foods, particularly acorns, and the hunting of a wider variety of game animals.7,8 Millingstone cultures also established more permanent settlements that were located primarily on the coast and in the vicinity of estuaries, lagoons, lakes, streams, and marshes where a variety of resources, including seeds, fish, shellfish, small mammals, and birds, were exploited. Early Millingstone occupations are typically identified by the presence of handstones (manos) and millingstones (metates), while those Millingstone occupations dating later than 5,000 B.P. contain a mortar and pestle complex as well, signifying the exploitation of acorns in the region. Cogged stones (cog-shaped stones) and disocidals (stone discs) are also indicative of the Millingstone Period.

In the Project vicinity, sites that date to this time period appear to have been small settlements or campsites reflecting resource gathering groups exploiting nearby lagoon or marshland (inland swamp) resources and specialized resource processing (such as shellfish). There is a gap in the archaeological record between 6,000 and 5,000 B.P., which suggests that the Project vicinity was sparsely occupied or abandoned during this time frame.9

\textbf{Intermediate Period (3,000–1,000 B.P.)}

During this time period, many aspects of Millingstone culture persisted, but a number of socioeconomic changes occurred.10,11,12 The native populations of southern California were becoming less mobile and populations began to gather in small sedentary villages with satellite resource-gathering camps. Increasing population size necessitated the intensified use of existing terrestrial and marine resources.13 Evidence indicates that the overexploitation of larger, high-ranked food resources may have led to a shift in subsistence, towards a focus on acquiring greater amounts of smaller resources, such as shellfish and small-seeded plants.14 This period is characterized by

\begin{footnotes}
\end{footnotes}
increased labor specialization, expanded trading networks for both utilitarian and non-utilitarian materials, and extensive travel routes. Trade increased dramatically during this period, with asphaltum (tar), seashells, and steatite being traded from southern California to the Great Basin. Use of the bow and arrow spread to the coast around 1,500 B.P., largely replacing the dart and atlatl.\(^{15}\)

Increasing population densities, with ensuing territoriality and resource intensification, may have given rise to increased disease and violence between 3,300 and 1,650 B.P.\(^{16}\)

The Intermediate Period is characterized by a lack of manos, metates, and core tools, an increase in the use of mortars and pestles, and the introduction of stone-lined earthen ovens. There is a wider variety and increased numbers of projectile points, and flexed burials are common.\(^{17}\)

In the Project vicinity, the population density increased, possibly as a result of the migration of eastern desert Takic peoples into the Los Angeles Basin, which is postulated to have begun by the end of the late Millingstone period and to have continued into the late Intermediate period. The Takic incursion resulted in the introduction of new material culture and mortuary practices, and an increase in genetic variation, population, number of sites, and focus on terrestrial resources. Changes in climate may also have contributed to the increased occupation of the area, as a wetter environment led to increased biological diversity. During this time, the Ballona wetlands shifted from an open embayment to a more closed, brackish environment. Lowland sites were likely occupied on a seasonal or semipermanent basis as resource processing camps, with semipermanent settlements on the bluff tops. Other important local developments during this time period include organized site structure with designated areas for different types of activities, and the rise of the mourning ceremony with the ritual destruction and burial of ground stone and the deceased’s personal possessions. Local settlement patterns reflect functional rather than social differentiation.\(^{18}\)

Late Period (1,000 B.P.–A.D. 1542)

The Late Period is associated with the florescence of the Gabrielino, who are estimated to have had a population numbering around 5,000 in the pre-contact period. The Gabrielino occupied what is presently Los Angeles County and northern Orange County, along with the southern Channel Islands, including Santa Catalina, San Nicholas, and San Clemente.\(^{19}\) This period saw the development of elaborate trade networks and use of shell-bead currency. Fishing became an increasingly significant part of subsistence strategies at this time, and investment in fishing

technologies, including the plank canoe, are reflected in the archaeological record.20-21 Settlement at this time is believed to have consisted of dispersed family groups that revolved around a relatively limited number of permanent village settlements that were located centrally with respect to a variety of resources.22

In contrast to other parts of southern California, occupation of sites in the Project vicinity appears to decrease during the early Late period, probably due to changing climate that resulted in an overall decline in precipitation, and episodic drought and flooding (the onset of the Late Period coincided with the medieval climatic anomaly [or MCA], a period of extended drought that occurred between A.D. 800 and 1350).23

Ethnographic Setting

The Project Site is located in a region traditionally occupied by the Gabrielino Indians. The term “Gabrielino” is a general term that refers to those Native Americans who were administered by the Spanish at the Mission San Gabriel Arcángel. Their neighbors included the Chumash and Tataviam to the north, the Juáñeno to the south, and the Serrano and Cahuilla to the east. The Gabrielino are reported to have been second only to the Chumash in terms of population size and regional influence.24 The Gabrielino language is part of the Takic branch of the Uto-Aztecan language family.

Prior to European colonization, the Gabrielino occupied a diverse area that included: the watersheds of the Los Angeles, San Gabriel, and Santa Ana rivers; the Los Angeles basin; and the islands of San Clemente, San Nicolas, and Santa Catalina.25 The Gabrielino subsisted on a variety of resources in several ecological zones. Acorns, sage, and yucca were gathered throughout the inland areas whereas shellfish, fish, as well as a variety of plants and animals were exploited within the marshes and along the coast. Deer and various kinds of small mammals were hunted on an opportunistic basis. Their material culture reflected the subsistence technology. Lithic tools such as arrow points and modified flakes were used to hunt and process animals. A variety of ground stone grinding implements, such as the mortar, pestle, mano, and metate, were used to process both plant and animal remains for food.

The settlement patterns of the Gabrielino, and other nearby groups, such as the Juaneño and Luiseño, were similar and they often interacted through marriage, trade and warfare. The seasonal

availability of water and floral and faunal resources dictated seasonal migration rounds with more permanent villages and base camps being occupied primarily during winter and spring months. In the summer months, the village populations divided into smaller units that occupied seasonal food procurement areas. The more permanent settlements tended to be near major waterways and food sources and various secular and sacred activities, such as food production and storage and tool manufacturing, were conducted at these areas.

Coming ashore on Santa Catalina Island in October of 1542, Juan Rodriguez Cabrillo was the first European to make contact with the Gabrielino; the 1769 expedition of Portolá also passed through Gabrielino territory. At the time of Spanish contact, many Gabrielino practiced a religion that was centered around the mythological figure Chinigchinich. This religion may have been relatively new when the Spanish arrived, and was spreading at that time to other neighboring Takic groups. The Gabrielino practiced both cremation and inhumation of their dead. A wide variety of grave offerings, such as stone tools, baskets, shell beads, projectile points, bone and shell ornaments, and otter skins, were interred with the deceased. Native Americans suffered severe depopulation and their traditional culture was radically altered after Spanish contact. Nonetheless, Gabrielino descendants still reside in the greater Los Angeles and Orange County areas and maintain an active interest in their heritage.26

The closest named settlements to the Project Site are Saa’anga and Waachnga. Review of a map titled Gabrieleno Communities Located on the Los Angeles-Santa Ana Plain by William McCawley27 indicates that the settlement of Saa’anga was located near Ballona Creek, approximately 0.30 miles from the Project Site. A map titled The Gabrieleno Indians at the Time of the Portola Expedition by Bernice Johnston28 depicts Saa’anga as further west.

The McCawley map indicates that the settlement of Waachnga (also known variously as Guasna, Guashna, Guaspet, Guachpet, and Guashpet) was located near the mouth of Ballona Creek, approximately 3.25 miles from Project Site. Based on mission baptism records, this “village” (or “rancheria” as it was known) appears to have been occupied from about 1790 to 1820.29 At least 193 people are known to have lived at the rancheria and were baptized there. Records suggest that recruitment into the Mission system did not occur until native populations closer to Mission San Gabriel had been assimilated, and after grazing expanded into the area, bringing native inhabitants of what is now the Ballona Reserve and surrounding areas into closer contact with Spanish-era ranchers.30 Two archaeological sites with components dating to the Spanish-era (CA-LAN-62 and

Environmental Impacts Analysis

4.2.2 Archaeological Resources

Three settlements are depicted in the vicinity of the Project Site on a map titled Kirkman-Harriman Pictorial and Historical Map of Los Angeles County. Gaucha (Waachnga) is depicted approximately 3.15 miles from the Project Site while an unnamed settlement is depicted approximately 2.75 miles from the Project Site. A second unnamed settlement is depicted approximately 2 miles of the Project Site, between the Baldwin Hills and Ballona Creek.

Historic Setting

Spanish Period (A.D. 1542–1821)

Although Spanish explorers made brief visits to the southern California region in 1542 and 1602, sustained contact with Europeans did not commence until the onset of the Spanish Period. In 1769 Gaspar de Portolá led an expedition from San Diego, passing through the Los Angeles Basin and the San Fernando Valley, on its way to the San Francisco Bay. Father Juan Crespi, who accompanied the 1769 expedition, noted the suitability of the Los Angeles area for supporting a large settlement. This was followed in 1776 by the expedition of Father Francisco Garcés.

In the late 18th century, the Spanish began establishing missions in California and forcibly relocating and converting native peoples. Mission San Gabriel Arcángel was founded on September 8, 1771 and Mission San Fernando Rey de España on September 8, 1797. By the early 1800s, the majority of the surviving Gabrielino population had entered the mission system, either at San Gabriel or San Fernando. Mission life offered some degree of security in a time when traditional trade and political alliances were failing and epidemics and subsistence instabilities were increasing. This lifestyle change also brought with it significant negative consequences for Gabrielino health and cultural integrity.

On September 4, 1781, El Pueblo de la Reina de los Angeles was established not far from the site where Portolá and his men camped during their 1769 excursion, with a land grant of 28 acres issued to California Governor Felipe de Neve in 1781. The pueblo was first established in response to the increasing agricultural needs of Spanish missions and presidios in Alta California. The original pueblo consisted of a central square surrounded by 12 houses and a series of agricultural fields. Thirty-six fields occupied 250 acres between the town and the river to the east.

32 Kirkman, George W., The Kirkman-Harriman Pictorial and Historical Map of Los Angeles County; 1860 A.D. - 1937 A.D. Copyright 1938.
By 1786, the flourishing pueblo attained self-sufficiency and funding by the Spanish government ceased. Fed by a steady supply of water and an expanding irrigation system, agriculture and ranching grew, and by the early 1800s the pueblo produced surplus wheat, corn, barley, and beans for export. A large number of livestock, including cattle and sheep, grazed in the surrounding lands.

The Protohistoric Period (A.D. 1540-1770) and the Mission Period (A.D. 1769-1830) largely fall within this period, and are the terms often used in the archaeological record to refer to sites occupied during these two timeframes.

Mexican Period (A.D. 1821–1848)

Mexico gained its independence from Spain in 1821. Mexico promoted the settlement of California with the issuance of land grants. In 1833, Mexico began the process of secularizing the missions, reclaiming the majority of mission lands and redistributing them as land grants. According to the terms of the Secularization Law of 1833 and Regulations of 1834, at least a portion of the lands would be returned to the Native populations, but this did not always occur.

Many ranchos continued to be used for cattle grazing by settlers during the Mexican Period. Hides and tallow from cattle became a major export for Californios, many of whom became wealthy and prominent members of society. The Californios led generally easy lives, leaving the hard work to vaqueros and Indian laborers.

The Rancho Period (A.D. 1834-1848) falls within this period, and is often used in the archaeological record to refer to sites occupied during this timeframe.

American Period (A.D. 1848–present)

Mexico ceded California to the United States as part of the Treaty of Guadalupe Hildalgo in 1848. California officially became one of the United States in 1850. While the treaty recognized right of Mexican citizens to retain ownership of land granted to them by Spanish or Mexican authorities, the claimant was required to prove their right to the land before a patent was given. The process was lengthy and generally resulted in the claimant losing at least a portion of their land to attorney’s fees and other costs associated with proving ownership.

When the discovery of gold in northern California was announced in 1848, a huge influx of people from other parts of North America flooded into California and the population of Los Angeles County tripled between 1850 and 1860. The increased population provided an additional outlet for

38 Spanish speaking, Catholic persons of Latin American descent born in Alta California between 1769 and 1848.

the Californios’ cattle. As demand increased, the price of beef skyrocketed and Californios reaped the benefits. However, a devastating flood in 1861, followed by droughts in 1862 and 1864, led to a rapid decline of the cattle industry; over 70 percent of cattle perished during these droughts.42,43 These natural disasters, coupled with the burden of proving ownership, caused many Californios to lose their lands during this period. Former ranchos were subsequently subdivided and sold for agriculture and residential settlement.44,45

Los Angeles was connected to the transcontinental railroad via San Francisco on September 5, 1876 and the population again exploded. The city would experience its greatest growth in the 1880s when two more direct rail connections to the East Coast were constructed. The Southern Pacific completed its second transcontinental railway, the Sunset Route from Los Angeles to New Orleans, in 1883.46 In 1885, the Santa Fe Railroad completed a competing transcontinental railway to San Diego, with connecting service to Los Angeles.47 The resulting fare wars led to an unprecedented real estate boom. Despite a subsequent collapse of the real estate market, the population of Los Angeles increased 350 percent from 1880 to 1890.48 Los Angeles continued on its upward trajectory in the first few decades of the 20th century with the rise of tourism, automobile travel, and the movie industry.49

Geologic Setting

Review of geologic mapping indicates that Holocene-aged younger alluvial sediments occur at the surface across the Project Site.50 Geotechnical investigations at the Project Site have indicated that surface materials consist of asphalt, concrete, and aggregate base (2.5 to 7.5 inches below ground surface [bgs]), followed by 12 to 16 feet “of stiff clay with variable sand content underlain by alternating layers and/or lenses of medium dense to very dense sand with variable fines content and medium stiff to very stiff clay with variable sand content. The sand generally becomes dense to very dense and there are fewer and thinner clay layers/lenses with increasing depth”.51 At 36 to 43 feet, all borings encountered gray silt, sand, and clay that continued to the bottom of each boring, which extended between 29.9 to 71.5 feet bgs.

42 McWilliams, Carey. 1946. *Southern California: An Island on the Land*. Gibbs Smith, Layton, Utah.
45 McWilliams, Carey. 1946. *Southern California: An Island on the Land*. Gibbs Smith, Layton, Utah.
49 McWilliams, Carey. 1946. *Southern California: An Island on the Land*. Gibbs Smith, Layton, Utah.
Archaeological Resources Identified Within the Project Vicinity

As discussed in the Assessment Report, the pedestrian survey yielded negative results, although the majority of the Project Site is developed which may have obstructed the identification of archaeological resources on the surface. Culver City is located in an area with a rich archaeological history with approximately 26 known prehistoric or Native American archaeological sites within a 3-mile radius from the Project Site; two of which are within a 0.5-mile radius of the Project Site. Additionally, the Sacred Land File (SLF) search results through the California Native American Heritage Commission (NAHC) were positive although specific details of the nature and location of the resource were not provided. The NAHC recommended contacting the Gabrielino Tongva Indians of California Tribal Council for additional information on the resource. The City contacted this tribe as part of their Assembly Bill (AB) 52 consultation to obtain information on this resource. The results of this consultation is included in Section 4.12, Tribal Cultural Resources, of this Draft EIR. Moreover, there at least four ethnographic Native American settlements that are known to have been located within a 3-mile radius of the Project Site.

4.2.2.3 Regulatory Framework

State

California Environmental Quality Act

CEQA is the principal statute governing environmental review of projects occurring in the state and is codified at Public Resources Code (PRC) Section 21000 et seq. CEQA requires lead agencies to determine if a proposed project would have a significant effect on the environment, including significant effects on historical or unique archaeological resources. Under CEQA Guidelines Section 21084.1, a project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment.

The CEQA Guidelines (Title 14 California Code of Regulations [CCR] Section 15064.5) recognize that historical resources include: (1) a resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the California Register of Historical Resources (California Register); (2) a resource included in a local register of historical resources, as defined in PRC Section 5020.1(k) or identified as significant in a historical resource survey meeting the requirements of PRC Section 5024.1(g); and (3) any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California by the lead agency, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. The fact that a resource does not meet the three criteria outlined above does not preclude the lead agency from determining that the resource may be an historical resource as defined in PRC Sections 5020.1(j) or 5024.1.

If a lead agency determines that an archaeological site is a historical resource, the provisions of CEQA Guidelines Sections 21084.1 and 15064.5 apply. If an archaeological site does not meet the criteria for a historical resource contained in the CEQA Guidelines, then the site may be treated in accordance with the provisions of Section 21083, which is as a unique archaeological resource. As defined in CEQA Guidelines Section 21083.2, a “unique” archaeological resource is an archaeological artifact,
object, or site, about which it can be clearly demonstrated that without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

- Contains information needed to answer important scientific research questions and there is a demonstrable public interest in that information;
- Has a special and particular quality such as being the oldest of its type or the best available example of its type; or,
- Is directly associated with a scientifically recognized important prehistoric or historic event or person.

If an archaeological site meets the criteria for a unique archaeological resource as defined in Section 21083.2, then the site is to be treated in accordance with the provisions of Section 21083.2, which state that if the lead agency determines that a project would have a significant effect on unique archaeological resources, the lead agency may require reasonable efforts be made to permit any or all of these resources to be preserved in place (Section 21083.1(a)). If preservation in place is not feasible, mitigation measures shall be required. CEQA Guidelines Section 15064.5(c)(4) notes that if an archaeological resource is neither a unique archaeological nor a historical resource, the effects of the project on those resources shall not be considered a significant effect on the environment.

A significant effect under CEQA would occur if a project results in a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines Section 15064.5(a). As defined in CEQA Guidelines Section 15064.5(b)(1)), substantial adverse change is “physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of a historical resource would be materially impaired.” According to CEQA Guidelines Section 15064.5(b)(2), the significance of a historical resource is materially impaired when a project demolishes or materially alters in an adverse manner those physical characteristics that:

A. Convey its historical significance and that justify its inclusion in, or eligibility for, inclusion in the California Register; or

B. Account for its inclusion in a local register of historical resources pursuant to section 5020.1(k) of the Public Resources Code or its identification in a historical resources survey meeting the requirements of section 5024.1(g) of the Public Resources Code, unless the public agency reviewing the effects of the project establishes by a preponderance of evidence that the resource is not historically or culturally significant; or

C. Convey its historical significance and that justify its eligibility for inclusion in the California Register as determined by a Lead Agency for purposes of CEQA.

In general, pursuant to CEQA Guidelines Section 15064.5(b)(3), a project that complies with the Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (Standards)52 is considered to have mitigated its impacts to historical resources to a less-than-significant level.

California Register of Historical Resources

The California Register is an authoritative listing and guide to be used by State and local agencies, private groups, and citizens in identifying the existing historical resources of the State and to indicate which resources deserve to be protected, to the extent prudent and feasible, from substantial adverse change (PRC Section 5024.1[a]). The criteria for eligibility for the California Register are based upon National Register criteria (PRC Section 5024.1[b]). Certain resources are determined by the statute to be automatically included in the California Register, including California properties formally determined eligible for, or listed in, the National Register.

To be eligible for the California Register, a prehistoric or historic-period property must be significant at the local, state, and/or federal level under one or more of the following four criteria:

1. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;
2. Is associated with the lives of persons important in our past;
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
4. Has yielded, or may be likely to yield, information important in prehistory or history.

A resource eligible for the California Register must meet one of the criteria of significance described above, and retain enough of its historic character or appearance (integrity) to be recognizable as a historical resource and to convey the reason for its significance. It is possible that a historic resource may not retain sufficient integrity to meet the criteria for listing in the National Register, but it may still be eligible for listing in the California Register.

Additionally, the California Register consists of resources that are listed automatically and those that must be nominated through an application and public hearing process. The California Register automatically includes the following:

- California properties listed on the National Register and those formally determined eligible for the National Register;
- California Registered Historical Landmarks from No. 770 onward; and,
- Those California Points of Historical Interest that have been evaluated by the OHP and have been recommended to the State Historical Commission for inclusion on the California Register.

Other resources that may be nominated to the California Register include:

- Historical resources with a significance rating of Category 3 through 5 (those properties identified as eligible for listing in the National Register, the California Register, and/or a local jurisdiction register);
- Individual historical resources;
- Historical resources contributing to historic districts; and,
- Historical resources designated or listed as local landmarks, or designated under any local ordinance, such as an historic preservation overlay zone.
California Government Code Sections 6254(r) and 6254.10

These sections of the California Public Records Act were enacted to protect archaeological sites from unauthorized excavation, looting, or vandalism. Section 6254(r) explicitly authorizes public agencies to withhold information from the public relating to “Native American graves, cemeteries, and sacred places maintained by the Native American Heritage Commission.” Section 6254.10 specifically exempts from disclosure requests for “records that relate to archaeological site information and reports, maintained by, or in the possession of the Department of Parks and Recreation, the State Historical Resources Commission, the State Lands Commission, the Native American Heritage Commission, another state agency, or a local agency, including the records that the agency obtains through a consultation process between a Native American tribe and a state or local agency.”

Local

City of Culver City

The City’s General Plan does not include policies, goals, and objectives for archaeological resources or human remains; however, the City is currently preparing a General Plan update that will consider these types of resources.

4.2.2.4 Environmental Impacts

Methodology

The analysis of archaeological resources is based in part on the Assessment Report, which included a cultural resources records search through the SCCIC, a SLF search through the NAHC, land use history research (including review of historic topographic maps and aerial photographs), review of environmental and geotechnical reports for the Project, geologic map review, and a pedestrian survey of the Project Site. If no known resources were identified within the Project Site, ESA also conducted a sensitivity assessment to determine the potential to encounter buried archaeological resources and human remains during construction based on the results of the record searches, subsurface geological conditions, on-site disturbances, land use history, and the proposed excavation parameters.

Thresholds of Significance

The significance thresholds below are derived from the Environmental Checklist question in Appendix G of the CEQA Guidelines. Accordingly, a significant impact to archaeological resources and human remains would occur if the Project were to:

- **ARCH-1:** Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5; or
- **ARCH-2:** Disturb any human remains, including those interred outside of dedicated cemeteries.

The City determined in the Initial Study that the following environmental issue area would result in no impacts or less-than-significant impacts and, therefore, are scoped out of this Draft EIR.
Please refer to Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue area:

- **ARCH-2**: Disturb any human remains, including those interred outside of dedicated cemeteries.

As detailed in the Initial Study, a number of regulatory provisions address the handling of human remains inadvertently uncovered during excavation activities. These include State Health and Safety Code Section 7050.5, Public Resources Code (PRC) Section 5097.98, and CEQA Guidelines Section 15064.5(e). Pursuant to these codes, in the event of the discovery of unrecorded human remains during construction, excavations shall be halted and the County Coroner shall be notified. If the human remains are determined to be Native American, the California Native American Heritage Commission (NAHC) would be notified within 24-hours and the guidelines of the NAHC would be adhered to in the treatment and disposition of the remains. Compliance with these regulatory protocols would ensure that impacts on human remains would be less than significant. No further analysis of this issue is therefore included in this Draft EIR.

Project Characteristics and Project Design Features

Project Characteristics

As it relates to the evaluation of potential impacts on subsurface archaeological resources, the Project would involve demolition of the existing buildings on the Project Site to support the new mixed-use development. The Project would consist of five stories of development over one subterranean level for vehicular parking and building infrastructure. The maximum depth of ground disturbance is expected to reach depths of up to 25 feet bgs.

Project Design Features

There are no Project Design Features relative to archaeological resources.

Project Impacts

Threshold ARCH-1: The Project would have a significant impact if it were to cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.

Impact Statement ARCH-1: Although no known archaeological resources were identified within the Project Site, Project construction activities may potentially encounter buried archaeological resources. Impacts to archaeological resources are therefore considered potentially significant.

No known archaeological resources were identified within or immediately adjacent to the Project Site, although the majority of the Project Site is developed which may have obstructed the identification of surface resources. In addition, this does not preclude the possibility that subsurface archaeological deposits underlie the Project Site. Such resources could qualify as historical resources or unique archaeological resources under CEQA, and impacts to any such resources would constitute a significant impact on the environment. Prehistoric (or Native American) archaeological resources are the material remains the results from human activities that predate
written records and can include village sites, temporary camps, lithic (stone tool) scatters, rock art, roasting pits/hearths, milling features, rock features, and human remains. Historic archaeological resources can include refuse heaps, bottle dumps, ceramic scatters, privies, foundations, and human remains and are generally associated in California with the Spanish Mission Period to the mid-20th century of the American Period.

Excavations associated with the original construction of the existing uses on the Project Site and the installation and removal of underground storage tanks may have displaced or destroyed buried archaeological resources. However, it is possible that other buried historic or prehistoric archaeological resources still exist underneath the Project Site given that resources have been recovered during construction in similar settings and given the large number of archaeological resources that have been recorded in the area. For instance, two of the 26 known prehistoric or Native American archaeological sites identified through the records search are located within a 0.5-mile radius of the Project Site. Moreover, two prehistoric metate artifacts were recently encountered during construction and redevelopment of a project near Downtown Culver City. In regards to historic archaeological resources, review of historic aerial photographs reveal that the eastern portion of the Project Site was subject to historic period land uses (agricultural and residential uses) dating back to the early 1920s through the 1950s. This suggests that the Project Site has potential to contain historic archaeological resources. In addition, many areas of the Project Site are developed with a surface parking lot, and these areas would not have been subject to deep excavations that would have displaced or destroyed resources that may be present. Therefore, the sequence of construction and development at the Project Site may have allowed for preservation of buried archaeological resources. Lastly, it is anticipated that excavations for the Project will reach depths of up to 25 feet bgs. The Geotechnical Report does not provide information regarding depth or thickness of artificial fill soils at the Project Site, but it does indicate that surface materials consist of asphalt, concrete, and aggregate base (2.5 to 7.5 inches bgs), followed by 12 to 16 feet of stiff clay with variable sand content underlain by alternating layers and/or lenses of medium dense to very dense sand.

As a result, there is a moderate to high potential that excavation activities associated with the Project would encountered buried historic and prehistoric archaeological resources. Therefore, impacts to previously unknown buried historic and prehistoric archaeological resources are considered potentially significant.

Operation of the new facilities on the Project Site would not result in any further ground disturbing activities such as grading or excavation; therefore, there is no potential to encounter, alter, or disturb archaeological resources. No operational impacts would occur.

Cumulative Impacts

Many of the related projects identified in Chapter 3, *Environmental Setting*, of this Draft EIR, would require excavation that could potentially expose or damage potential archaeological resources. However, these related projects are located in developed urban areas with sites that have been previously disturbed, and the potential to encounter and cause a significant impact on surface resources is unlikely. Further, in association with CEQA review, and depending on the depth of excavation and sensitivity of respective sites, mitigation measures would be required for related
projects that have the potential to cause significant impacts to undiscovered archaeological resources, including existing regulations for undiscovered human remains. Implementation of such mitigation measures and regulations would avoid significant impacts. State requirements regarding impacts on archaeological resources and CEQA compliance require monitoring of excavation activities and treatment and/or curation of discovered resources where appropriate (Public Resources Code Section 15064.5). Such standard construction practices, particularly over a range of project sites, provide for protection, recovery and curation of discovered resources and preserve their contributions to the knowledge base of past population activity in the area. For those projects not subject to CEQA review, there would be some potential for impacts on archaeological resources and human remains in the event there are excavations that extend into soils conducive to retaining resources, however, regulations contained in the California Health and Safety Code and Penal Code would apply in some instances, and circumstances involving a loss of such resources are expected to be limited. Therefore, the cumulative effects from cumulative projects are considered less than significant.

The Project is required to comply with the mitigation measures ARCH-1 through ARCH-4 and regulations cited above in the event resources are found, thus ensuring proper identification, treatment and preservation of any resources, and reducing significant impacts on archaeological resources and human remains to less than significant levels. These regulations require excavation monitoring, and treatment and curation of discoveries. Therefore, to the extent impacts on archaeological resources from cumulative projects may occur, further contribution from the Project would not be cumulatively considerable, and the cumulative impacts of the Project would be less than significant.

4.2.2.5 Mitigation Measures

ARCH-1: Prior to issuance of demolition permit, the Applicant shall retain an archaeologist who meets the Secretary of the Interior’s Professional Qualifications Standards for Archaeology (Qualified Archaeologist) to oversee an archaeological monitor who shall be present during construction excavations such as demolition, clearing/grubbing, grading, trenching, or any other construction excavation activity associated with the Project. The frequency of monitoring shall be based on the rate of excavation and grading activities, proximity to known archaeological resources, the materials being excavated (younger alluvium vs. older alluvium), and the depth of excavation, and if found, the abundance and type of archaeological resources encountered, as determined by the Qualified Archaeologist). The frequency of monitoring shall be determined based on the factors presented above, and can be reduced to part-time inspections or ceased entirely if determined appropriate by the Qualified Archaeologist. Prior to commencement of excavation activities, an Archaeological and Cultural Resources Sensitivity Training shall be given for construction personnel. The training session shall be carried out by the Qualified Archaeologist and shall focus on how to identify archaeological resources that may be encountered during earthmoving activities and the procedures to be followed in such an event.

ARCH-2: Prior to issuance of demolition permit, the Applicant shall retain a Native American tribal monitor from a Gabrieno Tribe. The appropriate Native American tribal monitor shall be selected based on ongoing consultation under AB 52 and shall be identified on the most recent contact list provided by the Native American Heritage Commission. The Native American monitor shall be present
4. Environmental Impacts Analysis

4.2.2 Archaeological Resources

during construction excavations such as clearing/grubbing, grading, trenching, or any other construction excavation activity associated with the Project. The frequency of monitoring shall take into account the rate of excavation and grading activities, proximity to known archaeological resources, the materials being excavated (native versus artificial fill soils and older versus younger soils), and the depth of excavation, and if found, the abundance and type of prehistoric archaeological resources encountered. The frequency of monitoring shall be determined based on the factors presented above, and can be reduced to part-time inspections or ceased entirely if determined appropriate by the Gabrielino Tribe.

ARCH-3: In the event that historic or prehistoric archaeological resources (e.g., bottles, foundations, refuse dumps, Native American artifacts or features, etc.) are unearthed, ground-disturbing activities shall be halted or diverted away from the vicinity of the find so that the find can be evaluated. An appropriate buffer area shall be established by the Qualified Archaeologist around the find where construction activities shall not be allowed to continue. Work shall be allowed to continue outside of the buffer area. All archaeological resources unearthed by project construction activities shall be evaluated by the Qualified Archaeologist and a Gabrielino Tribe. If the resources are Native American in origin, the Gabrielino Tribe shall consult with the City and Qualified Archaeologist regarding the treatment and curation of any prehistoric archaeological resources. If a resource is determined by the Qualified Archaeologist to constitute a “historical resource” pursuant to CEQA Guidelines Section 15064.5(a) or a “unique archaeological resource” pursuant to Public Resources Code Section 21083.2(g), the Qualified Archaeologist shall coordinate with the Applicant and the City to develop a formal treatment plan that would serve to reduce impacts to the resources. The treatment plan established for the resources shall be in accordance with CEQA Guidelines Section 15064.5(f) for historical resources and Public Resources Code Sections 21083.2(b) for unique archaeological resources. The treatment plan shall incorporate the Gabrielino Tribe’s treatment and curation recommendations. Preservation in place (i.e., avoidance) is the preferred manner of treatment. If preservation in place is not feasible, treatment may include implementation of archaeological data recovery excavations to remove the resource along with subsequent laboratory processing and analysis. The treatment plan shall include measures regarding the curation of the recovered resources that may include curation at a public, non-profit institution with a research interest in the materials, such as the Natural History Museum of Los Angeles County or the Fowler Museum, if such an institution agrees to accept the material and/or the Gabrielino Tribe. If no institution or the Gabrielino Tribe accept the resources, they may be donated to a local school or historical society in the area (such as the Culver City Historical Society) for educational purposes.

ARCH-4: Prior to the release of the grading bond, the Qualified Archaeologist shall prepare a final report and appropriate California Department of Parks and Recreation Site Forms at the conclusion of archaeological monitoring. The report shall include a description of resources unearthed, if any, treatment of the resources, results of the artifact processing, analysis, and research, and evaluation of the resources with respect to the California Register of Historical Resources and CEQA. The report and the Site Forms shall be submitted by the Applicant to the City, the South Central Coastal Information Center, and representatives of other appropriate or
concerned agencies to signify the satisfactory completion of the Project and required mitigation measures.

4.2.2.6 Level of Significance after Mitigation

With implementation of the above mitigation measures, potential significant impacts to archaeological resources would be reduced to a less-than-significant level.
This page left intentionally left blank
4.3 Energy

4.3.1 Introduction

This section analyzes effects on energy resources due to construction and operation of the Project. The Project’s anticipated energy use is estimated, the potential for impacts due to inefficient or unnecessary consumption, or conflicts with energy related plans are assessed, and conservation measures are considered to address significant impacts if identified. Information found herein, as well as other aspects of the Project’s energy implications, are discussed elsewhere in this Draft EIR, including in Chapter 2, Project Description, and Sections 4.1, Air Quality; 4.5, Greenhouse Gas Emissions; 4.7, Land Use and Planning; and 4.11, Transportation. Details regarding the energy calculations are provided in energy consumption worksheets provided in Appendix D of this Draft EIR.

4.3.2 Environmental Setting

Existing Electricity Sales

Electricity, as a consumptive utility, is a man-made resource. The production of electricity requires the consumption or conversion of energy resources, including water, wind, oil, gas, coal, solar, geothermal, and nuclear resources, into energy. The delivery of electricity involves a number of system components for distribution and use. The electricity generated is distributed through a network of transmission and distribution lines commonly called a power grid.

Energy capacity, or electrical power, is generally measured in watts (W), while energy use is measured in watt-hours (Wh). For example, if a light bulb has a capacity rating of 100 W, the energy required to keep the bulb on for 1 hour would be 100 Wh. If ten 100 W bulbs were on for 1 hour, the energy required would be 1,000 Wh or 1 kilowatt-hour (kWh). On a utility scale, the capacity of a generator is typically rated in megawatts (MW), which is 1 million watts, while energy usage is measured in megawatt-hours (MWh) or gigawatt-hours (GWh), which is one billion watt-hours.

Southern California Edison (SCE) provides electrical services to approximately 15 million people, 15 counties, 180 incorporated cities including the Culver City and the Project Site, 5,000 large businesses, and 280,000 small businesses throughout its 50,000-square-mile service area, across central, coastal and southern California, an area bounded by Mono County to the North, Ventura County to the West, San Bernardino County to the East, and Orange County to the South. SCE produces and purchases energy from a mix of conventional and renewable generating sources.

SCE generates power from a variety of energy sources, including large hydropower (greater than 30 MW), coal, gas, nuclear sources, and renewable resources, such as wind, solar, small hydropower (less than 30 MW), and geothermal sources. The annual electricity sale to customers in 2019 was

4.3 Energy

approximately 84,654,000 MWh.\(^2\) See **Table 4.3-1, Existing Annual Regional Energy Use**, for a summary of energy use for the region, including the SCE service area.

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (SCE service area) (^a)</td>
<td>84,654,000 MWh</td>
</tr>
<tr>
<td>Natural Gas (SoCalGas service area) (^b)</td>
<td>1,201,753,375 MMBtu</td>
</tr>
<tr>
<td>Gasoline (Los Angeles County) (^c)</td>
<td>3,559,000,000 gallons</td>
</tr>
<tr>
<td>Diesel (Los Angeles County) (^c)</td>
<td>584,746,000 gallons</td>
</tr>
</tbody>
</table>

SOURCES:

\(^c\) California Energy Commission (CEC), California Retail Fuel Outlet Annual Reporting (CEC-A15) Year 2019 Results.

SCE is required to commit to the use of renewable energy sources for compliance with the Renewables Portfolio Standard. As shown in **Table 4.3-2, Electric Power Mix Delivered to Retail Customers in 2019**, SCE has already met its requirement to procure at least 33 percent of its energy portfolio from renewable sources by 2020. Senate Bill (SB) 350 (Chapter 547, Statues of 2015) and SB 100 (Chapter 312, Statutes of 2018) further increased California’s Renewables Portfolio Standard and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024, 52 percent by December 31, 2027, and 60 percent by December 31, 2030. The legislation also instructed the California Air Resources Board (CARB) to plan for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045.\(^3\) SCE anticipates it will meet its own climate change and renewables objectives that align with SB 100’s 2045 renewables requirement.\(^4\)

Table 4.3-2

Electric Power Mix Delivered to Retail Customers in 2019

<table>
<thead>
<tr>
<th>Energy Resource</th>
<th>2019 SCE</th>
<th>2019 CA Power Mix (for comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Renewable</td>
<td>35.1%*</td>
<td>31.7%*</td>
</tr>
<tr>
<td>Biomass & bio-waste</td>
<td>0.6%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Geothermal</td>
<td>5.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Eligible hydroelectric</td>
<td>1.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Solar</td>
<td>16%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Wind</td>
<td>11.5%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Coal</td>
<td>0.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Large Hydroelectric</td>
<td>7.9%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>16.1%</td>
<td>34.2%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>8.2%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Unspecified sources of power b</td>
<td>32.6%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Existing Natural Gas Supply

Natural gas is a combustible mixture of simple hydrocarbon compounds (primarily methane) that is used as a fuel source. Natural gas consumed in California is obtained from naturally occurring reservoirs and delivered through high-pressure transmission pipelines. Natural gas provides almost one-third of the State’s total energy requirements. Natural gas is measured in terms of both cubic feet (cf) or British thermal units (Btu).

Natural gas is used for cooking, space heating, water heating, electricity generation, and as an alternative transportation fuel. The Project Site is served by the Southern California Gas Company (SoCalGas), which is the principal distributor of natural gas in Southern California, serving residential, commercial, and industrial markets. SoCalGas serves approximately 21.8 million customers in more than 500 communities encompassing approximately 24,000 square miles throughout central and southern California, from the City of Visalia to the US/Mexican border.⁵

SoCalGas, along with five other California utility providers, released the 2020 California Gas Report, presenting a forecast of natural gas supplies and requirements for California through the year 2035. The 2020 California Gas Report predicts gas demand for all sectors (residential, commercial, industrial, energy generation and wholesale exports) and presents best estimates, as

well as scenarios for hot and cold years. Overall, SoCalGas predicts a decrease in natural gas demand in future years due to a decrease in per capita usage, energy efficiency policies, and the State’s transition to renewable energy displacing fossil fuels including natural gas.\(^6\)

SoCalGas receives gas supplies from several sedimentary basins in the western United States (US) and Canada, including supply basins located in New Mexico (San Juan Basin), west Texas (Permian Basin), the Rocky Mountains, and western Canada as well as local California supplies.\(^7\) Sources of natural gas in the southwestern US will continue to supply most of SoCalGas’ natural gas demand. The Rocky Mountain supply is available but is used as an alternative supplementary supply source, and Canadian sources provide only a small share of SoCalGas supplies due to the high cost of transport.\(^8\) Gas supply available to SoCalGas from California sources averaged 3,175 million cf per day or 3,292,475 million Btu (MMBtu) in 2020. This equates to an annual average of 1,158,875 million cf per year or 1,201,753,375 MMBtu per year.\(^9\) See Table 4.3-1 for a summary of energy use for the region, including the SoCalGas service area.

Existing Transportation Energy

The annual transportation fuel consumption of diesel and gasoline in 2019 for California (the most recent year for which Statewide data is available) is 1,756 million gallons and 13,473 million gallons respectively. Transportation fuel consumption of diesel and gasoline for Los Angeles County in 2019 is 585 million gallons and 3,559 million gallons, respectively. The estimated Los Angeles County and Statewide transportation fuel consumption is based on retail sale data from the California Energy Commission (CEC).\(^10\) See Table 4.3-1 for a summary of Los Angeles County fossil fuel consumption in 2019.

The State is now working on developing flexible strategies to reduce petroleum use. Over the last decade, California has implemented several policies, rules, and regulations to improve vehicle efficiency, increase the development and use of alternative fuels, reduce air pollutants and greenhouse gas emissions (GHGs) from the transportation sector, and reduce vehicle miles traveled (VMT). Accordingly, gasoline consumption in California has declined. The CEC predicts that the demand for gasoline will continue to decline over the next 10 years, and there will be an increase in the use of alternative fuels.\(^11\)

Existing Project Site

The 3.43-acre Project Site is currently developed with three single story commercial buildings which include a United States Post Office (27,225 sf), a restaurant (6,064 sf), and an automobile oil change facility (1,722 sf). All existing improvements would be removed. Energy demand (i.e.

\(^7\) California Gas and Electric Utilities, 2020 California Gas Report.
\(^8\) California Gas and Electric Utilities, 2020 California Gas Report.
electricity, natural gas and fuel consumption from vehicle trips) from the existing uses is estimated and incorporated into this analysis to determine the Project’s net (Project minus existing) energy consumption. As detailed under Subsection 4.3.4 under Methodology, annual electricity and natural gas usage is estimated using CalEEMod and is based on the size of the buildings. Existing gasoline and diesel is estimated based on existing VMT and the estimated fuel economy and fuel consumption factors from CARB EMission FACtors model (EMFAC) model (specifically EMFAC 2017 was incorporated into CalEEMod and used for the analysis).

Current annual energy demand estimated for the existing land uses located on the Project Site is presented in Table 4.3-3, Existing Site Annual Energy Use.

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>657 MWh</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2,214 MMBtu</td>
</tr>
<tr>
<td>Gasoline</td>
<td>212,337 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td>35,623 gallons</td>
</tr>
</tbody>
</table>

4.3.3 Regulatory Framework

State

Senate Bill 1389

SB 1389 (Public Resources Code [PRC] Sections 25300–25323; SB 1389) requires the CEC to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state’s electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state’s economy; and protect public health and safety (PRC Section 25301[a]). The 2019 Integrated Energy Policy Report provides the results of the CEC’s assessments related to energy sector trends, building decarbonization and energy efficiency, zero-emission vehicles (ZEV), energy equity, climate change adaptation, electricity reliability in Southern California, natural gas assessment, and electricity, natural gas, and transportation energy demand forecasts.

California’s Renewable Portfolio Standard

First established in 2002 under SB 1078, California’s Renewable Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable energy resources to 33 percent by 2020 and 50 percent by 2030.12

On September 10, 2018, Governor Jerry Brown signed SB 100, which further increased California’s RPS and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024, 52 percent by December 31, 2027, and 60 percent by December 31, 2030, and that the California Air Resources Board (CARB) should plan for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045. The California Public Utilities Commission (CPUC) and the CEC jointly implement the RPS program. The CPUC’s responsibilities include: (1) determining annual procurement targets and enforcing compliance; (2) reviewing and approving each investor-owned utility’s renewable energy procurement plan; (3) reviewing contracts for RPS-eligible energy; and (4) establishing the standard terms and conditions used in contracts for eligible renewable energy.\(^\text{13}\) Refer to Section 4.5, Greenhouse Gas Emissions, of this Draft EIR for details regarding this regulation.

California Building Standards Code (Title 24)

California Building Energy Efficiency Standards (Title 24, Part 6)

The California Building Energy Efficiency Standards for Residential and Nonresidential Buildings (California Code of Regulations [CCR] Title 24, Part 6) were adopted to ensure that building construction and system design and installation achieve energy efficiency and preserve outdoor and indoor environmental quality. The current California Building Energy Efficiency Standards (Title 24 standards) are the 2019 Title 24 standards, which became effective on January 1, 2020.\(^\text{14}\) The 2019 Title 24 standards include efficiency improvements to the residential and non-residential standards.\(^\text{15}\)

California Green Building Standards (Title 24, Part 11)

The California Green Building Standards Code (CCR Title 24, Part 11), commonly referred to as the CALGreen Code, includes mandatory measures for non-residential development related to site development; energy efficiency; water efficiency and conservation; material conservation and resource efficiency; and environmental quality.\(^\text{16}\) Most changes to the mandatory measure, compared to the previous 2016 CALGreen Code, included requirements for solar photovoltaic (PV) systems in all new homes (low-rise and single-family), requirements for newly constructed healthcare facilities that were previously not included, the encouragement of demand response and light-emitting diode (LED) technology for both residential and nonresidential buildings, and the use of more efficient air filters to trap hazardous particulates.\(^\text{17}\) For new multifamily dwelling units, the residential mandatory measures were revised to provide additional electric vehicle (EV) charging requirements, including quantity, location, size, single EV space, multiple EV spaces, and

\(^\text{17}\) CEC, 2019 Building Energy Efficiency Standards.
identification. Refer to Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR for additional details regarding these standards.

Assembly Bill 1493 (AB 1493)/Pavley Regulations

Assembly Bill (AB) 1493 (commonly referred to as CARB’s Pavley regulations) was the first legislation to regulate GHG emissions from new passenger vehicles. Under this legislation, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles (cars and light-duty trucks) for model years 2009-2016 and model years 2017-2025.\(^{18,19}\) Refer to Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR for details regarding this regulation. In September 2019, the United States Environmental Protection Agency (USEPA) published the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule in the federal register (Federal Register, Vol. 84, No. 188, Friday, September 27, 2019, Rules and Regulations, 51310-51363) that maintains the vehicle miles per gallon standards applicable in model year 2020 for model years 2021 through 2026. California and 23 other states and environmental groups in November 2019 in U.S. District Court in Washington, filed a petition for the USEPA to reconsider the published rule. The Court has not yet ruled on these lawsuits.

California Health and Safety Code (HSC), Division 25.5 - California Global Warming Solutions Act of 2006

In 2006, the California State Legislature adopted AB 32 (codified in the California Health and Safety Code [HSC], Division 25.5 – California Global Warming Solutions Act of 2006), which focuses on reducing GHG emissions in California to 1990 levels by 2020. Under HSC Division 25.5, CARB has the primary responsibility for reducing the State’s GHG emissions; however, AB 32 also tasked the CEC and the CPUC with providing information, analysis, and recommendations to CARB regarding strategies to reduce GHG emissions in the energy sector.

In 2016, the California State Legislature adopted SB 32 and its companion bill, AB 197, which amended HSC Division 25.5 and established a new climate pollution reduction target of 40 percent below 1990 levels by 2030 and included provisions to ensure that the benefits of state climate policies reach into disadvantaged communities. Refer to Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR for details regarding these regulations.

Senate Bill 350

SB 350, signed October 7, 2015, is the Clean Energy and Pollution Reduction Act of 2015. SB 350 is the implementation of some of the goals of Executive Order B-30-15. Building off of AB 32, SB 350 established California’s 2030 GHG reduction target of 40 percent below 1990 levels. To achieve this goal, SB 350 set ambitious 2030 targets for energy efficiency and renewable electricity, among other actions aimed at reducing GHG emissions. SB 350 increased California’s renewable electricity procurement goal from 33 percent by 2020 to 50 percent by 2030 prior to the current

\(^{19}\) USEPA, EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks, 2012.
goals set by SB 100. In addition, SB 350 requires the State to double statewide energy efficiency savings in electricity and natural gas end uses by 2030.

Low Carbon Fuel Standard

The Low Carbon Fuel Standard (LCFS), established in 2007 through Executive Order S-1-07 and administered by CARB, requires producers of petroleum-based fuels to reduce the carbon intensity of their products, starting with 0.25 percent in 2011 and culminating in a 10-percent total reduction in 2020. Petroleum importers, refiners and wholesalers can either develop their own low carbon fuel products or buy LCFS credits from other companies that develop and sell low carbon alternative fuels, such as biofuels, electricity, natural gas, and hydrogen.

California Air Resources Board

CARB’s Advanced Clean Car Program

The Advanced Clean Cars emissions-control program was approved by CARB in 2012 and is closely associated with the Pavley regulations. The program requires a greater number of ZEV models for years 2015 through 2025 to control smog, soot and GHG emissions. This program includes the Low-Emissions Vehicle regulations to reduce criteria pollutants and GHG emissions from light- and medium-duty vehicles; and the ZEV regulations to require manufacturers to produce an increasing number of pure ZEV’s (meaning battery and fuel cell electric vehicles) with the provision to produce plug-in hybrid electric vehicles between 2018 and 2025.

Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling

In 2004, the CARB adopted an Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling in order to reduce public exposure to diesel particulate matter emissions (CCR Title 13, Section 2485). The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure does not allow diesel-fueled commercial vehicles to idle for more than five minutes at any given location. While the goal of this measure is primarily to reduce public health impacts from diesel emissions, compliance with the regulation also results in energy savings in the form of reduced fuel consumption from unnecessary idling.

Regulation to Reduce Emissions of Diesel Particulate Matter, Oxides of Nitrogen and other Criteria Pollutants, from In-Use Heavy-Duty Diesel-Fueled Vehicles.

In addition to limiting exhaust from idling trucks, CARB also promulgated emission standards for off-road diesel construction equipment of greater than 25 horsepower (hp), such as bulldozers, loaders, backhoes and forklifts, as well as many other self-propelled off-road diesel vehicles. The In-Use Off-Road Diesel-Fueled Fleets regulation adopted by CARB on July 26, 2007 aims to reduce emissions by installation of diesel soot filters and encouraging the retirement, replacement, or repower of older, dirtier engines with newer emission-controlled models (CCR Title 13, Section 2449). The compliance schedule requires full implementation by 2023 in all equipment for large and medium fleets and by 2028 for small fleets. While the goal of this measure is primarily to reduce

public health impacts from diesel emissions, compliance with the regulation has shown an increase in energy savings in the form of reduced fuel consumption from more fuel-efficient engines.

Sustainable Communities Strategy

Adopted by the State on September 30, 2008, the Sustainable Communities and Climate Protection Act of 2008, or SB 375, establishes mechanisms for the development of regional targets for reducing passenger vehicle GHG emissions. Pursuant to SB 375, on April 7, 2016, the Southern California Association of Governments (SCAG) adopted the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), which achieves and exceeds the GHG emission-reduction targets set by CARB by demonstrating an 8 percent reduction in vehicular emissions by 2020, an 18 percent reduction by 2035, and a 21 percent reduction by 2040 as compared to the 2005 level on a per capita basis.

In addition, in September 2020, SCAG adopted the 2020-2045 RTP/SCS, which is an update to the previous 2016-2040 RTP/SCS. Using growth forecasts and economic trends, the 2020-2045 RTP/SCS provides a vision for transportation throughout the region for the next 25 years. The 2020-2045 RTP/SCS successfully achieves and exceeds the GHG emission-reduction targets set by CARB. Compliance with and implementation of 2020-2045 RTP/SCS policies and strategies would have the co-benefits of reducing per capita VMT and corresponding decreases in per capita transportation-related fuel consumption.

Refer to Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR for details regarding these applicable policies and strategies.

California Environmental Quality Act

In accordance with CEQA and Appendix F, Energy Conservation, of the CEQA Guidelines, in order to assure that energy implications are considered in project decisions, EIRs are required to include a discussion of the potential significant energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy. Appendix F of the CEQA Guidelines provides a list of energy-related topics that should be analyzed in the EIR. In addition, while not described or required as significance thresholds for determining the significance of impacts related to energy, Appendix F provides the following topics that the lead agency may consider in the discussion of energy use in an EIR, where topics are applicable or relevant to the project:

- The project’s energy requirements and its energy use efficiencies by amount and fuel type for each stage of the project including construction, operation, maintenance, and/or removal. If appropriate, the energy intensiveness of materials may be discussed;
- The effects of the project on local and regional energy supplies and on requirements for additional capacity;
- The effects of the project on peak and base period demands for electricity and other forms of energy;
- The degree to which the project complies with existing energy standards;
- The effects of the project on energy resources;
4. Environmental Impacts Analysis

4.3 Energy

- The project’s projected transportation energy use requirements and its overall use of efficient transportation alternatives.
- The degree to which the project design and/or operations incorporate energy-conservation measures, particularly those that go beyond City requirements.
- Whether the Project conflicts with adopted energy conservation plans.

Regional

SoCalGas, along with five other California utility providers released the 2020 California Gas Report, presenting a forecast of natural gas supplies and requirements for California through the year 2035. This report predicts gas demand for all sectors (residential, commercial, industrial, energy generation and wholesale exports) and presents best estimates, as well as scenarios for hot and cold years. Overall, SoCalGas predicts a decrease in natural gas demand in future years due to a decrease in per capita usage, energy efficiency policies, and the State’s transition to renewable energy displacing fossil fuels, including natural gas.21

The Project Site is located within the planning jurisdiction of SCAG, as is all of Los Angeles County. SCAG’s first-ever SCS was included in the 2012-2035 RTP/SCS, which was adopted by SCAG in April 2012. The goals and policies of that SCS that reduced per capita VMT (and resulted in corresponding decreases in per capita transportation-related fuel consumption) focused on transportation and land use planning that included building infill projects, locating residents closer to where they work and play, and designing communities so there is access to high quality transit service.

SCAG has since adopted the 2020-2045 RTP/SCS, which is an update to the previous 2016-2040 RTP/SCS.22 The goals and policies of the 2020-2045 RTP/SCS builds from the previous two versions of the RTP/SCS and provides strategies for reducing per capita VMT. These strategies include supporting projects that encourage diverse job opportunities for a variety of skills and levels of education, recreation, and a full-range of shopping, entertainment, and services, all within a relatively short distance; encouraging employment development around current and planned transit stations and neighborhood commercial centers; encouraging the implementation of a “Complete Streets” policy that meets the needs of all users of the streets, roads and highways including bicyclists, children, persons with disabilities, motorists, electric vehicles, movers of commercial goods, pedestrians, users of public transportation, and seniors; and supporting alternative-fueled vehicles. Refer to Section 4.5, Greenhouse Gas Emissions, of this Draft EIR for additional details regarding the 2020-2045 RTP/SCS.

Local

Culver City Municipal Code

The City participates in an environmental recognition program, California Green Communities. The program helps cities develop strategies to reduce carbon emissions and increase energy efficiency in their community. In addition, the City has adopted green building ordinances to reduce

GHG emissions for new development. Pursuant to the Culver City Municipal Code (CCMC) Chapter 15.02.1005, the City requires 1 kilowatt (kw) of PV power installed per 10,000 square feet (sf) of new development. Under Chapter 17.320.035 of the CCMC, the City goes beyond CALGreen Code standards and requires at least 20 percent EV capable parking spaces, 10 percent EV ready parking spaces, and 10 percent EV charging stations for both new residential and retail developments. Additionally, Sections 4.408.1 and 5.408.1 Construction Waste Management require the recycle and/or salvage for reuse a minimum of 75 percent of nonhazardous construction and demolition waste.

In 2009, the City adopted the Green Building Program as CCMC Chapter 15.02.100, which contains a number of GHG reducing features such as enhanced building insulation, low-flow water fixtures, and efficient lighting and heating, ventilation, and air conditioning (HVAC) systems. An example of the City’s Green Building Program requirements would be all lighting has to be either fluorescent, LED or other type of high-efficiency lighting. As well, specific feature for parking garages requires all new lighting to be motion sensor controlled and the minimum base level lighting would use high efficiency lighting.

Culver City Bicycle & Pedestrian Action Plan

As discussed in Section 4.7, *Land Use and Planning*, the Circulation Element provides objectives and policies to encourage the use of public transit and provide safe and attractive pedestrian facilities thereby encouraging more people to reduce automobile travel in favor of alternative forms of transportation. The City updated the Bicycle & Pedestrian Master Plan with the Action Plan which received public input from 2017 through 2019. The Action Plan was adopted by the City Council in June 2020. The Action Plan establishes the visions and values that focus on establishing walking and cycling as viable modes of travel for all trip types. The Action Plan aims to provide a safe, convenient, and accessible active transportation network. The Action Plan includes goals to support increased access to neighborhood destinations and transit stations, empowering residents to live a more active lifestyle, and increasing affordability and collaboration for transportation within the community. The approved Action Plan shows that both Jefferson Boulevard and Sepulveda Boulevard, immediately adjacent to the Project Site, are planned as Class IV Separated Bikeways.

Clean Power Alliance

In February 2019 for residential customers and May 2019 for non-residential customers, Clean Power Alliance (CPA) became the new electricity supplier for Culver City. With this change, CPA

26 As defined by Caltrans, a Class IV separated bikeway is an on-street facility that is physically separated from other motor vehicle traffic by a vertical element or barrier, such as a curb, bollards, or vehicle parking aisle.
purchases the renewable energy resources for electricity and SCE delivers it to Culver City customers. The CPA is a Joint Powers Authority made up of public agencies across Los Angeles and Ventura counties working together to bring clean, renewable power to Southern California. With the recent switch in energy providers, electricity customers in Culver City are automatically defaulted to have 100 percent renewable energy serving their electricity needs. Alternatively, customers can opt to have their electricity power consisting of 50 percent renewable content or 36 percent, or opt out of the CPA to remain with SCE as their provider. The Project’s energy analyses conservatively assume the Project will remain with SCE as their electricity provider and does not take additional credit for renewable energy beyond the expected SCE renewable energy percentage for year 2022 based on the required renewables by year 2024 under SB 100.27

4.3.4 Environmental Impacts

Methodology

Construction

Construction of the Project would consume energy, including transportation fuels (i.e. diesel and gasoline), as a result of the use of heavy-duty construction equipment, on-road trucks, and construction workers commuting to and from the Project Site. Electricity consumption would be limited to the use of electrically powered equipment, hand tools and/or small equipment, nighttime lighting, and potentially for construction trailers that could be located on-site.

Based on the proposed development program and engineering estimates that form the basis of the construction-related impact analyses, heavy-duty construction equipment would be primarily diesel-fueled. This assumption that diesel fuel would be used for all additional equipment represents the most conservative scenario for maximum potential energy use during construction. Energy demand (specifically fuel consumption) from heavy-duty construction equipment is estimated based on the equipment analyzed in the California Emissions Estimator Model (CalEEMod), consistent with the air quality analysis in Section 4.1, Air Quality, and Section 4.5, Greenhouse Gas Emissions, of this Draft EIR, and fuel consumption data from the CARB OFFROAD model. Calculation details are provided in Appendix D of this Draft EIR.

Operation

Operation of the Project would consume energy in the form of electricity and natural gas for building heating, cooling, cooking, lighting, water demand and wastewater treatment, consumer electronics, electric vehicle charging, and other energy needs; transportation-fuels, primarily gasoline, for vehicles traveling to and from the Project; and diesel consumption for the maintenance and testing of emergency generator.

Annual electricity and natural gas usage for the Project’s buildings were estimated using CalEEMod. Building energy consumption was based on the size of the proposed development, energy use factors, and energy demand factors for water use (purification and transportation). The

27 For the purposes of estimating energy demand, the analysis conservatively assumes the Project would not switch electricity providers from SCE to the CPA (i.e., does not take any credit for 36 percent, 50 percent, or 100 percent renewable electricity, depending on the selected CPA plan). Should the Project switch electricity providers from SCE to the CPA, the Project’s electricity-related emissions would be lower than those disclosed in this section.
energy usage takes into account building energy standards pursuant to the 2019 Title 24 Building Standards Code, CALGreen Code, and the City’s Green Building Program. Physical and operational Project characteristics, such as compliance with Title 24 Building Code and City’s Green Building Program, for which sufficient data are available to quantify the reductions from building energy and resource consumption have been included in the quantitative analysis. The energy demand (i.e., electricity, natural gas, and fuel consumption from vehicle trips) estimated for existing uses on the Project Site that would demolished and removed to support development of the Project is subtracted from the estimated Project demand to determine the net increase (Project minus existing) in energy consumption.

As described above, the CPA became the new electricity supplier for Culver City in February 2019 for residential customers and May 2019 for non-residential customers. The City has chosen 100 percent Green Power as part of their commitment to protecting the environment and building resiliency. However, the City and CPA allow for the individual user’s selection of lower percent renewable power or to stay with SCE’s renewable generation percentage. As previously stated, to provide a conservative analysis and for consistency with Section 4.5, Greenhouse Gas Emissions, the energy analysis assumes all electricity is provided by SCE. While the Project would consume renewable energy, it would not generate all of the energy onsite (i.e. PV solar systems), therefore the Project would still be pulling power from SCE’s electricity resources. The Project would implement PV solar in compliance with the City’s Green Building Program which, at a minimum requires 1 kW of solar for every 10,000 sf. This results in a minimum of an approximately 87 kW system. Additionally, the Project would be required to provide 20 percent EV capable spaces, 10 percent EV charging stations, and 10 percent EV-ready spaces, resulting in a minimum of 132 EV capable spaces, 63 EV charging stations, and 63 EV-ready spaces. However, as the annual use of the charging stations upon Project buildout cannot be predicted, all vehicles accessing the Project are conservatively assumed to be either gasoline or diesel fueled.

Gasoline and diesel consumption for transportation from residents, employees, and visitors to the Project Site was estimated based on the predicted number of trips to and from the Project Site determined in the Transportation Study for the Project (Appendix J of this Draft EIR). The estimated fuel economy for vehicles is based on fuel consumption factors from CARB EMFAC model (specifically EMFAC 2017 was incorporated into CalEEMod and used for the analysis). Fuel consumption factors were based on the Project’s buildout year of 2024. As discussed above, EMFAC is incorporated into CalEEMod, which is a state-approved emissions model used for the Project’s air quality and GHG emissions assessment. Therefore, this energy assessment is consistent with the modeling approach used for other environmental analyses in this Draft EIR and consistent with general CEQA standards. Energy consumption from stationary sources would include diesel fuel from emergency generator maintenance and testing. Calculation details are provided in Appendix D of this Draft EIR.

28 The CPA allows for 100 percent, 50 percent, and 36 percent renewable energy content as well as the option to opt out of the program all together. Assuming that all of the City’s residents opt out of the program is a highly conservative assumptions and therefore the analysis will likely overestimate net Project emissions.
Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to Energy if it would:

- **ENE-1** Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or
- **ENE-2** Conflict with or obstruct a state or local plan for renewable energy or energy efficiency.

Project Characteristics and Project Design Features

Project Characteristics

The Project would demolish and replace the existing commercial buildings and improvements on the Project Site with 230 residential units and 66,500 sf of commercial uses, including a market, gym/studio fitness center, retail/restaurant uses and office uses.

The Project would incorporate sustainable design features that would reduce energy demand. Energy efficiency, water conservation, and the reduction of GHG emissions would be considered in the design, construction, and operation of the building and its proposed new uses. Some of the Project’s proposed design features that would contribute to energy efficiency include energy-efficient appliances, water-efficient plumbing fixtures and fittings, and water-efficient landscaping. All Project components would, at a minimum, meet Culver City’s mandatory Green Building Program requirements. As mentioned above, the Project would supply 1 kW of solar PV power per 10,000 square feet. In accordance with the CCMC, which goes beyond the CALGreen Code requirements for EV infrastructure, infrastructure for EV charging stations for both the residential and retail uses on the Project Site would be provided. The Project would include 132 EV capable spaces, 66 EV-ready spaces, and 66 spaces which would have full EV chargers and stations.

Project Design Features

No specific Project Design Features are proposed with regard to energy.

Project Impacts

Threshold ENE-1: The Project would have a potentially significant impact on energy if it would result in wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation.

Impact Statement ENE-1a: Project construction would utilize fuel-efficient equipment, comply with idling restrictions, regulations, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. Therefore, Project construction would not result in the wasteful, inefficient, or unnecessary consumption of energy resources, and impacts would be less than significant.
Construction

Construction of the Project would result in energy consumption from the use of heavy-duty construction equipment, on-road trucks, and construction workers commuting to and from the Project Site.

Electricity would be used during construction to provide temporary power for lighting and electronic equipment (e.g., computers, etc.) and to power certain construction equipment (e.g., hand tools or other electric equipment). Energy use during construction would generally not result in a substantial increase in on-site electricity consumption and would be substantially less than the energy use under existing conditions. Electricity use during construction would be variable depending on lighting needs and the use of electric-powered equipment and would be temporary for the duration of construction activities. It is expected that construction electricity use would be temporary and negligible over the long-term.

Based on the proposed development program and engineering estimates that form the basis of the construction-related impact analyses, heavy-duty construction equipment would be primarily diesel-fueled. The assumption that diesel fuel would be used for most equipment represents the most conservative scenario for maximum potential energy use during construction. The estimated total diesel fuel that would be consumed by heavy-duty construction equipment is shown in Table 4.3-4, Summary of Energy Use During Project Construction. Calculation details are provided in Appendix D of this Draft EIR.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Total Quantity</th>
<th>Annual Average Quantity During Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Road Construction Equipment</td>
<td>113,624 gallons</td>
<td>52,364 gallons</td>
</tr>
<tr>
<td>Off-Road Construction Equipment</td>
<td>0 gallons</td>
<td>0 gallons</td>
</tr>
<tr>
<td>Total Gasoline</td>
<td>113,624 gallons</td>
<td>52,634 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Road Construction Equipment</td>
<td>534,359 gallons</td>
<td>246,264 gallons</td>
</tr>
<tr>
<td>Off-Road Construction Equipment</td>
<td>310,323 gallons</td>
<td>143,015 gallons</td>
</tr>
<tr>
<td>Total Diesel</td>
<td>844,682 gallons</td>
<td>389,279 gallons</td>
</tr>
</tbody>
</table>

* Totals may not add up due to rounding of decimals.

It is estimated that a maximum of approximately 9,892 one-way truck trips would be required to haul the material to off-site reuse and disposal facilities over the approximately 26 months of construction. The Project is estimated to generate approximately 6,432 one-way vendor truck trips for the delivery of building materials and supplies to the Project Site over the construction period. Based on CARB’s on-road vehicle emissions model, EMFAC2017, heavy-duty haul trucks and vendor trucks operating in the South Coast Air Basin would have an estimated average fuel economy of approximately 6.6
and 8.1 miles per gallon in 2022. Although construction would occur over 26 months, 2022 fuel economy values were used to provide a conservative assessment as fuel economies would increase in future years.

The number of construction workers that would be required would vary based on the phase of construction and activity taking place. The transportation fuel required by construction workers to travel to and from the Project Site would depend on the total number of worker trips estimated for the duration of construction activity. The total gasoline fuel was estimated for workers and is also included in Table 4.3-4.

For comparison purposes only, and not for the purpose of determining significance, the annual average fuel usage would represent approximately 0.002 percent of the 2019 annual on-road gasoline-related energy consumption and 0.2 percent of the 2019 annual diesel fuel-related energy consumption in Los Angeles County, as shown in Appendix D of this Draft EIR.

Transportation fuels (gasoline and diesel) are produced from crude oil, which can be domestic or imported from various regions around the world. Based on current proven reserves, crude oil production would be sufficient to meet over 50 years of worldwide consumption. Vehicles that would be used by construction workers would comply with Corporate Average Fuel Economy fuel economy standards, which would result in more efficient use of transportation fuels (lower consumption). Vehicles that would be used by construction workers would also comply with Pavley and LCFS which are designed to reduce vehicle GHG emissions, but would also result in fuel savings in addition to compliance with Corporate Average Fuel Economy standards.

Construction of the Project would utilize fuel-efficient equipment consistent with State and federal regulations, such as fuel efficiency regulations in accordance with the CARB Pavley Phase II standards, the anti-idling regulation in accordance with CCR Title 13, Section 2485 and fuel requirements in accordance with CCR Title 17, Section 93115, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. While these regulations are intended to reduce construction emissions, compliance with the anti-idling and emissions regulations discussed above would also result in fuel savings from the use of more fuel-efficient engines.

Based on the analysis above, construction would utilize energy only for necessary on-site activities and to transport construction materials, excavated fill, and demolition debris to and from the Project Site. As discussed above, idling restrictions and the use of cleaner, energy-efficient equipment would result in less fuel combustion and energy consumption and thus reduce the Project’s construction-

31 As mentioned under Subsection 4.3.3, Regulatory Framework, Assembly Bill 1493 (AB 1493)/Pavley Regulations, in September 2019, the USEPA published the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule in the federal register (Federal Register, Vol. 84, No. 188, Friday, September 27, 2019, Rules and Regulations, 51310-51363) that maintains the vehicle miles per gallon standards applicable in model year 2020 for model years 2021 through 2026.

California and 23 other states and environmental groups in November 2019 in U.S. District Court in Washington, filed a petition for the USEPA to reconsider the published rule. The Court has not yet ruled on these lawsuits.
related energy use. Therefore, construction of the Project would not result in the wasteful, inefficient, and unnecessary consumption of energy, and impacts would be less than significant.

Impact Statement ENE-1b: Project operations include sustainable design features that would comply with energy efficiency regulatory requirements. Furthermore, the Project’s land use characteristics (such as proximity to transit and a variety of uses) and location would minimize vehicle trips and VMT. Therefore, Project operations would not result in the wasteful, inefficient, or unnecessary consumption of energy resources, and impacts would be less than significant.

Operation

Operational energy consumption would occur as a result of the building’s energy needs and the use of transportation fuels (e.g., diesel and gasoline) associated with vehicles traveling to and from the Project Site. This analysis estimates the maximum operational energy consumption to evaluate the Project’s associated impacts on energy resources.

Daily operation of the Project would consume energy in the form of electricity and natural gas. Additionally, energy would be consumed off-site for the conveyance and treatment of water, wastewater, and the disposal of solid waste. Building energy use factors and water demand factors from CalEEMod, consistent with the Project analyses conducted for air quality and greenhouse emissions, are used to estimate building energy use. The Project’s estimated net operational energy demand is provided in **Table 4.3-5, Project Operational Energy Usage**. The Project would install solar electric PV systems, as required to meet local applicable Codes. The Project would be designed to meet the applicable standards of the City’s mandatory Green Building Program requirements such as, energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping. These energy saving features are included in the electricity estimates in Table 4.3-5. As previously discussed, with the City’s recent change to CPA, it is anticipated that the Project would consume electricity from renewable sources and would have no impact on SCE’s electricity generation. However, as there is the opportunity to purchase varying amounts of renewable electricity through the CPA as well as opt out of CPA all together, the analysis conservatively assumes the Project opts out of CPA with respect to determining impacts from electrical consumption. Calculation details are provided in Appendix D of this Draft EIR.

Table 4.3-5

Summary of Annual Net New Energy Use During Project Operation

<table>
<thead>
<tr>
<th>Energy Typeab</th>
<th>Annual Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>Existing Site</td>
<td>657 MWh</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>6,027 MWh</td>
</tr>
<tr>
<td>Total Net Electricity</td>
<td>5,370 MWh</td>
</tr>
<tr>
<td>Percentage of SCE’s 2018 Sales</td>
<td>0.006%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
</tr>
<tr>
<td>Existing Site</td>
<td>2,214 MMBtu</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>6,607 MMBtu</td>
</tr>
<tr>
<td>Total Net Natural Gas</td>
<td>4,393 MMBtu</td>
</tr>
<tr>
<td>Percentage of SoCalGas’ 2024 Sales</td>
<td>0.0003%</td>
</tr>
</tbody>
</table>
Energy

Transportation & Generator

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Annual Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Site</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>212,337 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td>35,623 gallons</td>
</tr>
<tr>
<td>Proposed Project</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>386,824 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td>75,693 gallons</td>
</tr>
<tr>
<td>Total Net Transportation – Gasoline</td>
<td>174,487 gallons</td>
</tr>
<tr>
<td>Percentage of Los Angeles County Gasoline Consumption</td>
<td>0.005%</td>
</tr>
<tr>
<td>Total Net Transportation – Diesel</td>
<td>40,071 gallons</td>
</tr>
<tr>
<td>Percentage of Los Angeles County Diesel Consumption</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

kWh = kilowatt-hours

MMBtu = million British thermal units

a Detailed calculations are provided in Appendix D of this Draft EIR.

b Project electricity and natural gas estimates assume compliance with applicable 2019 Title 24 and CALGreen Code requirements.

c Modeling provided in Appendix D included a 15,000 sf Machado Park. Machado Park, as described in this Draft EIR, is now 13,200 sf, and the modeling estimates presented are conservative as a reduction in open space would similarly result in a decrease in area emissions (landscaping) as well as solid waste and water consumption.

SOURCE: ESA, 2020.

Electricity

As shown in Table 4.3-5, with compliance with 2019 Title 24 standards and applicable CALGreen requirements, buildout of the Project would result in a projected net increase in the on-site demand for electricity totaling approximately 5,370 MWh per year. This includes the incorporation of approximately 87 kW of solar PV power that is required for the total square footage under the CCMC Section 15.02.1110 and 2019 Title 24 Standards.

The Project would include building features such as energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping. All Project components would, at a minimum, meet the City’s Green Building Program requirements. These measures are not quantitatively included in this analysis and would further reduce the Project’s energy demand beyond that stated in Table 4.3-5.

SCE is required to procure at least 33 percent of its energy portfolio from renewable sources by 2020. With the passage of SB 100 in September 2018, SCE will be required to update its long-term plans to demonstrate compliance including providing 60 percent of its energy portfolio from renewable sources by December 31, 2030, and ultimately planning for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045. SCE’s current sources include wind, solar, eligible hydroelectric, biomass/biowaste, and geothermal sources. These sources accounted for 35 percent of SCE’s overall energy mix in 2019, the most recent year for which data are available.32

32 SCE, Power 2019 Power Content Label, Southern California Edison.
Based on SCE’s 2019 Annual Report, SCE total system sales for 2018-2019 fiscal year (the latest data available) was 84,654,000 MWh of electricity.\(^{33}\) As such, the Project-related net increase in annual electricity consumption of 5,370,034 kWh per year would represent approximately 0.006 percent of SCE’s total energy sales. In addition, as previously described, the Project would incorporate a variety of energy conservation measures to reduce energy usage. Therefore, operation of the Project would not result in the wasteful, inefficient, or unnecessary consumption of electricity.

Natural Gas

With compliance with 2019 Title 24 standards and applicable CALGreen Code requirements, buildout of the Project is projected to generate a net increase in the on-site demand for natural gas totaling approximately 4,393 MMBtu per year. As discussed above, in addition to complying with applicable regulatory requirements regarding energy conservation (e.g., California Building Energy Efficiency Standards and CALGreen Code), the Project will implement sustainability features to further reduce energy use. Consistent with regulatory requirements and the City’s Green Building Program, the Project would also include building features that would include such items as energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping.

Based on the 2020 California Gas Report, the California Energy and Electric Utilities, a collective of California utility companies, estimates natural gas supplies within SoCalGas’ planning area will be approximately 1,300,164,675 MMBtu in 2024.\(^{34}\) The Project would account for approximately 0.0003 percent of the 2024 forecasted consumption in SoCalGas’ planning area.

As previously described, the Project incorporates a variety of energy conservation measures and features to reduce energy usage and minimize energy demand. Therefore, operation of the Project would not result in the wasteful, inefficient, or unnecessary consumption of natural gas.

Transportation and Generator Energy

During operation, Project-related traffic would result in the consumption of petroleum-based fuels related to vehicular travel to and from the Project Site as well as from the operation of the emergency generator. As summarized in Table 4.3-5, the Project’s estimated net increase in petroleum-based fuel usage would be approximately 174,487 gallons of gasoline and 40,071 gallons of diesel per year.

Based on the CEC’s California Annual Retail Fuel Outlet Report, Los Angeles County consumed approximately 3,559,000,000 gallons of gasoline and approximately 584,74,600 gallons of diesel fuel in 2019.\(^{35}\) The Project would account for 0.005 percent of County gasoline consumption and 0.02 percent of County diesel consumption (based on the available County fuel sales data for the year 2019).

Additionally, in accordance with the CALGreen Code, infrastructure for EV charging stations for both the residential and retail uses on the Project Site would be provided and meet local applicable Codes. The Project would include 132 EV capable spaces, 66 EV charging stations, and 66 EV-
ready spaces. Alternative-fueled, electric, and hybrid vehicles, to the extent these types of vehicles would be purchased or utilized by residents and visitors to the Project Site, has the potential to reduce the Project’s consumption of gasoline and diesel; however, the effect may be minimal in the current vehicle market. According to EMFAC2017, electric vehicles are predicted to account for approximately 2.3 percent of the vehicle fleet total in 2025 (the first full Project buildout year) in the region, which would result in a small amount of fuel savings.

The Project would support Statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles for the reasons provided below. The Project Site is an infill location close to retail, restaurant, services, educational and religious institutions, and in close proximity to existing public transit stops, which would result in reduced VMT, as compared to a project of similar size and land uses at a location without close and walkable access to off-site destinations and public transit stops. The Project would provide a pedestrian-friendly design, promote access from the nearby transit, as well as provide bicycle storage areas for Project residents, employees, and visitors. The Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road. The Paseo Courtyard, located between the retail uses at Sepulveda Boulevard and Jefferson Boulevard would provide open space for people to gather and interact with the retail. As a result, operation of the Project would provide residents, employees, and visitors with alternative transportation options. As with the Project, other future development projects would be expected to reduce VMT by encouraging the use of alternative modes of transportation and other design features that promote VMT reductions consistent with applicable provision of the SCAG 2020-2045 RTP/SCS for the land use type.

Furthermore, the Project would be consistent with the energy efficiency policies emphasized by the 2020-2045 RTP/SCS. The Project would not conflict with the 2020-2045 RTP/SCS goals and benefits intended to improve mobility and access to diverse destinations, provide better “placemaking,” provide more transportation choices, and reduce vehicular demand and associated emissions. Therefore, the Project would not conflict with the energy reduction-related actions and strategies contained in the 2020-2045 RTP/SCS.

As the above discussion demonstrates, the Project would minimize operational transportation fuel demand consistent with and not in conflict with State, regional, and City goals. Therefore, operation of the Project would not result in the wasteful, inefficient, and unnecessary consumption of energy, and impacts would be less than significant.

Consistency with Energy Plans

Threshold ENE-2: The Project would have a potentially significant impact on energy if it would conflict with or obstruct a state or local plan for renewable energy or energy efficiency.
Impact Statement ENE-2: The Project would include a number of sustainable energy efficiency features to support the use of renewable energy and energy efficiency goals. The Project would support and not conflict with or obstruct a state or local plan for renewable energy or energy efficiency. Therefore, impacts would be less than significant.

As discussed above, the Project would incorporate green building design features such as solar electric PV systems and electric vehicle charging parking spaces, consistent with the energy efficiency standards in the City’s Green Building Program and CALGreen Code.

The Project would not conflict with the 2020-2045 RTP/SCS goals and benefits intended to improve mobility and access to diverse destinations, provide better “placemaking,” provide more transportation choices, and reduce vehicular demand and associated emissions. The Project would provide a pedestrian-friendly design, promote access from the nearby transit, as well as provide bicycle storage areas for Project residents, employees, and visitors. The Project would install long-term and short-term bicycle parking, which have the potential to reduce fuel consumption, as well as criteria pollutant and GHG emissions. Further, the Project would install EV charging spaces.

The Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. The Culver City Bus has multiple stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Los Angeles County Metropolitan Transportation Authority (Metro) E (Expo) Line Light Rail at the La Cienga Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro C (Green) Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service to the Metro E (Expo) Line Light Rail at the Expo/Sepulveda Station. The Metro E (Expo) Line provides service between downtown Los Angeles and Santa Monica, with connections to the Metro B (Red), D (Purple), B (Blue), and J (Silver) Lines. The Project’s specific location in close proximity to bus routes, its close proximity to off-site retail, restaurant, commercial, and job destinations, and its highly walkable environment support the conclusion from this analysis that the Project has been properly located so that its development would minimize VMT.

As a result, the Project would support Statewide efforts to improve transportation energy efficiency and reduce wasteful or inefficient transportation energy consumption with respect to private automobiles. Overall the Project’s features would support and promote the use of renewable energy and energy efficiency, therefore, impacts would be less than significant.

Cumulative Impacts

Cumulative impacts occur when impacts that are significant or less than significant from a proposed project combine with similar impacts from other past, present, or reasonably foreseeable projects in a similar geographic area. Based on the information presented in Chapter 3, Environmental Setting, of this Draft EIR, there are 27 other pending projects located within the vicinity of the Project Site. The geographic context for the cumulative analysis of electricity is SCE’s service area and the geographic context for the cumulative analysis of natural gas is SoCalGas’ service area. While the geographic context for transportation-related energy use is more difficult to define, it is
meaningful to consider the Project in the context of County-wide consumption. Growth within these geographies is anticipated to increase the demand for electricity, natural gas, and transportation energy, as well as the need for energy infrastructure, such as new or expanded energy facilities.

ENE-1: Wasteful, Inefficient, and Unnecessary Use of Energy

Electricity

Buildout of the Project, related projects, and additional forecasted growth in SCE’s service area would cumulatively increase the demand for electricity supplies and infrastructure capacity. SCE total energy sales in 2019 (the latest data available) was 84,654,000 MWh of electricity. Based on the Project’s estimated net new electrical consumption of 5,370 MWh per year, the Project would account for approximately 0.006 percent of SCE’s total sales in the Project’s buildout year. Thus, although Project development would result in the use of renewable and non-renewable electricity resources during construction and operation, which could limit future availability, the use of such resources would be on a relatively small scale, would be reduced by measures making the Project more energy-efficient, and would be consistent with growth expectations for SCE’s service area. Furthermore, as with the Project, during construction and operation, other future development projects would be expected to incorporate energy conservation features, comply with applicable regulations, including the 2019 Title 24 standards and CALGreen Code, and incorporate mitigation measures, as necessary.

Additionally, as discussed above, SCE is required to procure a minimum of 33 percent of its energy portfolio from eligible renewables sources by 2020. SCE’s current sources of renewable energy include biomass and biowaste, geothermal, hydroelectric, solar and wind, and accounted for 35 percent of SCE’s overall energy mix in 2019, the most recent year for which data are available. This represents the available off-site renewable sources of energy that could meet the Project’s and related projects energy demand. Therefore, the Project and related projects would comply with the energy conservation plans and efficiency standards required to ensure efficient energy use. As such, the Project’s cumulative impacts related to wasteful, inefficient and unnecessary use of electricity would be less than significant.

Natural Gas

Buildout of the Project, related projects, and additional forecasted growth in SoCalGas’ service area would cumulatively increase the demand for natural gas supplies and infrastructure capacity. Based on the 2020 California Gas Report, the CEC estimates natural gas consumption within SoCalGas’ planning area will be approximately 3,435 million cf per day in 2024 (the Project’s

36 The CPA became the new electricity supplier for Culver City in February 2019 for residential customers and May 2019 for non-residential customers. Under the CPA all residential and commercial users will automatically be enrolled in the CPA program. However, the City and CPA allow for the individual user’s selection of lower percent renewable power or to stay with SCE’s renewable generation percentage. The CPA allows for 100 percent, 50 percent, and 36 percent renewable energy content as well as the option to opt out of the program all together. Assuming that all of the City’s residents opt out of the program is a highly conservative assumptions and therefore the analysis will likely overestimate net Project emissions.

38 SCE, 2019 Power Content Label, Southern California Edison.
The Project would account for approximately 0.0003 percent of the 2024 forecasted consumption in SoCalGas’ planning area. SoCalGas forecasts take into account projected population growth and development based on local and regional plans, and the Project’s growth and development would not conflict with those projections. Although Project development would result in the use of natural gas resources, which could limit future availability, the use of such resources would be on a relatively small scale, would be reduced by measures rendering the Project more energy-efficient, and would be consistent with regional and local growth expectations for SoCalGas’ service area. Related projects, as with the Project, would be required to evaluate energy impacts during construction and operation related to the wasteful, inefficient or unnecessary use of natural gas, incorporate energy conservation features, comply with applicable regulations including the Title 24 standards and CALGreen Code, and incorporate mitigation measures, as necessary. As such, the Project’s cumulative impacts related to wasteful, inefficient and unnecessary use of natural gas would be less than significant.

Transportation Energy

Buildout of the Project, related projects, and additional forecasted growth would cumulatively increase the demand for transportation-related fuel in the state and region. As described above, at buildout, the Project would consume a total net increase of 174,487 gallons of gasoline and 40,071 gallons of diesel per year. For comparison purposes, the transportation-related fuel usage for the Project would represent approximately 0.005 percent of the 2019 annual on-road gasoline and 0.02 percent of the annual on-road diesel-related energy consumption in Los Angeles County, as shown in Appendix D of this Draft EIR.

Additionally, as described above, petroleum currently accounts for 90 percent of California’s transportation energy sources; however, over the last decade the State has implemented several policies, rules, and regulations to improve vehicle efficiency, increase the development and use of alternative fuels, reduce air pollutants and GHGs from the transportation sector, and reduce vehicle miles traveled which would reduce reliance on petroleum fuels. The CEC predicts that the demand for gasoline and transportation fossil fuels in general will continue to decline over the next ten years primarily due to improvements in fuel efficiency and increased electrification.39

As discussed previously, the Project would be generally consistent with SCAG’s land use type for the area and would include some land use characteristics common to more compact areas that would encourage alternative transportation and a reduction in overall VMT. The Project Site would be located near Culver City Bus stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Metro E (Expo) Line Light Rail at the La Cienega Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro C (Green) Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service to the Metro E (Expo) Line Light Rail at the Expo/Sepulveda Station. The Metro E (Expo) Line provides service between downtown Los Angeles and Santa Monica, with connections to the Metro B (Red), D (Purple), B (Blue), and J (Silver) Lines. As a result, operation of the Project would provide residents, employees, and visitors

with alternative transportation options. As with the Project, other future development projects would be expected to reduce VMT by encouraging the use of alternative modes of transportation and other design features that promote VMT reductions consistent with applicable provision of the SCAG 2020-2045 RTP/SCS for the land use type.

The 2020-2045 RTP/SCS is a regional plan that addresses cumulative growth and resulting environmental effects and is applicable to the Project and related projects with respect to transportation energy efficiency. Related projects would be required under CEQA to evaluate if their respective developments would result in wasteful, inefficient or unnecessary use of transportation energy. Furthermore, related projects would be required to implement mitigation measures, as needed, if found to result in wasteful, inefficient or unnecessary use of transportation energy. Since the Project and related projects would be consistent with the 2020-2045 RTP/SCS, cumulative impacts due to wasteful, inefficient or unnecessary use of transportation fuel would be less than significant.

ENE-2: Consistency with State or Local Plans

Electricity

Buildout of the Project, related projects, and additional forecasted growth in SCE’s service area would cumulatively increase the demand for electricity supplies and on infrastructure capacity. The Project would incorporate energy efficiency measures outlined in that meet applicable required City and State energy plans and standards. Related projects, as with the Project, would be required to evaluate electricity conservation features and compliance with applicable electricity efficiency plans and standards including the Title 24 standards and CALGreen Code, and incorporate mitigation measures, as necessary. Related projects, as with the Project, would also be required to evaluate potential impacts related to consistency with the City’s Green Building Program, and local and regional supplies or capacity based on regional growth plans, such as the SCE energy supply projections for long-term planning. As such, the Project’s cumulative impacts due to conflicting with or obstruction of a state or local plan for renewable energy or energy efficiency would be less than significant.

Natural Gas

Buildout of the Project, related projects, and additional forecasted growth in SoCalGas’ service area would cumulatively increase the demand for natural gas supplies and on infrastructure capacity. However, as discussed above, SoCalGas forecasts take into account projected population growth and development based on local and regional plans, and the Project’s growth and development would not conflict with those projections.

Related projects, as with the Project, would be required to evaluate natural gas conservation features and compliance with applicable regulations including the Title 24 standards and CALGreen Code, and incorporate mitigation measures, as necessary. Related projects, as with the Project, would also be required to evaluate potential impacts related to consistency with the City’s Green Building Program, and local and regional supplies or capacity based on regional growth plans, such as the SoCalGas energy supply projections for long-term planning. As such, the Project’s cumulative impacts due to conflicting with or obstruction of a state or local plan for renewable energy or energy efficiency would be less than significant.
Transportation Energy

Buildout of the Project, related projects, and additional forecasted growth would cumulatively increase the demand for transportation-related fuel in the state and region. However, as discussed above, the Project would not conflict with the energy efficiency policies emphasized by the 2020-2045 RTP/SCS. The Project would support statewide efforts to improve transportation energy efficiency by locating at an infill location close to shopping centers and other destinations. Siting land use development projects at infill sites is consistent with the State’s overall goals to reduce VMT as outline in the 2020-2045 RTP/SCS for the region, which seeks improved access and mobility by emphasizing “growth in areas rich with destinations and mobility options.”

Related projects would need to demonstrate consistency with these goals and incorporate project design features or mitigation measures as required, which would also ensure related projects contribute to transportation energy efficiency. Therefore, the Project and related projects would incorporate land use characteristics consistent with state goals for reducing VMT, or incorporate mitigation measures.

4.3.5 Mitigation Measures

No mitigation measures are required.

4.3.6 Level of Significance After Mitigation

Not applicable. Project impacts are less than significant.

41 SCAG, 2020-2045 RTP/SCS, page 11.
This page left intentionally left blank
4.4 Geology and Soils – Paleontological Resources

4.4.1 Introduction

This section evaluates potential impacts on paleontological resources. As noted in Chapter 6, Other CEQA Considerations, of this Draft EIR, the City of Culver City (City) determined in the Initial Study, provided in Appendix A-2 of this Draft EIR, that the Project would result in less than significant impacts related to geology and soils, with the exception of paleontological resources. The analysis provided in this section is based in part on the Paleontological Resources Assessment Report,1 included as Appendix E of this Draft EIR.

Paleontology is a branch of geology that studies the life forms of the past, especially prehistoric life forms, through the study of plant and animal fossils. Paleontological resources represent a limited, non-renewable, and impact-sensitive scientific and educational resource. Fossil remains such as bones, teeth, shells, and leaves are found in the geologic deposits (rock formations) where they were originally buried. Paleontological resources include not only the actual fossil remains, but also the collecting localities, and the geologic formations containing those localities.

4.4.2 Environmental Setting

Existing Conditions

Regional Geology

The Project Site is located in the Los Angeles Basin, a structural depression approximately 50 miles long and 20 miles wide in the northernmost Peninsular Ranges Geomorphic Province.2 The Los Angeles Basin developed as a result of tectonic forces and the San Andreas fault zone, with subsidence occurring 18 million to 3 million years ago (Ma).3 While sediments dating back to the Cretaceous (upwards of 66 Ma) are preserved in the basin, continuous sedimentation began in the middle Miocene (around 13 Ma). Since that time, sediments have been eroded into the basin from the surrounding highlands, resulting in thousands of feet of accumulation. Most of these sediments are marine, until sea level dropped in the Pleistocene and deposition of the alluvial sediments that compose the uppermost units in the Los Angeles Basin began.4

The Los Angeles Basin is subdivided into four structural blocks, with the Project Site occurring in the Central Block, where sediments range from 32,000 to 35,000 feet thick. The Central Block is

1 Stewart, Joe D. and Fatima Clark, Paleontological Resources Assessment Report for the 11111 Jefferson Boulevard Mixed-Use Project, Culver City, California, October 2020. Provided in Appendix E of this Draft EIR.
wedge-shaped, extending from the Santa Monica Mountains in the northwest, where it is about 10 miles wide, to the San Joaquin Hills to the southeast, where it widens to around 20 miles across.\(^5\)

Site Geology

Review of geologic mapping indicates that Holocene-aged younger alluvial sediments occur at the surface across the Project Site. Younger alluvial sediments consist of silt, clay, and sand eroded from the nearby Baldwin Hills and other uplands.\(^6\) Due to the young age of these deposits, they are unlikely to preserve fossil resources at the surface and have low paleontological sensitivity; however, these sediments increase in age with depth, such that the deeper layers of this unit are of an age to preserve fossil resources (i.e., over 5,000 years old, as per the Society of Vertebrate Paleontology [SVP]).\(^7\)

Alluvial sediments that date to the middle Holocene or beyond have a rich fossil history in southern California and particularly the Los Angeles Basin.\(^8\)-\(^17\) The most common fossils include the bones of mammoth, bison, deer, and small mammals, but other taxa, including horse, lion, cheetah, wolf, camel, antelope, peccary, mastodon, capybara, and giant ground sloth, have been reported,\(^16\) as well as reptiles such as frogs, salamanders, and snakes.\(^17\) In addition to

\(^8\) Hudson, D. and B. Brattstrom, A small herpetofauna from the Late Pleistocene of Newport Beach Mesa, Orange County, California. Bulletin of the Southern California Academy of Sciences 76: 16-20, 1977.

\(^12\) Miller, L., A new fossil bird locality. Condor 44:283-284, 1941.

\(^17\) Hudson, D. and B. Brattstrom, A small herpetofauna from the Late Pleistocene of Newport Beach Mesa, Orange County, California. Bulletin of the Southern California Academy of Sciences 76: 16-20, 1977.
illuminating the striking differences between southern California in the past and today, this abundant fossil record has been vital in studies of extinction,18,19 ecology,20 and climate change.21

Geotechnical Report Review

Review of the *Report of Geotechnical Engineering Services* (Geotechnical Report)22 indicates that subsurface explorations were conducted at the Project Site by drilling four borings (B-1 through B4) to depths between 51.3 and 71.5 feet below ground surface (bgs) and advancing three Cone Penetrometer Test (CPT) probes (CPT-1 through CPT-3) to practical refusal at depths between 29.9 and 53.6 feet bgs. In summary, the surface conditions at the Project Site consist of asphalt concrete and aggregate base (2.5 to 7.5 inches bgs), followed by 12 to 16 feet “of stiff clay with variable sand content underlain by alternating layers and/or lenses of medium dense to very dense sand with variable fines content and medium stiff to very stiff clay with variable sand content. The sand generally becomes dense to very dense and there are fewer and thinner clay layers/lenses with increasing depth.”23 At 36 to 43 feet bgs, all borings encountered gray silt, sand, and clay that continued to the bottom of each boring. The geotechnical analysis did not assess the likely ages of the sediments or assign them to a particular geologic unit. While the exact depth to the high sensitivity sediments is unknown in the Project Site, it should be noted that Pleistocene-aged sediments are present at the surface approximately 0.30 and 0.40 miles east of the Project Site, including San Pedro Sand, Qsp; Baldwin Hills paleosol, Qop; Old sand dunes, Qos; and Older alluvium, Qoa.24 This indicates that similar sediments may be present at relatively shallow depths in the Project Site. Of more direct applicability is a newly documented fossil locality less than two miles north of the Project Site where Pleistocene vertebrate (bison), plant, and invertebrate fossils (marine mollusk remains) were found in similar blue gray silts, sands, and clay during construction monitoring of a mixed-use development.25 Thus, the sediments at the Project Site below 36 feet bgs are certainly of Pleistocene age. The fossiliferous blue gray sediment at the mixed-use development (from the newly documented fossil locality less than two miles north of the Project Site) was encountered at 17.5 to 33 feet bgs.26

LACM Records Search

The closest fossil localities from older alluvial sediments are LACM 4232, 3368, and 4250 that were recovered within several miles of the Project Site. LACM 4232 (also known as P-19-000172, or Los Angeles Man) yielded the remains of a fossil human at a depth of 12 to 13 feet bgs, LACM 3368 produced a fossil horse at an unknown depth, and LACM 4250 yielded remains of a fossil mammoth at an unknown depth.27

Additional fossil localities (LACM 1159, 3366, 3367, 3369, and 3370) are located along the Southern Pacific Railway near Ballona Creek and are approximately 2.15 to 3.75 miles away from the Project Site. These fossil localities were collected during excavations for the Outfall Sewer area in the 1920s. Most of these fossil localities, such as LACM 3366 (fossil camel), 3367 (fossil mastodon), and 3370 (sabretooth cat), did not record the depth at which the specimens were recovered. LACM 1159 yielded a fossil human at a depth of 19 to 23 feet bgs, while LACM 3369 yielded a fossil horse at a depth of 6 feet bgs.28

4.4.3 Regulatory Framework

The following section summarizes the applicable State laws and local guidelines that relate to paleontological resources.

State

California Environmental Quality Act

The California Environmental Quality Act (CEQA) Guidelines (Title 14, Chapter 3 of the California Code of Regulations [CCR], Section 15000 et seq.), define the procedures, types of activities, individuals, and public agencies required to comply with CEQA. As part of CEQA’s Initial Study process (CEQA Guidelines Section 15023, Appendix G, Section XIV, Part a), one of the questions that must be answered by the lead agency relates to paleontological resources: “Would the proposed project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?”

The loss of any identifiable fossil that could yield information important to prehistory, or that embodies the distinctive characteristics of a type of organism, environment, period of time, or geographic region, would be a significant environmental impact. Direct impacts to paleontological resources primarily concern the potential destruction of nonrenewable paleontological resources and the loss of information associated with these resources. This includes the unauthorized collection of fossil remains. If potentially fossiliferous bedrock or surficial sediments are disturbed, the disturbance could result in the destruction of paleontological resources and subsequent loss of information (significant impact). At the project-specific level, direct impacts can be mitigated to a less-than-significant level through the implementation of paleontological mitigation.

The CEQA threshold of significance for a significant impact to paleontological resources is reached when it is determined that a project would “directly or indirectly destroy a significant paleontological resource or unique geologic feature.” In general, for project sites that are underlain by paleontologically sensitive geologic units, the greater the amount of ground disturbance, the higher the potential for significant impacts to paleontological resources. For project sites that are directly underlain by geologic units with no paleontological sensitivity, there is no potential for impacts on paleontological resources unless sensitive geologic units which underlie the nonsensitive unit are also affected.

Public Resources Code Section 5097.5 and Section 30244

Other State requirements for paleontological resource management are included in Public Resources Code (PRC) Section 5097.5 and Section 30244. These statutes prohibit the removal of any paleontological site or feature from public lands without permission of the jurisdictional agency, define the removal of paleontological sites or features as a misdemeanor, and require reasonable mitigation of adverse impacts to paleontological resources from developments on public (State, county, city, district) lands.

Local

City of Culver City General Plan

The City’s General Plan does not include policies, goals, and objectives for paleontological resources; however, the City is currently preparing a General Plan update that will consider paleontological resources. The City follows State standards related to policies, goals, and objectives for paleontological resources.

4.4.4 Environmental Impacts

Methodology

The analysis of paleontological resources is based in part on a review of fossil, soil and rock inventories compiled, synthesized, and evaluated by the staff of the Vertebrate Paleontology Section of the Natural History Museum of Los Angeles County (LACM). The objective of the records search through the LACM was to determine the geological formations underlying the Project Site, whether any paleontological localities have previously been identified within the Project Site or in the same or similar formations near the Project Site, and the potential for excavations associated with the Project Site to encounter paleontological resources. These methods are consistent with the SVP guidelines for assessing the importance of paleontological resources in areas of potential environmental effect.

The potential to encounter paleontological resources during construction at the Project Site was also determined by reviewing the results of the records search, the geotechnical report for the Project, the geologic map that encompasses the Project Site, pertinent literature of the surrounding vicinity, and the proposed excavation parameters for the Project. Because the Project Site is entirely developed and lacks any visible native ground surface or potential for surface exposure of resources, a paleontological field survey was not undertaken.
4.4 Environmental Impacts Analysis
4.4.4 Geology and Soils – Paleontological Resources

Professional Standards and Guidelines

The SVP has established standard guidelines\(^{29-30}\) that outline professional protocols and practices for conducting paleontological resource assessments and surveys, monitoring and mitigation, data and fossil recovery, sampling procedures, and specimen preparation, identification, analysis, and curation. Most practicing professional vertebrate paleontologists adhere closely to the SVP’s assessment, mitigation, and monitoring requirements as specifically provided in its standard guidelines. Most state regulatory agencies with paleontological resource-specific Laws, Ordinances, Regulations, and Standards accept and use the professional standards set forth by the SVP.

As defined by the SVP,\(^{31}\) significant nonrenewable paleontological resources are:

- Fossils and fossiliferous deposits, here defined as consisting of identifiable vertebrate fossils, large or small, uncommon invertebrate, plant, and trace fossils, and other data that provide taphonomic, taxonomic, phylogenetic, paleoecologic, stratigraphic, and/or biochronologic information. Paleontological resources are considered to be older than recorded human history and/or older than middle Holocene (i.e., older than about 5,000 radiocarbon years).

As defined by the SVP,\(^{32}\) significant fossiliferous deposits are:

- A rock unit or formation which contains significant nonrenewable paleontologic resources, here defined as comprising one or more identifiable vertebrate fossils, large or small, and any associated invertebrate and plant fossils, traces, and other data that provide taphonomic, taxonomic, phylogenetic, ecologic, and stratigraphic information (ichnites and trace fossils generated by vertebrate animals, e.g., trackways, or nests and middens which provide datable material and climatic information). Paleontologic resources are considered to be older than recorded history and/or older than 5,000 years BP [before present].

Based on the significance definitions of the SVP,\(^{33-34}\) all identifiable vertebrate fossils are considered to have significant scientific value. This position is adhered to because vertebrate fossils are relatively uncommon, and only rarely will a fossil locality yield a statistically significant number of specimens of the same genus. Therefore, every vertebrate fossil found has the potential to provide significant new information on the taxon it represents, its paleoenvironment, and/or its distribution. In most instances, all geologic units in which vertebrate fossils have previously been found are considered to have high sensitivity. Identifiable plant and invertebrate fossils are

considered significant if found in association with vertebrate fossils or if defined as significant by project paleontologists, specialists, or local government agencies.

A geologic unit known to contain significant fossils is considered to be “sensitive” to adverse impacts if there is a high probability that earth-moving or ground-disturbing activities in that rock unit will either directly or indirectly disturb or destroy fossil remains. Paleontological sites indicate that the containing sedimentary rock unit or formation is fossiliferous. The limits of the entire rock formation, both areal and stratigraphic, therefore define the scope of the paleontological potential in each case.35

Fossils are contained within surficial sediments or bedrock, and are therefore not observable or detectable unless exposed by erosion or human activity. In summary, paleontologists cannot know either the quality or quantity of fossils prior to natural erosion or human-caused exposure. As a result, even in the absence of surface fossils, it is necessary to assess the sensitivity of rock units based on their known potential to produce significant fossils elsewhere within the same geologic unit (both within and outside of the study area), a similar geologic unit, or based on whether the unit in question was deposited in a type of environment that is known to be favorable for fossil preservation. Monitoring by experienced paleontologists greatly increases the probability that fossils will be discovered during ground-disturbing activities and that, if these remains are significant, successful mitigation and salvage efforts may be undertaken in order to prevent adverse impacts to these resources.

Paleontological Sensitivity

Paleontological sensitivity is defined as the potential for a geologic unit to produce scientifically significant fossils. This is determined by rock type, past history of the geologic unit in producing significant fossils, and fossil localities recorded from that unit. Paleontological sensitivity is derived from the known fossil data collected from the entire geologic unit, not just from a specific survey. In its “Standard Guidelines for the Assessment and Mitigation of Adverse Impacts to Non-renewable Paleontologic Resources,” the SVP36 defines four categories of paleontological sensitivity (potential) for rock units: high, low, undetermined, and no potential:

- **High Potential.** Rock units from which vertebrate or significant invertebrate, plant, or trace fossils have been recovered are considered to have a high potential for containing additional significant paleontological resources. Rocks units classified as having high potential for producing paleontological resources include, but are not limited to, sedimentary formations and some volcaniclastic formations (e.g., ashes or tephras), and some low-grade metamorphic rocks which contain significant paleontological resources anywhere within their geographical extent, and sedimentary rock units temporally or lithologically suitable for the preservation of fossils (e.g., middle Holocene and older, fine-grained fluvial sandstones, argillaceous and carbonate-rich paleosols, cross-bedded point bar sandstones, fine-grained marine sandstones, etc.).

- **Low Potential.** Reports in the paleontological literature or field surveys by a qualified professional paleontologist may allow determination that some rock units have low potential

for yielding significant fossils. Such rock units will be poorly represented by fossil specimens in institutional collections, or based on general scientific consensus only preserve fossils in rare circumstances and the presence of fossils is the exception not the rule, e. g. basalt flows or Recent colluvium. Rock units with low potential typically will not require impact mitigation measures to protect fossils.

- **Undetermined Potential.** Rock units for which little information is available concerning their paleontological content, geologic age, and depositional environment are considered to have undetermined potential. Further study is necessary to determine if these rock units have high or low potential to contain significant paleontological resources. A field survey by a qualified professional paleontologist to specifically determine the paleontological resource potential of these rock units is required before a paleontological resource impact mitigation program can be developed. In cases where no subsurface data are available, paleontological potential can sometimes be determined by strategically located excavations into subsurface stratigraphy.

- **No Potential.** Some rock units have no potential to contain significant paleontological resources, for instance high-grade metamorphic rocks (such as gneisses and schists) and plutonic igneous rocks (such as granites and diorites). Rock units with no potential require no protection nor impact mitigation measures relative to paleontological resources.

In accordance with the SVP guidelines, full-time monitoring of geologic units with high potential is generally recommended during any project-related ground disturbance. For geologic units with low potential, protection or salvage efforts will not generally be required. For geologic units with undetermined potential, field surveys by a qualified vertebrate paleontologist should be conducted to specifically determine the paleontologic potential of the rock units present within the study area.

Paleontological Resources Significance Criteria

Fossils are considered to be significant if one or more of the following criteria apply:37

1. The fossils provide information on the evolutionary relationships and developmental trends among organisms, living or extinct;
2. The fossils provide data useful in determining the age(s) of the rock unit or sedimentary stratum, including data important in determining the depositional history of the region and the timing of geologic events therein;
3. The fossils provide data regarding the development of biological communities or interaction between paleobotanical and paleozoological biotas;
4. The fossils demonstrate unusual or spectacular circumstances in the history of life; or
5. The fossils are in short supply and/or in danger of being depleted or destroyed by the elements, vandalism, or commercial exploitation, and are not found in other geographic locations.

Significant paleontological resources are determined to be fossils or assemblages of fossils that are unique, unusual, rare, uncommon, or diagnostically important. Significant fossils can include remains of large to very small aquatic and terrestrial vertebrates or remains of plants and animals previously not represented in certain portions of the stratigraphy. Assemblages of fossils that might

aid stratigraphic correlation, particularly those offering data for the interpretation of tectonic events, geomorphologic evolution, and paleoclimatology are also critically important.38

Thresholds of Significance

The significance threshold below is derived from the Environmental Checklist questions in Appendix G of the State CEQA Guidelines. Accordingly, a significant impact to paleontological resources would occur if the Project were to:

- **GEO-1**: Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

Project Characteristics and Project Design Features

Project Characteristics

As it relates to the evaluation of potential impacts on subsurface paleontological resources, the Project would replace the existing commercial buildings with 230 residential units and 66,500 sf of commercial uses, including a market, gym/studio fitness center, retail/restaurant uses and office uses. The Project would involve demolition of 35,011 sf of existing buildings on the Project Site to support the new mixed-use development. The maximum depth of ground disturbance is expected to reach depths of up to 25 feet bgs.

Project Design Features

There are no Project Design Features associated with paleontological resources.

Analysis of Project Impacts

Threshold GEO-1: The Project would have a potentially significant impact if it would directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

Impact Statement GEO-1: Younger Quaternary alluvium deposits (which have been assigned low-to-high paleontological potential increasing with depth) are present within the Project Site. These sediments are well known for preserving significant paleontological resources in the area. As a result, Project construction activities may directly or indirectly destroy unique paleontological resources or sites. Impacts to paleontological resources are therefore considered potentially significant.

Given the Project is in an urban developed location, there are no unique geologic features and unique geologic features are not discussed further.39 Analysis regarding the potential for unique paleontological resources are discussed further below.

As indicated previously, the Project Site is completely developed with three single story commercial buildings, surface parking, and landscaping, with no visible soil/sediment or rock outcrops to examine for paleontological resources or fossiliferous geological formations. The

39 Unique geologic features are typically topographic features such as hilltops, ridges, hillslopes, canyons, ravines, rock outcrops, water bodies, streambeds, or wetlands.
surficial sediments of the Project Site identified as younger Quaternary alluvium are assigned low-to-high paleontological sensitivity, increasing with depth. Based upon the depth at which fossils have been found within three miles of the Project Site (as shallow as 12 feet bgs) as indicated in the record search results from the LACM, it is estimated that the transition from low to high sensitivity sediments occurs at around 10 feet bgs. Since it is anticipated that excavations at the Project Site would exceed 10 feet in depth and would reach depths of up to 25 feet bgs, Project excavations have the potential to impact older alluvium determined as having a high sensitivity for retaining paleontological resources. Therefore, impacts on paleontological resources due to grading and excavation during construction are considered potentially significant.

Operation of the new facilities on the Project Site would not result in any further ground disturbing activities such as grading or excavation; therefore, there is no potential to encounter, alter, or disturb paleontological resources. No operational impacts would occur.

Cumulative Impacts

Some of the related projects identified in Chapter 3, Environmental Setting, could require excavation at depths that could potentially expose or damage paleontological resources. However, related projects that involve substantial excavation with the potential to encounter buried or subsurface paleontological resources during construction, are expected to be subject to mitigation measures to mitigate impacts on paleontological resources through construction monitoring programs and treatment and curation requirements for discovered fossils. With implementation of such mitigation measures, cumulative impacts from related projects are considered less than significant.

The Project is required to comply with the Mitigation Measures GEO-1 through GEO-4, thus ensuring proper identification, treatment and preservation of any resources that are encountered during excavation, which would reduce the potential for significant impacts on paleontological resources to less than significant levels. These measures require construction monitoring of excavation activities, and treatment and curation of discoveries, if encountered. Therefore, as impacts on paleontological resources from related projects would be less than significant with implementation of mitigation measures, and as the Project would mitigate its potential impacts to paleontological resources to a less than significant level, cumulative impacts would be less than significant.

4.4.5 Mitigation Measures

GEO-1: Prior to issuance of demolition permit, the Applicant shall retain a qualified Paleontologist to develop and implement a paleontological monitoring program for construction excavations that would encounter older alluvial sediments. A qualified Paleontologist is defined as a paleontologist meeting the criteria established by the Society for Vertebrate Paleontology (2010). The qualified Paleontologist shall supervise a paleontological monitor who shall be present at such times as required by the Paleontologist during construction excavations into older alluvial sediments. Paleontological resources monitoring shall be conducted for all ground disturbing activities that exceed 10 feet in depth in previously undisturbed sediments, and are therefore likely to impact high sensitivity older
alluvial sediments. Work in the upper 10 feet of the Project Site does not warrant monitoring. Monitoring shall consist of visually inspecting fresh exposures of rock for larger fossil remains and, where appropriate, collecting wet or dry screened sediment samples of promising horizons for smaller fossil remains. The frequency of monitoring inspections shall be determined by the Paleontologist and shall be based on the rate of excavation and grading activities, proximity to known paleontological resources or fossiliferous geologic formations (i.e., older alluvium deposits), the materials being excavated (i.e., native sediments versus artificial fill), and the depth of excavation, and if found, the abundance and type of fossils encountered. Full-time monitoring can be reduced to part-time inspections, or ceased entirely, if determined adequate by the Paleontologist.

GEO-2:

Prior to commencement of demolition or excavation activities, the Paleontologist shall attend a pre-grade/construction meeting to conduct construction worker paleontological resources sensitivity training for construction personnel. The training session, shall be carried out by the Paleontologist and shall focus on how to identify paleontological resources that may be encountered during earthmoving activities and the procedures to be followed in such an event. In the event construction crews are phased, additional trainings shall be conducted for new construction personnel. Documentation shall be retained demonstrating that construction personnel attended the training.

GEO-3:

If a potential fossil is found, the paleontological monitor shall be allowed to temporarily divert or redirect grading and excavation activities in the area of the exposed fossil to facilitate evaluation of the discovery. The Paleontologist shall establish an appropriate buffer area around the find where construction activities shall not be allowed to continue. Work shall be allowed to continue outside of the buffer area. At the Paleontologist’s discretion, and to reduce any construction delay, the grading and excavation contractor shall assist in removing rock/sediment samples for initial processing and evaluation. If the fossil is determined to be significant, the qualified Paleontologist shall implement a paleontological salvage program to remove the resources from their location, following the guidelines of the SVP (2010). Any fossils encountered and recovered shall be prepared to the point of identification and catalogued before they are submitted to their final repository. Any fossils collected shall be curated at a public, non-profit institution with a research interest in the material and with retrievable storage, such as the Natural History Museum of Los Angeles County, if such an institution agrees to accept the fossils. If no institution accepts the fossil collection, they shall be donated to a local school in the area for educational purposes. Accompanying notes, maps, and photographs shall also be filed at the repository and/or school.

If construction personnel discover any potential fossils during construction while the paleontological monitor is not present, regardless of the depth of work or location, work at the discovery location shall cease in a 50-foot radius of the discovery until the Paleontologist has assessed the discovery and recommended and implemented appropriate treatment as described earlier in this measure.

GEO-4:

Prior to the release of the grading bond, the qualified Paleontologist shall prepare a report summarizing the results of the monitoring and salvaging efforts, the methodology used in these efforts, as well as a description of the fossils collected and their significance. The report shall be submitted by the Applicant to the City,
the Natural History Museum of Los Angeles County, and representatives of other appropriate or concerned agencies to signify the satisfactory completion of the project and required mitigation measures.

4.4.6 Level of Significance after Mitigation

With implementation of the above mitigation measures, potentially significant impacts to paleontological resources would be reduced to a less-than-significant level.
4.5 Greenhouse Gas Emissions

4.5.1 Introduction

This section addresses greenhouse gas (GHG) emissions generated by construction and operation of the Project, inclusive of sustainability features incorporated into the Project design to reduce GHG emissions. The analysis also addresses consistency of the Project with applicable regulations, plans, and policies set forth by the State of California, South Coast Air Quality Management District (SCAQMD), Southern California Association of Governments (SCAG), and the City of Culver City (City) to reduce GHG emissions. Details regarding the GHG analysis are provided in the Greenhouse Gas Technical Appendix, provided in Appendix F of the Draft EIR.

4.5.2 Environmental Setting

Global climate change refers to changes in average climatic conditions on Earth as a whole, including changes in temperature, wind patterns, precipitation and storms. Historical records indicate that global climate changes have occurred in the past due to natural phenomena; however, current data increasingly indicate that the current global conditions differ from past climate changes in rate and magnitude. Global climate change attributable to anthropogenic (human) GHG emissions is currently one of the most important and widely debated scientific, economic and political issues in the United States and the world. The extent to which increased concentrations of GHGs have caused or will cause climate change and the appropriate actions to limit and/or respond to climate change are the subject of significant and rapidly evolving regulatory efforts at the federal and state levels of government.

GHGs are those compounds in the Earth’s atmosphere which play a critical role in determining temperature near the Earth’s surface. More specifically, these gases allow high-frequency shortwave solar radiation to enter the Earth’s atmosphere, but retain some of the low frequency infrared energy which is radiated back from the Earth towards space, resulting in a warming of the atmosphere. Not all GHGs possess the same ability to induce climate change; as a result, GHG contributions are commonly quantified in the units of equivalent mass of carbon dioxide (CO$_2$e). Mass emissions are calculated by converting pollutant specific emissions to CO$_2$e emissions by applying the proper global warming potential (GWP) value.1 These GWP ratios are available from the Intergovernmental Panel on Climate Change (IPCC). Historically, GHG emission inventories have been calculated using the GWPs from the IPCC’s Second Assessment Report (SAR). The IPCC updated the GWP values based on the latest science in its Fourth Assessment Report (AR4). The updated GWPs in the IPCC AR4 have begun to be used in recent GHG emissions inventories. By applying the GWP ratios, Project-related CO$_2$e emissions can be tabulated in metric tons per year. Typically, the GWP ratio corresponding to the warming potential of CO$_2$ over a 100-year period is used as a baseline. The CO$_2$e values are calculated for construction years as well as

1 GWPs and associated CO$_2$e values were developed by the Intergovernmental Panel on Climate Change (IPCC), and published in its Second Assessment Report (SAR) in 1996. Historically, GHG emission inventories have been calculated using the GWPs from the IPCC’s SAR. The IPCC updated the GWP values based on the latest science in its Fourth Assessment Report (AR4). The California Air Resources Board (CARB) has begun reporting GHG emission inventories for California using the GWP values from the IPCC AR4.
4. Environmental Impacts Analysis
4.5 Greenhouse Gas Emissions

City of Culver City

4.5-2

11111 Jefferson Boulevard Mixed-Use Project
May 2021

4.5

Environmental Impacts Analysis

Existing and Project build-out conditions in order to generate a net change in GHG emissions for construction and operation. Compounds that are regulated as GHGs are discussed below.2,3

- **Carbon Dioxide (CO₂):** CO₂ is the most abundant GHG in the atmosphere and is primarily generated from fossil fuel combustion from stationary and mobile sources. CO₂ is the reference gas (GWP of 1) for determining the GWPs of other GHGs.

- **Methane (CH₄):** CH₄ is emitted from biogenic sources (i.e., resulting from the activity of living organisms), incomplete combustion in forest fires, landfills, manure management, and leaks in natural gas pipelines. The GWP of CH₄ is 21 in the IPCC SAR and 25 in the IPCC AR4.

- **Nitrous Oxide (N₂O):** N₂O produced by human-related sources including agricultural soil management, animal manure management, sewage treatment, mobile and stationary combustion of fossil fuel, adipic acid production, and nitric acid production. The GWP of N₂O is 310 in the IPCC SAR and 298 in the IPCC AR4.

- **Hydrofluorocarbons (HFCs):** HFCs are fluorinated compounds consisting of hydrogen, carbon, and fluorine. They are typically used as refrigerants in both stationary refrigeration and mobile air conditioning systems. The GWP of HFCs ranges from 140 for HFC-152a to 11,700 for HFC-23 in the IPCC SAR and 124 for HFC-152a to 14,800 for HFC-23 in the IPCC AR4.

- **Nitrogen Trifluoride (NF₃):** NF₃ is an inorganic, non-flammable, non-toxic odorless gas. NF₃ is used as an oxidizer of high energy fuels, for the preparation of tetrafluorohydrazine, as a fluorine source in high power chemical lasers, in semiconductor manufacturing, and as an etchant gas in the electronic industry. The GWP of NF₃ is 17,200 in the IPCC AR4.

- **Perfluorocarbons (PFCs):** PFCs are fluorinated compounds consisting of carbon and fluorine. They are primarily created as a byproduct of aluminum production and semiconductor manufacturing. The GWPs of PFCs range from 6,500 to 9,200 in the IPCC SAR and 7,390 to 17,700 in the IPCC AR4.

- **Sulfur Hexafluoride (SF₆):** SF₆ is a fluorinated compound consisting of sulfur and fluoride. It is a colorless, odorless, nontoxic, nonflammable gas. It is most commonly used as an electrical insulator in high voltage equipment that transmits and distributes electricity. SF₆ has a GWP of 23,900 in the IPCC SAR and 22,800 in the IPCC AR4.

Existing Conditions

Greenhouse Gas Emissions Inventory

The California Air Resources Board (CARB) compiles GHG inventories for the State of California. Based on the year 2018 GHG inventory data (the latest year for which data are available), California emitted 425.3 million metric tons of CO₂e (MMTCO₂e) which includes emissions resulting from imported electrical power.4 Between 1990 and 2018, the population of California grew by

approximately 9.7 million (from 29.8 to 39.5 million).5,6 This represents an increase of approximately 33 percent from 1990 population levels. In addition, the California economy, measured as gross state product, grew from $773 billion in 1990 to $2.99 trillion in 2018, representing an increase of almost four times the 1990 gross state product.7 Despite the population and economic growth, California’s net GHG emissions were reduced to below 1990 levels in 2016. According to CARB, the declining trend coupled with the state’s GHG reduction programs (such as the Renewables Portfolio Standard, Low Carbon Fuel Standard (LCFS), vehicle efficiency standards, and declining caps under the Cap and Trade Program) demonstrate that California is on track to meet the 2020 GHG reduction target codified in Health and Safety Code (HSC), Division 25.5, also known as Assembly Bill (AB) 32 and amended by Senate Bill (SB) 32.8 Table 4.5-1, State of California Greenhouse Gas Emissions, identifies and quantifies Statewide anthropogenic GHG emissions and sinks (e.g., carbon sequestration due to forest growth) in 1990 and 2018. As shown in Table 4.5-1, the transportation sector is the largest contributor to Statewide GHG emissions at approximately 40 percent in 2018.

TABLE 4.5-1
STATE OF CALIFORNIA GREENHOUSE GAS EMISSIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Total 1990 Emissions using IPCC SAR (MMTCO\textsubscript{2}e)</th>
<th>Percent of Total 1990 Emissions</th>
<th>Total 2018 Emissions using IPCC AR4 (MMTCO\textsubscript{2}e)</th>
<th>Percent of Total 2018 Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>150.7</td>
<td>35%</td>
<td>169.5</td>
<td>40%</td>
</tr>
<tr>
<td>Electric Power</td>
<td>110.6</td>
<td>26%</td>
<td>63.1</td>
<td>15%</td>
</tr>
<tr>
<td>Commercial</td>
<td>14.4</td>
<td>3%</td>
<td>25.7</td>
<td>6%</td>
</tr>
<tr>
<td>Residential</td>
<td>29.7</td>
<td>7%</td>
<td>15.6</td>
<td>4%</td>
</tr>
<tr>
<td>Industrial</td>
<td>103.0</td>
<td>24%</td>
<td>89.2</td>
<td>21%</td>
</tr>
<tr>
<td>Recycling and Waste b</td>
<td>--</td>
<td>--</td>
<td>9.1</td>
<td>2%</td>
</tr>
<tr>
<td>High GWP/Non-Specified c</td>
<td>1.3</td>
<td><1%</td>
<td>20.5</td>
<td>5%</td>
</tr>
<tr>
<td>Agriculture/Forestry</td>
<td>23.6</td>
<td>6%</td>
<td>32.6</td>
<td>8%</td>
</tr>
<tr>
<td>Forestry Sinks</td>
<td>-6.7</td>
<td>--</td>
<td>-- d</td>
<td>--</td>
</tr>
<tr>
<td>Net Total (IPCC SAR)</td>
<td>426.6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Net Total (IPCC AR4) e</td>
<td>431</td>
<td>100%</td>
<td>425.3</td>
<td>100%</td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding.
b Included in other categories for the 1990 emissions inventory.
c High GWP gases are not specifically called out in the 1990 emissions inventory.
d Revised methodology under development (not reported for 2015).
e CARB revised the State’s 1990 level GHG emissions using GWPs from the IPCC AR4.

SOURCES: CARB, Staff Report – California 1990 Greenhouse Gas Emissions Level and 2020 Emissions Limit, 2007; CARB, 2000-2017 Trends Figure Data, Figure 4.

Effects of Global Climate Change

The scientific community’s understanding of the fundamental processes responsible for global climate change has improved over the past decade, and its predictive capabilities are advancing. However, there remain significant scientific uncertainties in, for example, predictions of local effects of climate change, occurrence, frequency, and magnitude of extreme weather events, effects of aerosols, changes in clouds, shifts in the intensity and distribution of precipitation, and changes in oceanic circulation. Due to the complexity of the Earth’s climate system and inability to accurately model it, the uncertainty surrounding climate change may never be completely eliminated. Nonetheless, the IPCC’s *Fifth Assessment Report, Summary for Policy Makers* states that, “it is extremely likely that more than half of the observed increase in global average surface temperature from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas concentrations and other anthropogenic forces [sic] together.” A report from the National Academy of Sciences concluded that 97 to 98 percent of the climate researchers most actively publishing in the field support the tenets of the IPCC in that climate change is very likely caused by human (i.e., anthropogenic) activity.

According to the California Enviornmental Protection Agency (CalEPA), the potential impacts in California due to global climate change may include: loss in snow pack; sea level rise; more extreme heat days per year; more high ozone days; more large forest fires; more drought years; increased erosion of California’s coastlines and sea water intrusion into the Sacramento and San Joaquin Deltas and associated levee systems; and increased pest infestation. Data regarding potential future climate change impacts are available from the California Natural Resources Agency (CNRA), which in 2009 published the *California Climate Adaptation Strategy* as a response to Executive Order S-13-2008. The CNRA report lists specific recommendations for state and local agencies to best adapt to the anticipated risks posed by a changing climate. In accordance with the *California Climate Adaptation Strategy*, the California Energy Commission (CEC) was directed to develop a website on climate change scenarios and impacts that would be beneficial for local decision makers. The website, known as Cal-Adapt, became operational in 2011. The information provided by the Cal-Adapt website represents a projection of potential future climate scenarios. The data are comprised of the average values from a variety of scenarios and models, and are meant to illustrate how the climate may change based on a variety of different potential social and economic factors. Below is a summary of some of the potential climate change effects.

14 The Cal-Adapt website address is: http://cal-adapt.org.
and relevant Cal-Adapt data, reported by an array of studies that could be experienced in California as a result of global warming and climate change.

Air Quality

Higher temperatures, conducive to air pollution formation, could worsen air quality in California. Climate change may increase the concentration of ground-level ozone, but the magnitude of the effect, and therefore, its indirect effects, are uncertain. If higher temperatures are accompanied by drier conditions, the potential for large wildfires could increase, which, in turn, would further worsen air quality. However, if higher temperatures are accompanied by wetter, rather than drier conditions, the rains would tend to temporarily clear the air of particulate pollution and reduce the incidence of large wildfires, thus ameliorating the pollution associated with wildfires. Additionally, severe heat accompanied by drier conditions and poor air quality could increase the number of heat-related deaths, illnesses, and asthma attacks throughout the state.\(^{15}\)

According to the Cal-Adapt website, the portion of the City in which the Project Site is located could result in an average increase in temperature of approximately 6 to 9 percent (from an annual average of 71.4°F to 75.4-78.1°F) by 2070-2099, compared to the baseline 1961-1990 period.\(^{16}\) Data suggests that the predicted future increase in temperatures as a result of climate change could potentially interfere with efforts to control and reduce ground-level ozone in the region.

Water Supply

Uncertainty remains with respect to the overall impact of global climate change on future water supplies in California. Studies have found that, “Considerable uncertainty about precise impacts of climate change on California hydrology and water resources will remain until we have more precise and consistent information about how precipitation patterns, timing, and intensity will change.”\(^{17}\) For example, some studies identify little change in total annual precipitation in projections for California while others show significantly more precipitation.\(^{18}\) Warmer, wetter winters would increase the amount of runoff available for groundwater recharge; however, this additional runoff would occur at a time when some basins are either being recharged at their maximum capacity or are already full.\(^{19}\) Conversely, reductions in spring runoff and higher evapotranspiration because of higher temperatures could reduce the amount of water available for recharge.\(^{20}\)

The California Department of Water Resources report on climate change and effects on the State Water Project (SWP), the Central Valley Project, and the Sacramento-San Joaquin Delta, concludes that “climate change will likely have a significant effect on California’s future water resources…[and] future water demand.” It also reports that “much uncertainty about future water demand [remains], especially [for] those aspects of future demand that will be directly affected by climate change and warming. While climate change is expected to continue through at least the end of this century, the magnitude, and in some cases, the nature of future changes is uncertain.” It also reports that the relationship between climate change and its potential effect on water demand is not well understood, but “[i]t is unlikely that this level of uncertainty will diminish significantly in the foreseeable future.” Still, changes in water supply are expected to occur, and many regional studies have shown that large changes in the reliability of water yields from reservoirs could result from only small changes in inflows.21 In its Fifth Assessment Report, the IPCC states “Changes in the global water cycle in response to the warming over the 21st century will not be uniform. The contrast in precipitation between wet and dry regions and between wet and dry seasons will increase, although there may be regional exceptions.”22

Hydrology and Sea Level Rise

As discussed above, climate changes could potentially affect: the amount of snowfall, rainfall and snow pack; the intensity and frequency of storms; flood hydrographs (flash floods, rain or snow events, coincidental high tide and high runoff events); sea level rise and coastal flooding; coastal erosion; and the potential for salt water intrusion. Sea level rise can be a product of global warming through two main processes: expansion of seawater as the oceans warm, and melting of ice over land. Absent planning and preparation, a rise in sea levels could result in coastal flooding and erosion and could jeopardize California’s water supply, and increased storm intensity and frequency could affect the ability of flood-control facilities, including levees, to handle storm events.

Agriculture

California has a $30 billion agricultural industry that produces one half of the country’s fruits and vegetables. Higher CO₂ levels can stimulate plant production and increase plant water-use efficiency. However, if temperatures rise and drier conditions prevail, water demand could increase; without planning and preparations. Crop-yield could be threatened by a less reliable water supply. Also, greater ozone pollution could render plants more susceptible to pest and disease outbreaks. In addition, temperature increases could change the time of year certain crops, such as wine grapes, bloom or ripen, and thus affect their quality.23

Ecosystems and Wildlife

Increases in global temperatures and the potential resulting changes in weather patterns could have ecological effects on a global and local scale. Increasing concentrations of GHGs are likely to

23 California Climate Change Center, Our Changing Climate: Assessing the Risks to California, 2006.
accelerate the rate of climate change. Scientists expect that the average global surface temperature could rise by 2 to 11.5°F (1.1 to 6.4°C) by 2100, with significant regional variation.24 Soil moisture is likely to decline in many regions, and intense rainstorms are likely to become more frequent. Sea level could rise as much as 2 feet along most of the U.S. coast. Rising temperatures could have four major impacts on plants and animals: (1) timing of ecological events; (2) geographic range; (3) species’ composition within communities; and (4) ecosystem processes such as carbon cycling and storage.25-26

Existing Site Greenhouse Gas Emissions

The Project Site is currently developed with three single story commercial buildings, surface parking, and landscaping. The commercial buildings include a United States Post Office, a restaurant, and an automobile oil change facility. The Project would remove all existing buildings and their associated GHG emissions. Table 4.5-2, *Existing Site GHG Emissions*, identifies the GHG emissions of the existing Project Site. As shown, the primary source of emissions is from mobile sources.

<table>
<thead>
<tr>
<th>Emissions Sources</th>
<th>CO2e (Metric Tons per Year)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (Landscaping Equipment)</td>
<td><1</td>
</tr>
<tr>
<td>Energy (Electricity + Natural Gas)</td>
<td>244</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>2,274</td>
</tr>
<tr>
<td>Waste</td>
<td>29</td>
</tr>
<tr>
<td>Water</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>2,560</td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix F.

b CO2e emissions are calculated using the global warming potential values from the Intergovernmental Panel on Climate Change Fourth Assessment Report.

SOURCE: ESA, 2020.

4.5.3 Regulatory Framework

GHG statutes, regulations, plans, and policies have been developed, adopted, and implemented at the federal, state, and local levels. This section provides a summary of pertinent GHG regulations affecting the Project at the federal, state, and local levels.

24 National Research Council, Advancing the Science of Climate Change, 2010.

25 Parmesan, C., Ecological and Evolutionary Response to Recent Climate Change, first published on August 24, 2006.

Federal

Federal Clean Air Act

The United States Environmental Protection Agency (USEPA) is responsible for implementing federal policy to address GHGs. The federal government administers a wide array of public-private partnerships to reduce the GHG intensity generated in the United States. These programs focus on energy efficiency, renewable energy, methane and other non-CO₂ gases, agricultural practices, and implementation of technologies to achieve GHG reductions. USEPA implements numerous voluntary programs that contribute to the reduction of GHG emissions. These programs (e.g., the ENERGY STAR® labeling system for energy-efficient products) play a significant role in encouraging voluntary reductions from large corporations, consumers, industrial and commercial buildings, and many major industrial sectors.

In Massachusetts v. Environmental Protection Agency (Docket No. 05–1120), the United States Supreme Court held in April of 2007 that the USEPA has statutory authority under Section 202 of the Clean Air Act (CAA) to regulate GHGs. The Court did not hold that the USEPA was required to regulate GHG emissions; however, it indicated that the agency must decide whether GHGs cause or contribute to air pollution that is reasonably anticipated to endanger public health or welfare. On December 7, 2009, the USEPA Administrator signed two distinct findings regarding GHGs under Section 202(a) of the CAA. The USEPA adopted a Final Endangerment Finding for the six defined GHGs (CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) on December 7, 2009. The Endangerment Finding is required before USEPA can regulate GHG emissions under Section 202(a)(1) of the CAA consistently with the United States Supreme Court decision. The USEPA also adopted a Cause or Contribute Finding in which the USEPA Administrator found that GHG emissions from new motor vehicle and motor vehicle engines are contributing to air pollution, which is endangering public health and welfare. These findings do not, by themselves, impose any requirements on industry or other entities. However, these actions were a prerequisite for implementing GHG emissions standards for vehicles.

Energy Independence and Security Act

The Energy Independence and Security Act of 2007 (EISA) facilitates the reduction of national GHG emissions by requiring the following:

- Increasing the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard (RFS) that requires fuel producers to use at least 36 billion gallons of biofuel in 2022;

- Prescribing or revising standards affecting regional efficiency for heating and cooling products, procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances;

- Requiring approximately 25 percent greater efficiency for light bulbs by phasing out incandescent light bulbs between 2012 and 2014; requiring approximately 200 percent greater efficiency for light bulbs, or similar energy savings, by 2020; and

- While superseded by the USEPA and the National Highway Traffic Safety Administration (NHTSA) actions described above, (i) establishing miles per gallon targets for cars and light trucks and (ii) directing the NHTSA to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for trucks.
Additional provisions of EISA address energy savings in government and public institutions, promote research for alternative energy, additional research in carbon capture, international energy programs, and the creation of green jobs.

Executive Order 13432

In response to the *Massachusetts v. Environmental Protection Agency* ruling, the President signed Executive Order 13432 on May 14, 2007, directing the USEPA. Executive Order 13432 was signed on February 17, 2009 and sets goals in the areas of energy efficiency, acquisition, renewable energy, toxics reductions, recycling, sustainable buildings, electronics stewardship, fleets, and water conservation.

On May 19, 2009, President Obama announced a national policy for fuel efficiency and emissions standards in the United States auto industry for passenger cars and light-duty trucks for model years 2012 through 2016. The rule surpasses the prior Corporate Average Fuel Economy standards (CAFE) and requires an average fuel economy standard of 35.5 miles per gallon (mpg) and 250 grams of CO₂ per mile by model year 2016, based on USEPA calculation methods. These standards were formally adopted on April 1, 2010. In August 2012, standards were adopted for model year 2017 through 2025 for passenger cars and light-duty trucks. By 2025, vehicles are required to achieve 54.5 mpg (if GHG reductions are achieved exclusively through fuel economy improvements) and 163 grams of CO₂ per mile. According to the USEPA, a model year 2025 vehicle would emit one-half of the GHG emissions from a model year 2010 vehicle.

In August 2018, the USEPA and NHTSA proposed the Safer Affordable Fuel-Efficient Vehicles Rule that would, if adopted, maintain the CAFE and CO₂ standards applicable in model year 2020 for model years 2021 through 2026. The estimated CAFE and CO₂ standards for model year 2020 are 43.7 mpg and 204 grams of CO₂ per mile for passenger cars and 31.3 mpg and 284 grams of CO₂ per mile for light trucks, projecting an overall industry average of 37 mpg, as compared to 46.7 mpg under the standards issued in 2012. The proposal, if adopted, would also exclude CO₂-equivalent emission improvements associated with air conditioning refrigerants and leakage (and, optionally, offsets for nitrous oxide and methane emissions) after model year 2020.

27 A green job, as defined by the United States Department of Labor, is a job in business that produces goods or provides services that benefit the environment or conserve natural resources.

28 The Corporate Average Fuel Economy standards are regulations in the United States, first enacted by Congress in 1975, to improve the average fuel economy of cars and light trucks. The U.S Department of Transportation has delegated the National Highway Traffic Safety Administration as the regulatory agency for the Corporate Average Fuel Economy standards.

State

California has promulgated a series of executive orders, laws, and regulations aimed at reducing both the level of GHGs in the atmosphere and emissions of GHGs from commercial and private activities within the State.

Executive Order S-3-05, Executive Order B-30-15, and Executive Order B-55-18

In June 2005, through Executive Order S-3-05, the following GHG emission reduction targets were established:

- By 2010, California shall reduce GHG emissions to 2000 levels;
- By 2020, California shall reduce GHG emissions to 1990 levels; and
- By 2050, California shall reduce GHG emissions to 80 percent below 1990 levels.

In April, 2015, Governor Brown issued Executive Order B-30-15 that:

- Established a new interim Statewide reduction target to reduce GHG emissions to 40 percent below 1990 levels by 2030.
- Ordered all state agencies with jurisdiction over sources of GHG emissions to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 reduction targets.
- Directed CARB to update the Climate Change Scoping Plan to express the 2030 target in terms of million metric tons of carbon dioxide equivalent.

In September 2018, Governor Brown issued Executive Order B-55-18, which establishes a statewide goal of achieving carbon neutrality as soon as possible and no later than 2045.

Health and Safety Code, Division 25.5 – California Global Warming Solutions Act of 2006 (AB 32) and Emissions Limit (SB 32 / AB 197)

In 2006, the California State Legislature adopted AB 32 (codified in the California HSC, Division 25.5 – California Global Warming Solutions Act of 2006), which focuses on reducing GHG emissions in California to 1990 levels by 2020. HSC Division 25.5 defines regulated GHGs as CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆ and represents the first enforceable Statewide program to limit emissions of these GHGs from all major industries, with penalties for noncompliance. The law further requires that reduction measures be technologically feasible and cost effective. Under HSC Division 25.5, CARB has the primary responsibility for reducing GHG emissions. CARB is required to adopt rules and regulations directing state actions that would achieve GHG emissions reductions equivalent to 1990 Statewide levels by 2020.

In 2016, the California State Legislature adopted SB 32 and its companion bill AB 197, and both were signed by Governor Brown. SB 32 and AB 197 amend HSC Division 25.5, establish a new climate pollution reduction target of 40 percent below 1990 levels by 2030 and include provisions to ensure that the benefits of state climate policies reach into disadvantaged communities.

Renewables Portfolio Standard

SB 1078 (Chapter 516, Statutes of 2002) requires retail sellers of electricity, including investor-owned utilities and community choice aggregators, to provide at least 20 percent of their supply from renewable sources by 2017. SB 107 (Chapter 464, Statutes of 2006) changed the target date to 2010. In November 2008, Executive Order S-14-08 was signed, which expands the State's Renewables Portfolio Standard (RPS) to 33 percent renewable power by 2020. Pursuant to Executive Order S-21-09, CARB was also preparing regulations to supplement the RPS with a Renewable Energy Standard that would result in a total renewable energy requirement for utilities of 33 percent by 2020. On April 12, 2011, SB X1-2 was signed to increase California’s RPS to 33 percent by 2020. SB 350 (Chapter 547, Statutes of 2015) further increased the RPS to 50 percent by 2030. The legislation also included interim targets of 40 percent by 2024 and 45 percent by 2027. SB 350 was signed into law on October 7, 2015.

On September 10, 2018, Governor Jerry Brown signed SB 100, which further increased California’s RPS and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024, 52 percent by December 31, 2027, and 60 percent by December 31, 2030, and that CARB should plan for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045.34

California Assembly Bill No. 1493 (AB 1493, Pavley) (Chapter 200, Statutes of 2002)

In response to the transportation sector accounting for more than half of California’s CO₂ emissions, AB 1493 (Chapter 200, Statutes of 2002), enacted on July 22, 2002, required CARB to set GHG emission standards for passenger vehicles, light duty trucks, and other vehicles whose primary use is non-commercial personal transportation manufactured in and after 2009. In setting these standards, CARB must consider cost effectiveness, technological feasibility, economic impacts, and provide maximum flexibility to manufacturers.35 As discussed previously, the USEPA and United States Department of Transporation (USDOT) have adopted federal standards for model year 2012 through 2016 light-duty vehicles. In light of the USEPA and USDOT standards, California - and states adopting California emissions standards - have agreed to defer to the proposed national standard through model year 2016. The 2016 endpoint of the federal and state standards is similar, although the federal standard ramps up slightly more slowly than required under the state standard. The state standards (called the Pavley standards) require additional

34 California Legislative Information, Senate Bill 100 California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases.
reductions in CO₂ emissions beyond model year 2016 (referred to as Pavley Phase II standards).³⁶ As noted above, the USEPA and USDOT have adopted GHG emission standards for model year 2017 through 2025 vehicles. These standards are slightly different from the Pavley Phase II standards, but the State of California has agreed not to contest these standards, in part due to the fact that while the national standard would achieve slightly lower reductions in California, it would achieve greater reductions nationally and is stringent enough to meet state GHG emission reduction goals.³⁷ On November 15, 2012, CARB approved an amendment that allows manufacturers to comply with the 2017-2025 national standards to meet state law.

Executive Order S-01-07

Executive Order S-01-07 was enacted on January 18, 2007.³⁸ The order mandates the following: (1) that a Statewide goal be established to reduce the carbon intensity of California’s transportation fuels by at least 10 percent by 2020; and (2) that a LCFS for transportation fuels be established in California. In September 2015, CARB approved the re-adoptation of the LCFS, which became effective on January 1, 2016, to address procedural deficiencies in the way the original regulation was adopted.³⁹ In the proposed 2017 Climate Change Scoping Plan Update, CARB’s preferred recommendation includes increasing the stringency of the LCFS by reducing the carbon intensity of transportation fuels by 18 percent by 2030, up from the current target of 10 percent by 2020.⁴⁰ In April 2017, the LCFS was brought before the Court of Appeal challenging the analysis of potential nitrogen dioxide impacts from biodiesel fuels. The Court directed CARB to conduct an analysis of nitrogen dioxide impacts from biodiesel fuels and froze the carbon intensity targets for diesel and biodiesel fuel provisions at 2017 levels until CARB has completed this analysis. On March 6, 2018 CARB issued its Draft Supplemental Disclosure Discussion of Oxides of Nitrogen Potentially Caused by the Low Carbon Fuel Standard Regulation.⁴¹ CARB posted modifications to the amendments on August 13, 2018, with a public comment period through August 30, 2018. Final approval of regulatory changes from CARB’s analysis of nitrogen dioxide impacts from biodiesel fuels was made on January 4, 2019.⁴²

Senate Bill 375 (SB 375, Steinberg) (Chapter 728, Statutes of 2008)

SB 375 (Chapter 728, Statutes of 2008), which establishes mechanisms for the development of regional targets for reducing passenger vehicle GHG emissions, was adopted by the State on September 30, 2008. SB 375 finds that the “transportation sector is the single largest contributor of greenhouse gases of any sector.” Under SB 375, CARB is required, in consultation with the Metropolitan Planning Organizations, to set regional GHG reduction targets for the passenger vehicle and light-duty truck sector for 2020 and 2035. In February 2011, CARB adopted GHG emissions reduction targets for the SCAG, which is the Metropolitan Planning Organization for the region in which the City of Culver City is located. In March 2018, the CARB updated the SB 375 targets to require an 8 percent reduction by 2020 and a 19 percent reduction by 2035 in per capita passenger vehicle GHG emissions. Meeting SB 375 goals and targets is crucial for the State to meet its climate goals and to reduce GHG emissions as it supports coordinated transportation and land use planning with the goal of more sustainable communities. Under SB 375, the target must be incorporated within that region’s RTP, which is used for long-term transportation planning, in a SCS. Certain transportation planning and programming activities would then need to be consistent with the SCS; however, SB 375 expressly provides that the SCS does not regulate the use of land, and further provides that local land use plans and policies (e.g., general plans) are not required to be consistent with either the RTP or SCS.

Title 24, Building Standards Code and CALGreen Code

The California Energy Commission first adopted the Energy Efficiency Standards for Residential and Nonresidential Buildings (California Code of Regulations, Title 24, Part 6) in 1978 in response to a legislative mandate to reduce energy consumption in the state. Although not originally intended to reduce GHG emissions, increased energy efficiency, and reduced consumption of electricity, natural gas, and other fuels would result in fewer GHG emissions from residential and nonresidential buildings subject to the standard. The standards are updated periodically to allow for the consideration and inclusion of new energy efficiency technologies and methods.

Part 11 of the Title 24 Building Standards is referred to as the California Green Building Standards (CALGreen) Code. The purpose of the CALGreen Code is to “improve public health, safety and general welfare by enhancing the design and construction of buildings through the use of building concepts having a positive environmental impact and encouraging sustainable construction practices in the following categories: (1) Planning and design; (2) Energy efficiency; (3) Water efficiency and conservation; (4) Material conservation and resource efficiency; and (5)"
Environmental air quality.” The CALGreen Code is not intended to substitute for or be identified as meeting the certification requirements of any green building program that is not established and adopted by the California Building Standards Commission. When the CALGreen Code went into effect in 2009, compliance through 2010 was voluntary. As of January 1, 2011, the CALGreen Code is mandatory for all new buildings constructed in the state. The CALGreen Code establishes mandatory measures for new residential and non-residential buildings. Such mandatory measures include energy efficiency, water conservation, material conservation, planning and design and overall environmental quality. The CALGreen Code is not intended to substitute for or be identified as meeting the certification requirements of any green building program that is not established and adopted by the California Building Standards Commission. The CALGreen Code establishes mandatory measures for new residential and non-residential buildings. Such mandatory measures include energy efficiency, water conservation, material conservation, planning and design and overall environmental quality. The CALGreen Code was most recently updated in 2019 to include new mandatory measures for residential as well as nonresidential uses; the new measures took effect on January 1, 2020.

Senate Bill X7-7 (Water Conservation Act of 2009)

The Water Conservation Act of 2009 sets an overall goal of reducing per-capita urban water use by 20 percent by December 31, 2020. The State is required to make incremental progress toward this goal by reducing per-capita water use by at least 10 percent by December 31, 2015. This in an implementation measure of the Water Sector of the AB 32 Scoping Plan. Reduction in water consumption directly reduces the energy necessary and the associated emissions to convey, treat, and distribute the water; it also reduces emissions from wastewater treatment. The DWR adopted a regulation on February 16, 2011, that sets forth criteria and methods for exclusion of industrial process water from the calculation of gross water use for purposes of urban water management planning. The regulation would apply to all urban retail water suppliers required to submit an Urban Water Management Plan, as set forth in the California Water Code (specifically, Division 6, Part 2.6, Sections 10617 and 10620).

Assembly Bill 341

Assembly Bill 341 amended the California Integrated Waste Management Act of 1989 to include a provision declaring that it is a policy goal of the State that not less than 75 percent of solid waste generated be source reduced, recycled, or composted by the year 2020, and annually thereafter. In addition, AB 341 required the California Department of Resources Recycling and Recovery (CalRecycle) to develop strategies to achieve the State's policy goal. CalRecycle conducted several stakeholder workshops and published a discussion document in May 2012 titled California's New

Goal: 75 Percent Recycling, which identifies concepts that CalRecycle believes would assist the State in reaching the 75 percent goal by 2020.50

Executive Order B-16-2012

In March 2012, Governor Brown issued Executive Order B-16-12 which orders State agencies, including CARB, CEC, and the CPUC, to facilitate the rapid commercialization of zero-emission vehicles (ZEVs). The Executive Order sets a target for the number of 1.5 million ZEVs in California by 2025. Also the Executive Order sets as a target for 2050 a reduction of GHG emissions from the transportation sector equaling 80 percent less than 1990 levels.51

Assembly Bill 1826

In October 2014, Governor Brown signed AB 1826 Chesbro (Chapter 727, Statutes of 2014), requiring businesses to recycle their organic waste on and after April 1, 2016, depending on the amount of waste they generate per week. This law also requires that on and after January 1, 2016, local jurisdictions across the state implement an organic waste recycling program to divert organic waste generated by businesses, including multifamily residential dwellings that consist of five or more units (however, multifamily dwellings are not required to have a food waste diversion program). Organic waste (also referred to as organics) means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food soiled paper waste that is mixed in with food waste. This law phases in the mandatory recycling of commercial organics over time. In particular, the minimum threshold of organic waste generation by businesses decreases over time, which means an increasingly greater proportion of the commercial sector will be required to comply.52

California Air Resources Board

CARB is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, CARB conducts research, sets the California Ambient Air Quality Standards (CAAQS), compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products (such as hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. CARB has primary responsibility for the development of California’s State Implementation Plan (SIP), for which it works closely with the federal government and the local air districts. The SIP is required for the State to take over implementation of the federal Clean Air Act. In addition, CARB also has primary responsibility for adopting and implementing California’s legislative policies and programs, including the Climate Change

Scoping Plan discussed below, to reduce the State’s GHG emissions to meet the State’s goal of reducing GHG emissions to 1990 levels by 2020 and 40 percent below 1990 levels by 2030.

Climate Change Scoping Plan

As discussed above, AB 32 and SB 32 require CARB to prepare a Climate Change Scoping Plan for achieving the maximum technologically feasible and cost-effective GHG emission reduction by 2020 for AB 32 and 2030 for SB 32 (HSC section 38561 (h)). CARB developed its initial Scoping Plan, which was approved in 2008.\(^53\) The First Update to the Scoping Plan was approved by CARB in May 2014 and built upon the initial Scoping Plan with new strategies and recommendations.\(^54\)

2017 Climate Change Scoping Plan

In response to the passage of SB 32 and the identification of the 2030 GHG reduction target, CARB adopted the 2017 Climate Change Scoping Plan at a public meeting held in December 2017.\(^55\) The 2017 Scoping Plan outlines the strategies the State will implement to achieve the 2030 GHG reduction target of 40 percent below 1990 levels, which build on the Cap-and-Trade Regulation, the LCFS, improved vehicle, truck and freight movement emissions standards, increasing renewable energy, and strategies to reduce methane emissions from agricultural and other wastes by using it to meet California’s energy needs. Accounting for all GHG emissions sectors in the State, statewide population forecasts, and the statewide reductions necessary to achieve the 2030 statewide target under SB 32, CARB recommends statewide targets of no more than six metric tons CO\(_2\)e per capita by 2030.\(^56\) CARB’s projected Statewide 2030 emissions takes into account 2020 GHG reduction policies and programs.\(^57\) The 2017 Scoping Plan also addresses GHG emissions from natural and working lands of California, including the agriculture and forestry sectors.

CARB states that the approved Scoping Plan “is the best choice to achieve the State’s climate and clean air goals.”\(^58\) Under the Scoping Plan, the majority of the reductions would result from the continuation of the Cap-and-Trade regulation. Additional reductions would be achieved from electricity sector standards (i.e., utility providers to supply 50 percent renewable electricity by 2030), doubling the energy efficiency savings at end uses, additional reductions from the LCFS, implementing the short-lived GHG strategy (e.g., hydrofluorocarbons), and implementing the mobile source strategy and sustainable freight action plan. In July 2017, the California Legislature voted to extend the Cap-and-Trade regulation to 2030.

\(^{56}\) CARB, California’s 2017 Climate Change Scoping Plan.

\(^{57}\) CARB, California’s 2017 Climate Change Scoping Plan.

\(^{58}\) CARB, California’s 2017 Climate Change Scoping Plan.
The 2017 Scoping Plan discusses the role of local governments in meeting the State’s GHG reductions goals because local governments have jurisdiction and land use authority related to: community-scale planning and permitting processes, local codes and actions, outreach and education programs, and municipal operations. Furthermore, local governments may have the ability to incentivize renewable energy, energy efficiency, and water efficiency measures.

For individual projects under CEQA, the 2017 Scoping Plan states that local governments can support climate action when considering discretionary approvals and entitlements. According to the 2017 Scoping Plan, lead agencies have the discretion to develop evidence-based numeric thresholds consistent with the Scoping Plan, the State’s long-term goals, and climate change science. A summary of the GHG emissions reductions required under HSC Division 25.5 is provided in Table 4.5-3, Estimated Greenhouse Gas Emissions Reductions Required by HSC Division 25.5.

<table>
<thead>
<tr>
<th>Emissions Scenario</th>
<th>GHG Emissions (MMTCO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008 Scoping Plan (IPCC SAR)</td>
<td></td>
</tr>
<tr>
<td>2020 BAU Forecast (CARB 2008 Scoping Plan Estimate)</td>
<td>596</td>
</tr>
<tr>
<td>2020 Emissions Target Set by AB 32 (i.e., 1990 level)</td>
<td>427</td>
</tr>
<tr>
<td>Reduction below Business-As-Usual necessary to achieve 1990 levels by 2020</td>
<td>169 (28.4%) a</td>
</tr>
<tr>
<td>2011 Scoping Plan (IPCC AR4)</td>
<td></td>
</tr>
<tr>
<td>2020 BAU Forecast (CARB 2011 Scoping Plan Estimate)</td>
<td>509.4</td>
</tr>
<tr>
<td>2020 Emissions Target Set by AB 32 (i.e., 1990 level)</td>
<td>431</td>
</tr>
<tr>
<td>Reduction below Business-As-Usual necessary to achieve 1990 levels by 2020</td>
<td>78.4 (15.4%) b</td>
</tr>
<tr>
<td>2017 Scoping Plan Update</td>
<td></td>
</tr>
<tr>
<td>2030 Emissions Target Set by HSC Division 25.5 (i.e., 40% below 1990 Level)</td>
<td>260</td>
</tr>
<tr>
<td>Reduction below Business-As-Usual necessary to Achieve 40% below 1990 Level by 2030</td>
<td>129 (33.2%) c</td>
</tr>
</tbody>
</table>

MMTCO2e = million metric tons of carbon dioxide equivalents

- a $596 - 427 = 169 / 596 = 28.4$
- b $509.4 - 431 = 78.4 / 509.4 = 15.4$
- c $389 - 260 = 129 / 389 = 33.2$

59 CARB, California’s 2017 Climate Change Scoping Plan, page 97.
60 CARB, California’s 2017 Climate Change Scoping Plan, page 97.
61 CARB, California’s 2017 Climate Change Scoping Plan, page 100.
Under the Scoping Plan Scenario, continuation of the Cap-and-Trade regulation (or carbon tax) is expected to cover approximately 34 to 79 MMTCO$_2$ of the 2030 reduction obligation.62 The State’s short-lived climate pollutants strategy, which is for GHGs that remain in the atmosphere for shorter periods of time compared to longer-lived GHGs like CO$_2$, is expected to cover approximately 17 to 35 MMTCO$_2$.e. The RPS with 50 percent renewable electricity by 2030 is expected to cover approximately 3 MMTCO$_2$. The mobile source strategy and sustainable freight action plan includes maintaining the existing vehicle GHG emissions standards, increasing the number of zero emission vehicles and improving the freight system efficiency, and is expected to cover approximately 11 to 13 MMTCO$_2$. Under the Scoping Plan Scenario, CARB expects that the reduction in GHGs from doubling of the energy efficiency savings in natural gas and electricity end uses in the CEC 2015 Integrated Energy Policy Report by 2030 would cover approximately 7 to 9 MMTCO$_2$ of the 2030 reduction obligation. The other strategies would be expected to cover the remaining 2030 reduction obligations.

Regional

South Coast Air Quality Management District

The Project Site is located in the South Coast Air Basin (Air Basin), which consists of Orange County, Los Angeles County (excluding the Antelope Valley portion), and the western, non-desert portions of San Bernardino and Riverside Counties, in addition to the San Gorgonio Pass area in Riverside County. The South Coast Air Quality Management District (SCAQMD) is responsible for air quality planning in the Air Basin and developing rules and regulations to bring the area into attainment of the ambient air quality standards. This is accomplished through air quality monitoring, evaluation, education, implementation of control measures to reduce emissions from stationary sources, permitting and inspection of pollution sources, enforcement of air quality regulations, and by supporting and implementing measures to reduce emissions from motor vehicles.

SCAQMD adopted a “Policy on Global Warming and Stratospheric Ozone Depletion” on April 6, 1990.63 The policy commits SCAQMD to consider global impacts in rulemaking and in drafting revisions to the Air Quality Management Plan. In March 1992, the SCAQMD Governing Board reaffirmed this policy and adopted amendments to the policy to include the following directives:64

- Phase out the use and corresponding emissions of chlorofluorocarbons, methyl chloroform (1,1,1-trichloroethane or TCA), carbon tetrachloride, and halons by December 1995;
- Phase out the large quantity use and corresponding emissions of hydrochlorofluorocarbons by the year 2000;
- Develop recycling regulations for hydrochlorofluorocarbons (e.g., SCAQMD Rules 1411 and 1415);

64 SCAQMD, CEQA Air Quality Handbook, April 1993, pages 3-7.
• Develop an emissions inventory and control strategy for methyl bromide; and
• Support the adoption of a California GHG emission reduction goal.

In 2008, SCAQMD released draft guidance regarding interim CEQA GHG significance thresholds. In December 5, 2008, the SCAQMD Governing Board adopted the staff proposal for an interim GHG significance threshold of 10,000 MTCO\textsubscript{2}e per year for stationary source/industrial projects where SCAQMD is the Lead Agency. However, SCAQMD has not adopted a GHG significance threshold for land use development projects (e.g., mixed-use/commercial projects). A GHG Significance Threshold Working Group was formed to further evaluate potential GHG significance thresholds. The aforementioned Working Group has been inactive since 2011, however, and SCAQMD has not formally adopted any GHG significance threshold for land use development projects.

Southern California Association of Governments

On September 3, 2020, the SCAG’s Regional Council formally adopted the 2020-2045 RTP/SCS also known as the Connect SoCal, which is an update to the previous 2016-2040 RTP/SCS. Using growth forecasts and economic trends, 2020-2045 RTP/SCS provides a vision for transportation throughout the region for the next several decades by considering the role of transportation in the broader context of economic, environmental, and quality-of-life goals for the future, identifying regional transportation strategies to address mobility needs. The 2020-2045 RTP/SCS describes how the region can attain the GHG emission-reduction targets set by CARB by achieving an 8 percent reduction in per capita transportation GHG emissions by 2020 and a 19 percent reduction in per capita transportation emissions by 2035 compared to the 2005 level on a per capita basis. Compliance with and implementation of the 2020-2045 RTP/SCS policies and strategies would have co-benefits of reducing per capita criteria air pollutant emissions (e.g. nitrogen dioxide, carbon monoxide, etc.) associated with reduced per capita vehicle miles traveled (VMT).

The 2020-2045 RTP/SCS states that the SCAG region was home to approximately 18.8 million people in 2016 and included approximately 6.0 million homes and 8.4 million jobs. By 2045, the integrated growth forecast projects that these figures will increase by 3.7 million people, with approximately 1.6 million more homes and 1.7 million more jobs. High Quality Transit Areas (HQTAs), which are defined by the 2020-2045 RTP/SCS as generally walkable transit villages or corridors that are within 0.5 mile of a well-serviced transit stop or a transit corridor with 15-minute or less service frequency during peak commute hours, will account for 2.4 percent of regional total land, but are projected to accommodate 51 percent and 60 percent of future household growth respectively between 2016 and 2045. The 2020-2045 RTP/SCS overall land use pattern reinforces

68 SCAG, 2020-2045 RTP/SCS.
70 SCAG, 2020-2045 RTP/SCS, page 51.
the trend of focusing new housing and employment in the region’s HQTAs. HQTAs are a cornerstone of land use planning best practice in the SCAG region because they concentrate roadway repair investments, leverage transit and active transportation investments, reduce regional life cycle infrastructure costs, improve accessibility, create local jobs, and have the potential to improve public health and housing affordability.

SCAG’s 2020-2045 RTP/SCS provide specific strategies for implementation. These strategies include supporting projects that encourage a diverse job opportunities for a variety of skills and education, recreation and cultures and a full-range of shopping, entertainment and services all within a relatively short distance; encouraging employment development around current and planned transit stations and neighborhood commercial centers; encouraging the implementation of a “Complete Streets” policy that meets the needs of all users of the streets, roads and highways including bicyclists, children, persons with disabilities, motorists, electric vehicles, movers of commercial goods, pedestrians, users of public transportation, and seniors; and supporting alternative fueled vehicles.\(^{71}\)

In addition, the 2020-2045 RTP/SCS include strategies to promote active transportation, support local planning and projects that serve short trips, promote transportation investments, investments in active transportation, more walkable and bikeable communities, that will result in improved air quality and public health, and reduced GHG emissions, and supports building physical infrastructure, regional greenways and first-last mile connections to transit, including to light rail and bus stations. The 2020-2045 RTP/SCS align active transportation investments with land use and transportation strategies, increase competitiveness of local agencies for federal and state funding, and to expand the potential for all people to use active transportation. CARB has accepted the SCAG GHG quantification determinations in the 2020-2045 RTP/SCS and demonstrates achievement of the GHG emission reduction targets established by CARB.\(^{72-73}\)

Although there are GHG emission reduction targets for passenger vehicles set by CARB for 2045, the 2020-2045 RTP/SCS GHG emission reduction trajectory shows that more aggressive GHG emission reductions are projected for 2045. By meeting and exceeding the SB 375 targets for 2020 and 2035, as well as achieving an additional 4.1-percent reduction in GHG from transportation-related sources in the ten years between 2035 and 2045, the 2020-2045 RTP/SCS is expected to fulfill and exceed its portion of SB 375 compliance with respect to meeting the State’s GHG emission reduction goals.\(^{74}\)

Local

The City has not adopted a GHG significance threshold, however, the City participates in an environmental recognition program, California Green Communities. The program helps cities develop strategies to reduce carbon emissions and increase energy efficiency in their community.

\(^{71}\) SCAG, 2025-2040 RTP/SCS, pages 48-86.
\(^{72}\) SCAG, 2020-2045 RTP/SCS, pages 48-86.
\(^{73}\) CARB, Southern California Association of Governments’ (SCAG) 2016 Sustainable Communities Strategy (SCS) ARB Acceptance of GHG Quantification Determination, June 2016.
In addition, the City has adopted green building ordinances to reduce GHG emissions for new development. The City has adopted a Photovoltaic Requirement which requires 1 kilowatt (kw) of photovoltaic power installed per 10,000 square feet (sf) of new development (conservatively assumed to be incorporated as part of compliance with 2019 Title 24 Standards).75

In 2009, the City adopted the Green Building Program which for new construction totaling more than 50,000 sf, requires these developments to achieve Leadership in Energy and Environmental Design (LEED) certification.76 An example of the City's Green Building Program requirements is that all lighting has to be either fluorescent, LED or other type of high-efficiency lighting.

As described in Chapter 2, \textit{Project Description}, of this Draft EIR, the General Plan Land Use designation for the Project Site is “General Corridor Commercial,” which allows commercial uses with an emphasis on community serving retail. Per the Culver City Zoning Code (Zoning Code), the Project Site is majority zoned “Commercial General” (CG). The northernmost parcel (APN 4215-001-020) adjacent to Machado Road is split-zoned CG and Single-Family (R-1). The Project is proposing to change the zoning designations for the Project Site to “Planned Development” (PD) with adoption of a Comprehensive Plan that would serve as the overarching entitlement mechanism for the Project Site. Per the Zoning Code, a Comprehensive Plan is appropriate for large-scale development as it allows flexibility in the application of zoning code standards to encourage innovation in site planning and design and to support more effective responses to the settings of such properties and other environmental considerations.77 To permit this, a Comprehensive Plan regulates permitted uses, development standards, and conditions of approval on a project site. In order to be approved, environmental review must support specific findings set forth in the Zoning Code that affirm, among other requirements, compatibility with adjacent uses, the sustainability and stability of the proposed project, adequacy of the road network serving the project site, and conformance with the General Plan. As indicated in the Land Use Element, Figure LU-12, the Project Site is located within the Southern Central Sub-Area of the City. Issues specific to the Southern Central Sub-Area pertain to maximizing the affordable housing opportunities in the sub-area by increasing occupancy in underutilized existing development, as well as developing standards for slop stabilization and hillside development as certain areas of the sub-area have experienced erosion. No specific objectives or policies were identified for or are directly applicable to this Project.

The Circulation Element provides an overview of regulatory policies, transportation agencies, and local conditions; presents a vision for mobility in the Culver City area; presents a Street System Classification; discusses the Culver CityBus system; presents Bikeway Classifications; and provides goals, objectives, and policies to improve the local and regional transportation system. The City has also adopted the concept of Complete Streets, which emphasizes a balanced transportation system that considers all users of the road (cyclists, pedestrians, transit riders, and

75 \textit{City of Culver City, Municipal Code Chapter 15.02.1005, Solar Photovoltaic Systems.}

76 \textit{City of Culver City, Municipal Code Chapter 15.02.1100, Green Building Program and Requirements.}

77 \textit{City of Culver City, Zoning Code, Title 17, Sections 17.560, Comprehensive Plans.}
vehicles) while planning development and transportation projects. The goal of this concept is to transform the City into a place with an extensive bicycle and pedestrian network that allows travelers of all levels and abilities to feel comfortable walking and biking to their destinations.

The City updated the Bicycle & Pedestrian Master Plan with the Bicycle & Pedestrian Action Plan (Action Plan), which received public input throughout 2017 through 2019. The Action Plan was adopted by City Council in June 2020. The approved Action Plan shows that both Jefferson Boulevard and Sepulveda Boulevard, immediately adjacent to the Project Site, are planned as Class IV Separated Bikeways. The Action Plan establishes the visions and values that focus on establishing walking and cycling as viable modes of travel for all trip types. The Action Plan aims to provide a safe, convenient, and accessible active transportation network.

In February 2019, for residential customers and May 2019 for non-residential customers, Clean Power Alliance (CPA) became the new electricity supplier for Culver City. With this change, CPA purchases the renewable energy resources for electricity and Southern California Edison (SCE) delivers it to Culver City customers. The CPA is a Joint Powers Authority made up of public agencies across Los Angeles and Ventura counties working together to bring clean, renewable power to Southern California. With the recent switch in energy providers, electricity customers in Culver City are automatically defaulted to have 100 percent renewable energy serving their electricity needs. Alternatively, customers can opt to have their electricity power consisting of 50 percent renewable content or 36 percent, or opt out of the CPA and remain with SCE as their provider. The Project’s GHG analysis conservatively assumes the Project will remain with SCE as their electricity provider and does not take additional credit for renewable energy beyond the expected SCE renewable energy percentage for year 2022 based on the required renewables by year 2024 under SB 100.

4.5.4 Environmental Impacts

Methodology

Project Net GHG Emissions Estimates

The Climate Action Registry General Reporting Protocol provides procedures and guidelines for calculating and reporting GHG emissions from general and industry-specific activities. Although no numerical thresholds of significance have been adopted, and no specific protocols are available

79 City of Culver City, BPMP, page 136.
81 As defined by Caltrans, a Class IV separated bikeway is an on-street facility that is physically separated from other motor vehicle traffic by a vertical element or barrier, such as a curb, bollards, or vehicle parking aisle.
82 For the purposes of estimating GHG emissions in this Draft EIR, the emissions analysis conservatively assumes Project would not switch electricity providers from SCE to the Clean Power Alliance (CPA) (i.e., does not take any credit for 36 percent, 50 percent, or 100 percent renewable electricity, depending on the selected CPA plan). Should the Project switch electricity providers from SCE to the CPA, the Project’s electricity-related emissions would be lower than those disclosed in this section.
for land use projects, the General Reporting Protocol provides a framework for calculating and reporting GHG emissions from the Project. The GHG emissions provided in this report are consistent with the General Reporting Protocol framework. For the purposes of this Draft EIR, total GHG emissions (i.e., construction and operation) from the Project were quantified to provide information to decision makers and the public regarding the level of the Project’s annual GHG emissions. GHG emissions are typically separated into three categories that reflect different aspects of ownership or control over emissions:

- **Scope 1**: Direct, on-site and off-site combustion of fossil fuels (e.g., natural gas, propane, gasoline, diesel, and transportation fuels).
- **Scope 2**: Indirect, off-site emissions associated with purchased electricity or purchased steam.
- **Scope 3**: Indirect emissions associated with other emissions sources, such as third-party vehicles and embodied energy.

For purposes of this analysis, it was considered reasonable, and consistent with criteria pollutant calculations, to consider GHG emissions resulting from direct Project-related activities, including, e.g., use of vehicles, emergency back-up generator, electricity, and natural gas, to be new emissions. These emissions include Project construction activities such as demolition, hauling, and construction worker trips, as well as operational emissions. This analysis also considers indirect GHG emissions from water conveyance, wastewater generation, and solid waste handling. Since potential impacts resulting from GHG emissions are long-term rather than acute, GHG emissions were calculated on an annual basis. As previously discussed, the Project would remove existing structures and associated GHG emissions. Emissions removed would be applied as a credit toward the new emissions and the Project would be evaluated on its net (Project minus Existing) increase. GHG emissions for existing conditions and the Project are estimated using the California Emissions Estimator Model (CalEEMod) (Version 2016.3.2), which is a statewide land use emission computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant and GHG emissions from a variety of land use projects. CalEEMod was developed in collaboration with the air districts of California, and is recommended by SCAQMD. Regional data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) have been provided by the various California air districts to account for local requirements and conditions. The model is considered to be an accurate and comprehensive tool for quantifying air quality and GHG impacts from land use projects throughout California. Mobile source emissions have been estimated based on CARB’s on-road vehicle emissions factor (EMFAC2017) model.

As previously noted, existing uses on the Project Site, which includes a United States Post Office, a restaurant, and an oil change facility, generate GHG emissions as shown in Table 4.9-1. Therefore, to calculate the Project’s net GHG emissions, existing GHG emissions are subtracted from Project GHG emissions.

As discussed previously, the City has adopted and implemented a range of GHG reduction activities and strategies that would reduce GHG emissions. In addition, SCAG has adopted the 2020-2045

83 Embodied energy includes energy required for water pumping and treatment for end-uses.
RTP/SCS applicable to the region, which outlines SCAG’s plan for integrating the transportation network and related strategies with an overall land use pattern that responds to projected growth, housing needs, changing demographics, and transportation demands. The SCS focuses the majority of new housing and job growth in high-quality transit areas and other opportunity areas in existing main streets, downtowns, and commercial corridors, resulting in an improved jobs-housing balance and more opportunity for transit-oriented development and demonstrates a reduction in per capita GHG emissions relative to 2005 of nine percent in 2020 and 16 percent in 2035. The project-level analysis describes the consistency of the Project’s GHG emission sources with local and regional GHG emissions reduction strategies.

Construction Emissions

Construction emissions are forecasted by assuming a conservative estimate of construction activities from each phase of the Project. Construction emissions are estimated using the CalEEMod software. CalEEMod is based on outputs from OFFROAD and EMFAC, which are emissions estimation models developed by CARB and used to calculate emissions from construction activities, including off- and on-road vehicles. CalEEMod outputs construction-related GHG emissions of CO\(_2\), CH\(_4\), and CO\(_2\)e.

Construction of the Project would be completed in one phase. For the purposes of this Draft EIR, construction work is assumed to begin the second quarter of 2022 and would take place over approximately 26 months, with completion of the Project occurring in the third quarter of 2024. Project construction activities would include site demolition, grading/excavation, and building construction and finishing activities. Demolition activities would generate demolition debris (asphalt and general construction debris), which would require transport by haul truck. Soil excavation and grading activities would generate soil for export, which would require transport by haul truck. Heavy-duty construction equipment, vendor supply trucks and concrete trucks would be used during construction of foundations, parking structures, and buildings. Landscaping and architectural coating would occur during the finishing activities.

Consistent with calculations in Section 4.1, Air Quality, of this Draft EIR, in summary, construction emissions were forecasted by assuming a conservative estimate of construction activities (i.e., assuming all construction occurs at the earliest feasible date) and applying the mobile source emissions factors. The emissions were estimated using the CalEEMod software as recommended by the SCAQMD. The output values used in this analysis were adjusted to be Project-specific based on equipment types and the construction schedule. These values were then applied to the same construction phasing assumptions used in the criteria pollutant analysis in Section 4.1, Air Quality, to generate GHG emissions values for each construction year.

SCAQMD’s Draft Guidance Document – Interim CEQA Greenhouse Gas (GHG) Significance Threshold recognizes that construction-related GHG emissions from projects “occur over a relatively short-term period of time” and that “they contribute a relatively small portion of the
overall lifetime project GHG emissions.” The guidance recommends that construction project GHG emissions should be “amortized over a 30-year project lifetime, so that GHG reduction measures will address construction GHG emissions as part of the operational GHG reduction strategies.” In accordance with that SCAQMD guidance, GHG emissions from construction have been amortized over the 30-year lifetime of the Project.

Operational Emissions

Operation of the Project would generate GHG emissions from on-site operations such as natural gas combustion for heating/cooking, landscaping equipment and the use of consumer products. CalEEMod was used to estimate operational GHG emissions from electricity, natural gas, solid waste, water and wastewater, and landscaping equipment. GHG emissions would also be generated by Project-generated vehicle trips. As a conservative emission estimate, as the Project would be builtout in 2024, operational impacts were assessed for the first full Project buildout year of 2025.

With regard to energy demand, the consumption of fossil fuels to generate electricity and to provide heating and hot water generates GHG emissions. Energy demand rates were estimated based on specific square footage of the new commercial uses, as well as predicted water supply needs for these uses. The Project electricity demands are supplied by SCE. CalEEMod provides default intensity factors for CO₂, CH₄, and N₂O for SCE and calculates an overall CO₂e intensity factor. The default CO₂ intensity factor is based on year 2012 and was adjusted to reflect an intensity factor that represents a 2025 scenario. Also, as described above, SB 100 requires local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024. Therefore, since the Project’s first operational year is anticipated to be 2025, the default CO₂ intensity factor in CalEEMod for SCE was linearly adjusted to account for 46.7 percent renewable energy for 2025 based on the required renewables from year 2024 under SB 100. For 2017, SCE had 32 percent renewables and this was used to back calculate a CO₂ intensity factor where SCE had zero percent renewable. This value was then adjusted to reflect a CO₂ intensity factor with 46.7 percent renewables. Building electricity and natural gas usage rates were adjusted to account for the 2019 Title 24 Building Energy Efficiency Standards. In addition, the City has adopted a Photovoltaic Requirement which requires 1 kilowatt (kw) of photovoltaic power installed per 10,000 sf of new development.

Mobile emissions were estimated based on emission factors from EMFAC along with daily trip values taken from the Project’s Memorandum of Understanding for Transportation Study (MOU) to estimate on-road mobile source GHG emissions. Consistent with calculations in Section 4.1, Air Quality, of this Draft EIR, the MOU includes transit credit from public transit stops in the form of 5 percent reduced trips compared to default trips rates in the Institute of Transportation Engineers, Trip Generation, 10th Edition, and an additional 10 percent reduction was applied to new

87 Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.
net trips internal capture due to the mixed-use nature of the Project. The Project would also implement a transportation demand management (TDM) Program that would reduce Project-related VMT (refer to Section 4.11, Transportation, of this Draft EIR, for additional details regarding the TDM program features). The TDM Program includes strategies that would minimize VMT such as Site Design/Pedestrian Network Improvements, Commute Marketing Program, and Off-Street Parking Pricing. These transit credits and TDM Program features and associated emissions reductions are accounted for in the operational emissions modeling (see Subsection 4.5.4, Project Characteristics and Project Design Features, for additional details).

An emergency generator is also included as part of the project. The 500kW generator would have an EPA rated Tier 2 engine with a DPF filter. GHG emissions from the emergency generator were quantified using provided emission factors or CalEEMod default emission factors as detailed in Appendix F. The emergency generator is anticipated to operate for a maximum of 2 hours per day and 50 hours per year for maintenance and testing.

As previously described above, in 2019 all residential and commercial users were automatically enrolled in the CPA program. Electricity customers in the City are automatically defaulted to receive electricity from 100 percent renewable resources unless they opt out of the CPA. However, the analysis conservatively assumes that the renewable usage is equal to that of Southern California Edison’s renewable production.88

GHG emissions from solid waste disposal are also calculated using CalEEMod. Refer to the Project’s Initial Study, attached as Appendix A-2 of this Draft EIR for estimated solid waste disposal and diversion rates from the Project. Emissions are based on solid waste calculated for the Project and the GHG emission factors for solid waste decomposition. The GHG emission factors, particularly for CH₄, depend on characteristics of the landfill, such as the presence of a landfill gas capture system and subsequent flaring or energy recovery. The default values, as provided in CalEEMod, for landfill gas capture (e.g., no capture, flaring, energy recovery) are statewide averages and are used in this assessment. In addition, it was conservatively assumed 44 percent of solid waste will be diverted from landfills based on AB 341 which directs CalRecycle to develop and adopt regulations for mandatory commercial recycling and sets a Statewide goal for 75 percent disposal reduction by the year 2020.89 The latest CalRecycle data for year 2016 (the most recent year for which data are available) states the State has only reached a 44 percent diversion rate.90

Emissions of GHGs from water and wastewater result from the required energy to supply and distribute the water and treat the wastewater. Wastewater also results in emissions of GHGs from wastewater treatment systems. Emissions were calculated using CalEEMod and were based on the water usage rate for the land uses, the electrical intensity factors for water supply, treatment, and

88 The CPA allows for 100 percent, 50 percent, and 36 percent renewable energy content as well as the option to opt out of the program all together. Assuming that all of the City’s residents opt out of the program is a highly conservative assumption and therefore the analysis will likely overestimate net Project emissions.

distribution and for wastewater treatment, the GHG emission factors for the electricity utility provider, and the emission factors for the wastewater treatment process.

Other sources of GHG emissions from Project operation include landscaping equipment, such as lawnmowers and trimmers. The CalEEMod software uses landscaping equipment GHG emission factors from the CARB OFFROAD model and the CARB Technical Memo: Change in Population and Activity Factors for Lawn and Garden Equipment.91

As previously stated operational GHG impacts are assessed based on the Project-related incremental increase in GHG emissions compared to baseline conditions. The GHG emissions calculations incorporate GHG reductions sustainability measures, some of which are required by regulation, such as the City’s Green Building Program requirements, compliance with SCAQMD rules and regulations and reductions in energy and water demand.

Operational GHG impacts are assessed based on the Project-related incremental increase in GHG emissions compared to baseline conditions. Under CEQA, the baseline environmental setting is generally established at the time a Notice of Preparation for an EIR is issued, which for this Project occurred in November 2019, as provided in Appendix A-1 of this Draft EIR.

Consistency with Greenhouse Gas Reduction Plan, Policies, and Actions

The Project’s GHG emissions are also evaluated by assessing the Project’s consistency with applicable GHG reduction strategies and local actions adopted by the City. As discussed previously, the City has adopted strategies and polices to reduce GHG emissions through its Green Building Program.

The Governor’s Office of Planning and Research (OPR) encourages lead agencies to make use of programmatic mitigation plans and programs from which to tier when they perform individual project analyses. The City does not have a programmatic mitigation plan to tier from, such as a GHG Emissions Reduction Plan as recommended in the CEQA Guidelines. However, the City has adopted the Green Building Program and Green Building Code that encourage and require applicable projects to implement energy efficiency measures. In addition, the California Climate Action Team Report provided recommendations for specific emission reduction strategies for reducing GHG emissions and reaching the targets established in HSC Division 25.5. Thus, if the Project is designed in accordance with these policies and regulations, it would result in a less than significant impact, because it would be consistent with the overarching State regulations on GHG reductions.

Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to GHG Emissions if it would:

- **GHG-1** Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment; or
- **GHG-2** Conflict with any applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs.

Amendments to Section 15064.4 of the CEQA Guidelines were adopted to assist lead agencies in determining the significance of the impacts of GHG emissions. Consistent with existing CEQA practice, Section 15064.4 gives lead agencies the discretion to determine whether to assess those emissions quantitatively or qualitatively. If a qualitative analysis is used, in addition to quantification, this section recommends certain qualitative factors that may be used in the determination of significance (i.e., extent to which the project may increase or reduce GHG emissions compared to the existing environment; whether the project exceeds an applicable significance threshold; and extent to which the project complies with regulations or requirements adopted to implement a reduction or mitigation of GHGs). The amendments do not establish a threshold of significance; rather, lead agencies are granted discretion to establish significance thresholds for their respective jurisdictions, including looking to thresholds developed by other public agencies, or suggested by other experts, such as the California Air Pollution Control Officers Association (CAPCOA), so long as any threshold chosen is supported by substantial evidence (see Section 15064.7(c)). The CNRA has also clarified that the CEQA Guidelines amendments focus on the effects of GHG emissions as cumulative impacts, and that they should be analyzed in the context of CEQA’s requirements for cumulative impact analysis (see Section 15064(h)(3)).

Although GHG emissions can be quantified, CARB, SCAQMD, and the City have not adopted project-level significance thresholds for GHG emissions that would be applicable to the Project. The OPR released a technical advisory on CEQA and climate change that provided some guidance on assessing the significance of GHG emissions, and states that “lead agencies may undertake a project-by-project analysis, consistent with available guidance and current CEQA practice,” and that while “climate change is ultimately a cumulative impact, not every individual project that emits GHGs must necessarily be found to contribute to a significant cumulative impact on the environment.” Furthermore, the technical advisory states that “CEQA authorizes reliance on previously approved plans and mitigation programs that have adequately analyzed and mitigated...

GHG emissions to a less than significant level as a means to avoid or substantially reduce the cumulative impact of a project."\(^94\)

Per CEQA Guidelines Section 15064(h)(3), a project’s incremental contribution to a cumulative impact can be found not cumulatively considerable if the project would comply with an approved plan or mitigation program that provides specific requirements that will avoid or substantially lessen the cumulative problem within the geographic area of the project. As previously stated, CEQA Guidelines Section 15064(h)(3) allows a lead agency to make a finding of non-significance for GHG emissions if a project complies with a program and/or other regulatory schemes to reduce GHG emissions.\(^95\)

In the absence of any adopted, quantitative threshold, the Project would not have a significant effect on the environment if the Project is found to be consistent with the applicable regulatory plans and policies to reduce GHG emissions, including the emissions reduction measures discussed within CARB’s Climate Change Scoping Plan, 2020-2045 RTP/SCS, and City’s polices established for the purpose of increasing energy efficiency and reducing GHG emissions for new developments and the City’s Green Building Code.

Project Characteristics and Project Design Features

Project Characteristics

The Project would represent an urban infill development within an established community, provided a walkable mixed-use development, and would be located near existing transit and bikeways. These project characteristics would increase active transportation options and the use of other transit modes thereby reducing the number of vehicle trips, length and associated emissions compared to model default assumptions.

The MOU\(^96\) developed for the Project includes transit credit from public transit stops in the form of 5 percent reduced trips compared to default trip rates with an additional 10 percent reduction applied to new net trips due to the mixed-use nature of the Project and associated internal capture of vehicle trips. The Project’s TDM Program would reduce Project-related VMT through a number of strategies including Site Design/Pedestrian Network Improvements, the Commute Marketing

\(^94\) OPR, Technical Advisory – CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA) Review.

\(^95\) See, for example, San Joaquin Valley Air Pollution Control District (SJVAPCD), CEQA Determinations of Significance for Projects Subject to ARB’s GHG Cap-and-Trade Regulation, APR-2025 (June 25, 2014), in which the SJVAPCD “determined that GHG emissions increases that are covered under ARB’s Cap-and-Trade regulation cannot constitute significant increases under CEQA…” Furthermore, the SCAQMD has taken this position in CEQA documents it has produced as a lead agency. The SCAQMD has prepared three Negative Declarations and one Draft Environmental Impact Report that demonstrate the SCAQMD has applied its 10,000 MTCO\(_2\)e/yr significance threshold in such a way that GHG emissions covered by the Cap-and-Trade Program do not constitute emissions that must be measured against the threshold. See SCAQMD, Final Negative Declaration for Ultramar Inc. Wilmington Refinery Cogeneration Project, SHC No. 2012041014 (October 2014); SCAQMD Final Negative Declaration for Phillips 99 Los Angeles Refinery Carson Plant—Crude Oil Storage Capacity Project, SCH No. 2013091029 (December 2014); SCAQMD Final Mitigated Negative Declaration for Toxic Air Contaminant Reduction for Compliance with SCAQMD Rules 1420.1 and 1402 at the Exide Technologies Facility in Vernon, CA, SCH No. 2014101040 (December 2014); and SCAQMD Final Environmental Impact Report for the Breitburn Santa Fe Springs Blocks 400/700 Upgrade Project, SCH No. 2014121014 (August 2015).

\(^96\) Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Impact Study, which is provided in Appendix J of this Draft EIR.
Program, and Off-Street Parking Pricing. For additional details regarding the TMD program features, please refer to Section 4.11, Transportation, of this Draft EIR. Transit credits and TDM Program features and associated emissions reductions are accounted for in the operational emissions modeling.

In addition, the Project would be designed to include sustainability features such as energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping, use high efficacy lighting throughout the Project, use of refrigerants that minimize or eliminate compounds that lead to ozone depletion, and the development of a measurement and verification plan to document building energy consumption and compliance with the City’s Green Building Program and the CALGreen Code. The Project would also install a solar photovoltaic system that meets the City’s requirement of 1 kW of solar photovoltaics per 10,000 sf of new development.

Project Design Features

No specific Project Design Features are proposed with regard to GHG emissions.

Analysis of Project Impacts

Threshold GHG-1: The Project would have a potentially significant impact on GHG emissions if it would generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.

Threshold GHG-2: The Project would have a potentially significant impact on GHG emissions if it would conflict with any applicable plan, policy, regulation, or recommendation of an agency adopted for the purpose of reducing the emissions of GHGs.

Impact Statement GHG-1 and GHG-2: The Project would generate GHG emissions due to construction and operational activities. The Project’s annual direct and indirect GHG emissions would be generated from development that is located and designed to be consistent with relevant goals and actions to reduce Project emissions as much as feasibly possible, as well as consistent with the HSC Division 25.5 goals and CARB guidelines for assessing GHG emissions. Therefore, impacts associated with the Project are less than significant.

Consistency with State Plans, Policies, or Regulations

As mentioned above, in the absence of any adopted quantitative threshold, the significance of the Project’s GHG emissions is evaluated consistent with CEQA Guidelines Section 15064.4(b)(2) by considering whether the Project complies with applicable plans, policies, regulations and requirements adopted for the purpose of reducing the emissions of GHGs.

As described above, compliance with a GHG emissions reduction plan renders a less-than-significant impact. The analyses below demonstrate that the Project is consistent with the applicable GHG emission reduction plans and policies included within the 2017 Climate Change Scoping Plan, the SCAG 2020-2045 RTP/SCS, the City’s Green Building Program. As shown herein, the Project would be consistent with the applicable GHG reduction plans and policies.
Table 4.5-4, *Project Consistency with Applicable Scoping Plan Greenhouse Gas Reduction Strategies*, contains a list of statewide GHG emission reduction strategies and describes the Project’s consistency. Furthermore, not only is the Project consistent with currently applicable GHG emission reduction strategies, but the Project also would not conflict with or impede the future statewide GHG emission reductions goals. CARB has outlined a number of potential strategies for achieving the 2030 reduction target of 40 percent below 1990 levels. These potential strategies include renewable resources for half of the State’s electricity by 2030, increasing the fuel economy of vehicles and the number of zero-emission or hybrid vehicles, reducing the rate of growth in VMT, supporting rail and other alternative transportation options, and use of high efficiency appliances, water heaters, and HVAC systems. The Project would benefit from statewide and utility-provider efforts toward increasing the portion of electricity provided from renewable resources. The Project would also benefit from statewide efforts toward increasing the fuel economy standards of vehicles. The Project would be consistent with reducing the rate of growth in VMT by providing onsite bicycle parking facilities, being located in close proximity to the existing public transit options, and being located in an area with other commercial and retail land uses within walking distance. The Project would include building features that would include such items as energy-efficient appliances, water efficient plumbing fixtures and fittings, water-efficient landscaping, use of high efficacy lighting throughout the Project, use of refrigerants that minimize or eliminate compounds that lead to ozone depletion, and development of a measurement and verification plan to document building energy consumption and compliance with the City’s Green Building Program and the CALGreen Code.

<table>
<thead>
<tr>
<th>Source</th>
<th>Category / Description</th>
<th>Consistency Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 1493 (Pavley Regulations)</td>
<td>Reduces greenhouse gas emissions in new passenger vehicles from model year 2012 through 2016 (Phase I) and model year 2017-2025 (Phase II). Also reduces gasoline consumption to a rate of 31 percent of 1990 gasoline consumption (and associated GHG emissions) by 2020.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of the vehicle emissions standards.</td>
</tr>
<tr>
<td>SB 1368</td>
<td>Establishes an emissions performance standard for power plants within the State of California.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of the emissions standards for power plants.</td>
</tr>
<tr>
<td>Low Carbon Fuel Standard</td>
<td>Establishes protocols for measuring life-cycle carbon intensity of transportation fuels and helps to establish use of alternative fuels.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of the transportation fuel standards.</td>
</tr>
<tr>
<td>Appliance Efficiency Regulations (Title 20 Standards)</td>
<td>Establishes minimum efficiency levels for the following energy and water consumption products: Refrigerators, freezer, heaters, air conditioners, water heaters, pool heaters, general lighting, emergency lighting and self-contained lighting, traffic signal lighting, and clothes dryer must meet minimum appliance efficiency requirements.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of appliance efficiency standards.</td>
</tr>
</tbody>
</table>

4.5 Greenhouse Gas Emissions

Consistency Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Category / Description</th>
<th>Consistency Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB X7-7</td>
<td>Requires all water suppliers to increase water use efficiency and requires the Department of Water Resources, in consultation with other state agencies, to develop a single standardized water use reporting form, which would be used by both urban and agricultural water agencies.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of the water efficiency standards.</td>
</tr>
<tr>
<td>AB 1109</td>
<td>Requires the CEC to adopt minimum energy efficiency standards for general purpose lighting to reduce electricity consumption 50 percent for indoor residential lighting and 25 percent for indoor commercial lighting.</td>
<td>Consistent. The Project would be consistent with this regulation and would not conflict with implementation of energy efficiency requirements adopted by AB 1109.</td>
</tr>
<tr>
<td>Executive Order B-29-15</td>
<td>Requires the Department of Water Resources to lead a statewide initiative to replace 50 million square feet of lawns and ornamental turf with drought tolerant landscapes.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of the water efficiency standards.</td>
</tr>
<tr>
<td>Model Water Efficient Landscape Ordinance</td>
<td>Promotes efficient landscaping in new developments and establishes an outdoor water budget for new and renovated landscaped areas that are 500 square feet or larger.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of the water efficiency standards.</td>
</tr>
<tr>
<td>Emergency State Water Board Regulations</td>
<td>Directs the State Water Board, Department of Water Resources, and Public Utilities Commission to implement rates and pricing structures to incentivize water conservation, and calls upon water suppliers, homeowners’ associations, California businesses, landlords and tenants, and wholesale water agencies to take stronger conservation measures.</td>
<td>Consistent. The Project would meet or exceed this requirement as part of its compliance with CALGreen Code and would not conflict with implementation of the water efficiency standards.</td>
</tr>
<tr>
<td>Executive Order B-37-16</td>
<td>Directs the State Water Resources Control Board to adjust emergency water conservation regulations through the end of January 2017 to reflect differing water supply conditions across the state. The Water Board must also develop a proposal to achieve a mandatory reduction of potable urban water usage that builds off the mandatory 25 percent reduction called for in Executive Order B-29-15. The Water Board and Department of Water Resources will develop new, permanent water use targets to which the Project will be subject. The Water Board will permanently prohibit water-wasting practices such as hosing off sidewalks, driveways, and other hardscapes; washing automobiles with hoses not equipped with a shut-off nozzle; using non-recirculated water in a fountain or other decorative water feature; watering lawns in a manner that causes runoff, or within 48 hours after measurable precipitation; and irrigating ornamental turf on public street medians.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of the water efficiency standards.</td>
</tr>
<tr>
<td>CARB High-Global Warming Potential Greenhouse Gases in Consumer Products</td>
<td>Establishes set volatile organic compound (VOC) limits for numerous categories of consumer products, and limits the reactivity of the ingredients used in numerous categories of aerosol coating products.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of reducing emissions from high-Global Warming Potential consumer products.</td>
</tr>
<tr>
<td>Source</td>
<td>Category / Description</td>
<td>Consistency Analysis</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CARB In-Use Off-Road Diesel Vehicle Regulation</td>
<td>Requires off-road diesel engines, vehicles, or equipment greater than 25 horsepower to 1) limit idling, require a written idling policy, and requires a disclosure when selling vehicles; 2) requires all vehicles to be reported to CARB (using the Diesel Off-Road Online Reporting Systems, DOORS) and labeled; 3) restricts the adding of older vehicles into fleets starting on January 1, 2014; and 4) requires fleets to reduce their emissions by retiring, replacing, or repowering older engines, or installing Verified Diesel Emission Control Strategies, VDECS (i.e. exhaust retrofits).</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of reducing emissions from Off-Road Diesel Vehicles.</td>
</tr>
<tr>
<td>CARB In-Use On-Road Heavy-Duty Diesel Vehicle Regulation (Truck and Bus Regulation)</td>
<td>Requires diesel trucks and buses that operate in California to be upgraded to reduce emissions. Newer heavier trucks and buses must meet PM filter requirements. Lighter and older heavier trucks must be replaced starting January 1, 2015. By January 1, 2023, nearly all trucks and buses will need to have 2010 model year engines or equivalent. The requirement applies to nearly all privately and federally owned diesel fueled trucks and buses and to privately and publicly owned school buses with a gross vehicle weight rating (GVWR) greater than 14,000 pounds.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of reducing emissions from On-Road Heavy-Duty Diesel Vehicles.</td>
</tr>
<tr>
<td>Mandatory Commercial Recycling (AB 341)</td>
<td>Requires recycling services using one of the following: self-haul; subscribe to a hauler(s); arranging for pickup of recyclable materials; subscribing to a recycling service that may include mixed waste processing that yields diversion results comparable to source separation for any Projects that generate four cubic yards or more of commercial solid waste per week.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with CALGreen Code.</td>
</tr>
<tr>
<td>California Renewable Portfolio Standards (RPS) (Senate Bill X1-2 and 350)</td>
<td>SB X1-2 requires IOUs, POUs, and ESPs to increase purchases of renewable energy such that at least 33 percent of retail sales are procured from renewable energy resources by December 31, 2020. SB 350 requires retail sellers and publicly owned utilities to procure 50 percent of their electricity from eligible renewable energy resources by 2030.</td>
<td>Consistent. The Project would meet and exceed this requirement as part of its enrollment in the Clean Power Alliance.</td>
</tr>
<tr>
<td>Advanced Clean Car and Zero Emissions Vehicle (ZEV) Programs</td>
<td>Calls for the control of smog, soot and global warming gases and requirements for greater numbers of zero emission vehicles. Requires that by 2025, new automobiles will emit 34 percent fewer global warming gases and 75 percent fewer smog-forming emissions and requires manufacturers to produce an increasing number of ZEVs and plug-in hybrid electric vehicles in the 2018-2025 model years.</td>
<td>Consistent. The Project would be consistent with this requirement and would not conflict with implementation of clean new automobiles and increasing number of ZEVs in the market.</td>
</tr>
<tr>
<td>EPA and NHTSA GHG and CAFE standards</td>
<td>All bathroom exhaust fans shall be ENERGY STAR compliant.</td>
<td>Consistent. The Project would meet or exceed the energy standards in the Title 24 Building Energy Efficiency Standards.</td>
</tr>
<tr>
<td>California Green Building Standards Code Requirements</td>
<td>HVAC Systems will be designed to meet ASHRAE standards.</td>
<td>Consistent. The Project would utilize energy efficient equipment and would meet or exceed the energy standards in ASHRAE 90.1-2013, Appendix G and the Title 24 Building Energy Efficiency Standards.</td>
</tr>
<tr>
<td></td>
<td>Energy commissioning shall be performed for buildings larger than 10,000 square feet.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td></td>
<td>Refrigerants used in newly installed HVAC systems shall not contain any CFCs.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
</tbody>
</table>
Source

<table>
<thead>
<tr>
<th>Category / Description</th>
<th>Consistency Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking spaces shall be designed for carpool or alternative fueled vehicles. Up to eight percent of total parking spaces will be designed for such vehicles.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td>Long-term and short-term bike parking shall be provided for up to five percent of vehicle trips.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td>Indoor water usage must be reduced by 20% compared to current California Building Code Standards for maximum flow.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code by using low-flow water fixtures.</td>
</tr>
<tr>
<td>All irrigation controllers must be installed with weather sensing or soil moisture sensors.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code and would use water efficient techniques, such as drip irrigation.</td>
</tr>
<tr>
<td>Requires a minimum of 65 percent recycle or reuse of nonhazardous construction and demolition debris.</td>
<td>Consistent. The Project would meet or exceed this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td>Requires documentation of types of waste recycled, diverted or reused.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td>Requires use of low VOC coatings consistent with AQMD Rule 1168.</td>
<td>Consistent. The Project would be consistent with this regulation and would meet or exceed the low VOC coating requirements.</td>
</tr>
<tr>
<td>100 percent of vegetation, rocks, soils from land clearing shall be reused or recycled. Requires installation of electrical conduit for future uses of electric vehicle charging parking spaces up to 6% of total parking spaces.</td>
<td>Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code. Consistent. The Project would meet this requirement as part of its compliance with the CALGreen Code.</td>
</tr>
<tr>
<td>Achieve California’s 50 percent waste diversion mandate (Integrated Waste Management Act of 1989) to reduce GHG emissions associated with virgin material extraction.</td>
<td>Consistent. CALGreen Code implements this goal, and the Project would be consistent with the requirements.</td>
</tr>
<tr>
<td>Implement efficient water management practices and incentives, as saving water saves energy and GHG emissions.</td>
<td>Consistent. CALGreen Code implements this goal, and the Project would be consistent with the requirements.</td>
</tr>
<tr>
<td>The California Energy Commission updates building energy efficiency standards that apply to newly constructed buildings and additions to and alterations to existing buildings. Both the Energy Action Plan and the Integrated Energy Policy Report call for ongoing updating of the standards.</td>
<td>Consistent. CALGreen Code implements this goal, and the Project would be consistent with the requirements.</td>
</tr>
<tr>
<td>Reduce GHG emissions from electricity by reducing energy demand. The California Energy Commission updates appliance energy efficiency standards that apply to electrical devices or equipment sold in California. Recent policies have established specific goals for updating the standards; new standards are currently in development.</td>
<td>Consistent. CALGreen Code implements this goal, and the Project would be consistent with the requirements.</td>
</tr>
<tr>
<td>Apply strategies that integrate transportation and land-use decisions, including but not limited to promoting jobs/housing proximity, high-density residential/commercial development along transit corridors, and implementing intelligent transportation systems.</td>
<td>Consistent. The Project would be located in an infill location in proximity to existing residential and commercial businesses, which would minimize trip lengths and associated emissions.</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.
Consistency with Executive Orders S-3-05 and B-30-15

At the State level, Executive Orders S-3-05 and B-30-15 establish goals for reducing GHG emissions. Executive Order S-3-05’s goal to reduce GHG emissions to 1990 levels by 2020 was codified by the Legislature as AB 32. As analyzed above, the Project would be consistent with AB 32. Therefore, the Project does not conflict with the 2020 component of Executive Orders S-3-05 and B-30-15.

The Executive Orders S-3-05 and B-30-15 also establish goals to reduce GHG emissions to 40 percent below 1990 levels by 2030, and 80 percent below 1990 levels by 2050. These goals have not yet been codified by the Legislature. However, studies have shown that, to meet the 2030 and 2050 targets, aggressive technologies in the transportation and energy sectors, including electrification and the decarbonization of fuel, will be required. In its Climate Change Scoping Plan, CARB acknowledged that the “measures needed to meet the 2050 goal are too far in the future to define in detail.”98 In the First Update, however, CARB generally described the type of activities required to achieve the 2050 target: “energy demand reduction through efficiency and activity changes; large-scale electrification of on-road vehicles, buildings, and industrial machinery; decarbonizing electricity and fuel supplies; and rapid market penetration of efficiency and clean energy technologies that requires significant efforts to deploy and scale markets for the cleanest technologies immediately.”99 Due to the technological shifts required and the unknown parameters of the regulatory framework and market conditions in 2030 and 2050, as well as uncertainties regarding the exact regulations that CARB will ultimately adopt for achieving the 2030 and 2050 reduction goal, quantitatively analyzing the Project’s impacts further relative to the 2030 and especially the 2050 goals currently is speculative for purposes of CEQA.

Despite thorough investigation, due to the uncertainties regarding specific state and local actions and regulations that will be adopted to achieve the 2030 and 2050 GHG emission reduction targets, such as future Title 24 building energy standards and future vehicle emission standards beyond vehicle model year 2025, calculating Project emissions levels for 2030 and 2050 would be highly speculative. Nonetheless, statewide efforts are underway to facilitate the State’s achievement of those goals and it is reasonable to expect the Project’s emissions level to decline as the regulatory initiatives identified by CARB in the First Update and strategies in the 2017 Scoping Plan are refined and implemented, and other technological innovations occur.

The Climate Change Scoping Plan recognizes that HSC Division 25.5 establishes an emissions reduction trajectory that will allow California to achieve the more stringent 2050 target: “These [greenhouse gas emission reduction] measures also put the state on a path to meet the long-term 2050 goal of reducing California’s greenhouse gas emissions to 80 percent below 1990 levels. This trajectory is consistent with the reductions that are needed globally to stabilize the climate.”100 Also, CARB’s First Update provides that it “lays the foundation for establishing a broad framework for continued emission reductions beyond 2020, on the path to 80 percent below 1990 levels by

98 CARB, Climate Change Scoping Plan, page 117.
100 CARB, Climate Change Proposed Scoping Plan, October 2008, page 15.
2050,” and many of the emission reduction strategies recommended by CARB would serve to reduce the Project’s emissions level to the extent applicable by law; 101, 102

- **Energy Sector:** Continued improvements in California’s appliance and building energy efficiency programs and initiatives, such as the State’s zero net energy building goals, would serve to reduce the Project’s emissions level. 103 Additionally, further additions to California’s renewable resource portfolio would favorably influence the Project’s emissions level. 104

- **Transportation Sector:** Anticipated deployment of improved vehicle efficiency, zero emission technologies, lower carbon fuels, and improvement of existing transportation systems all will serve to reduce the Project’s emissions level. 105

- **Water Sector:** The Project’s emissions level will be reduced as a result of further enhancements to water conservation technologies. 106

- **Waste Management Sector:** Plans to further improve recycling, reuse, and reduction of solid waste will beneficially reduce the Project’s emissions level. 107

Under AB 398, the Cap-and-Trade Program has been extended to 2030. The Cap-and-Trade Program extension is built on the “recommended action” in the First Update to the Climate Change Scoping Plan for the Cap-and-Trade Program, which was to: “Develop a plan for a post-2020 Cap-and-Trade Program, including cost containment, to provide market certainty and address a mid-term emissions target.” 108

As discussed previously, the Governor signed into law SB 350 (Chapter 547, Statues of 2015), which increased the RPS to 50 percent by 2030 and included interim targets of 40 percent by 2024 and 45 percent by 2027. The utility provider for the Project Site, SCE, has committed providing an increasing percentage of electricity from renewable sources in compliance with the RPS with 41.4 percent by 2020. The Project would also include the installation of on-site solar photovoltaic systems consistent with City requirements to increase energy efficiency and reduce GHG emissions.

Further, the State’s existing and proposed regulatory framework can allow the State to reduce its GHG emissions level to 40 percent below 1990 levels by 2030, and to 80 percent below 1990 levels by 2050. According to the 2017 Scoping Plan (adopted in December 2017), reductions needed to achieve the 2030 target are expected to be achieved by targeting specific emission sectors, including those sectors that are not directly controlled or influenced by the Project, but nonetheless contribute

101 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, page 4. See also pages 32-33, as recent studies show that achieving the 2050 goal will require that the “electricity sector will have to be essentially zero carbon; and that electricity or hydrogen will have to power much of the transportation sector, including almost all passenger vehicles.”

102 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, Table 6: Summary of Recommended Actions by Sector, pages 94-99.

104 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, pages 40-41.

105 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, pages 55-56.

106 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, page 65.

107 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, page 69.

108 CARB, First Update to the Climate Change Scoping Plan: Building on the Framework, page 98.
to Project-related GHG emissions. For instance, the Project itself is not subject to the Cap-and-Trade regulation; however, Project-related emissions would decline pursuant to the regulation as utility providers and transportation fuel producers are subject to renewable energy standards, Cap-and-Trade, and the LCFS. The 2017 Scoping Plan also calls for the doubling of the energy efficiency savings, including demand-response flexibility for 10 percent of residential and commercial electric space heating, water heating, air conditioning and refrigeration. The strategy is in the process of being designed specifically to accommodate existing residential and commercial uses under the CEC’s Existing Building Energy Efficiency Action Plan. This strategy requires the CEC in collaboration with the CPUC to establish the framework for the energy savings target setting outlines the necessary actions that will need to occur in future years, including workforce education and training institutions engaging with the building industry, mapping industry priorities for efficiency to major occupations that will provide services, identifying workforce competency gaps, and quantifying the work needed to build a workforce to implement high-quality efficiency projects at scale. Even though these studies did not provide an exact regulatory and technological roadmap to achieve the 2030 and 2050 goals, they demonstrated that various combinations of policies could allow the statewide emissions level to remain very low through 2050, suggesting that the combination of new technologies and other regulations not analyzed in the study could allow the State to meet the 2030 and 2050 targets.

For the reasons described above, the Project’s emissions trajectory is expected to follow a declining trend, consistent with the establishment of the 2030 and 2050 targets. However, despite the Project’s GHG emissions efficiency and the Project’s consistency with applicable GHG plans, policies and regulations adopted for the purpose of reducing GHG emissions, it would be speculative to determine the Project’s consistency with these statewide targets.

Project Consistency with AB 32

As indicated in Table 4.5-4, in support of AB 32, the state has promulgated specific laws aimed at GHG reductions applicable to the Project. The heating, ventilation, and air conditioning (HVAC) system would be sized and designed in compliance with the CALGreen Code and the City’s Green Building Program to maximize energy efficiency caused by heat loss and heat gain. The Project Site is also located in an established commercial area with access to public transportation, which minimizes trips and trip lengths reducing mobile source GHG emissions. Therefore, the Project would be consistent with State efforts to reduce motor vehicle emissions and congestion. The Project would generate GHG emissions due to construction and operational activities; however, its

111 Energy + Environmental Economics (E3), Summary of the California State Agencies’ PATHWAYS Project: Long-Term Greenhouse Gas Reduction Scenarios, April 2015; Greenblatt, Jeffery, “Modeling California Impacts on Greenhouse Gas Emissions,” Energy Policy, Vol. 78, pages 158-172. The California Air Resources Board, California Energy Commission, California Public Utilities Commission, and the California Independent System Operator engaged E3 to evaluate the feasibility and cost of a range of potential 2030 targets along the way to the state’s goal of reducing GHG emissions to 80% below 1990 levels by 2050. With input from the agencies, E3 developed scenarios that explore the potential pace at which emission reductions can be achieved as well as the mix of technologies and practices deployed. E3 conducted the analysis using its California PATHWAYS model. Enhanced specifically for this study, the model encompasses the entire California economy with detailed representations of the buildings, industry, transportation, and electricity sectors.
annual GHG emissions, would be generated due to development located and designed to be consistent with relevant goals and actions designed to encourage development that results in the efficient use of public and private resources. Therefore, the Project’s GHG emissions and associated impacts would be less than significant.

Project Consistency with Regional and Local Trip and VMT Reduction Goals, Actions, and Recommendations

The significance of the Project’s GHG emissions was first evaluated based on whether the emissions would be generated in connection with development located and designed consistent with relevant regional and local goals, actions, and recommendations designed to encourage development that reduces trips and VMTs. Transportation-related GHG emissions are the largest source of emissions from the Project. This Project characteristic is consistent with the findings in regional plans, such as the 2020-2045 RTP/SCS, which recognizes that the transportation sector is the largest contributor to the State’s GHG emissions.

As described in 4.5.3 Regulatory Framework, the purpose of the 2020-2045 RTP/SCS is to achieve its assigned regional per capita GHG reduction targets for the passenger vehicle and light-duty truck sector established by CARB pursuant to SB 375. Similar to the findings for the 2016-2040 RTP/SCS, SCAG’s Program EIR for the 2020-2045 RTP/SCS, certified on May 7, 2020, states that “[e]ach [Metropolitan Planning Organization] is required to prepare an SCS in conjunction to [sic] with the RTP in order to meet these GHG emissions reduction targets by aligning transportation, land use, and housing strategies with respect to [Senate Bill] 375.” The 2020-2045 RTP/SCS seeks to improve mobility and accessibility, which is defined as “the ability to reach desired destinations with relative ease and within a reasonable time, using reasonably available transportation choices.” The 2020-2045 RTP/SCS seeks to implement strategies that “alleviates development pressure in sensitive resource areas by promoting compact, focused infill development in established communities with access to high-quality transportation.”

Furthermore, like the 2016-2040 RTP/SCS, the 2020-2045 RTP/SCS includes “more compact, infill, walkable and mixed-use development strategies to accommodate new region’s growth would be encouraged to accommodate increases in population, households, employment, and travel demand.” Moreover, as was also the case for the 2016-2040 RTP/SCS, the 2020-2045 RTP/SCS states that while “[t]ransportation emissions are most prevalent relative to all other sectors in California and specifically in the SCAG region,” the RTP/SCS would focus “growth in existing urban regions and opportunity areas, where transit and infrastructure are already in place. Locating new growth near bikeways, greenways, and transit would increase active transportation options and

the use of other transit modes, thereby reducing number of vehicle trips and trip lengths and associated emissions.”116

In order to assess the Project’s potential to conflict with the 2020-2045 RTP/SCS, this section analyzes the Project’s land use characteristics for consistency with the strategies and policies set forth in the 2020-2045 RTP/SCS to meet GHG emission-reduction targets set by CARB.117 Generally, projects are considered to not conflict with applicable City and regional land use plans and regulations, such as SCAG’s 2020-2045 RTP/SCS, if they are compatible with the general intent of the plans and would not preclude the attainment of their primary goals. The Project would not conflict with the 2020-2045 RTP/SCS goals and benefits intended to improve mobility and access to diverse destinations, provide better “placemaking,” provide more transportation choices, and reduce vehicular demand and associated emissions. The Project would support the goals of the 2020-2045 RTP/SCS, which seeks improved access and mobility by placing destinations closer together, thereby decreasing the time and cost of traveling between them and has “strategies to prioritize areas for new development, like near destinations and mobility options.”118 Therefore, the Project would not conflict with the GHG reduction-related actions and strategies contained in the 2020-2045 RTP/SCS.

Regarding SCAG’s 2020-2045 RTP/SCS alignment of transportation land use, the Project would accommodate increases in employment and travel demand in areas that accessible and well-served by existing transit options. The Project would represent an urban infill development, since it would be undertaken on a currently developed property, and would be located close to retail, restaurant, and services, educational and religious institutions, and near existing public transit stops, which would result in reduced vehicle trips and VMT compared to model default assumptions. The MOU119 includes transit credit from public transit stops in the form of 5 percent reduced trips compared to default trips rates in the Institute of Transportation Engineers, Trip Generation, 10th Edition. An additional 10 percent reduction was applied to new net trips internal capture due to the mixed-use nature of the Project. The Project would also feature a TDM Program that would reduce Project-related VMT (refer to Section 4.11, Transportation, of this Draft EIR, for additional details regarding the TDM program features). The TDM Program includes strategies that would minimize VMT such as: Site Design/Pedestrian Network Improvements – The site will be designed to encourage walking, biking, and taking transit. Amenities would include: new sidewalks and street trees along the perimeter, improved street and pedestrian lighting, pedestrian network within the site and connecting to the surrounding pedestrian system; Commute Marketing Program – This strategy involves the use of marketing and promotional tools to educate and inform travelers about site-specific transportation options and the effects of their travel choices. At a minimum, this strategy includes passive educational and promotional materials, and a person to field questions

117 As discussed in the 2020-2045 RTP/SCS, the actions and strategies included in the 2020-2045 RTP/SCS remain unchanged from those adopted in the 2012-2035 and 2016-2040 RTP/SCS.

118 SCAG, 2020-2045 RTP/SCS, page 47.

119 Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Impact Study, which is provided in Appendix J of this Draft EIR.
and manage regular updates of transportation materials; Off-Street Parking Pricing – This strategy implements parking pricing for off-street parking locations for office employees to the site. Off-street parking refers to parking in the Project Site garage. These transit credits and TDM Program features and associated emissions reductions are accounted for in the operational emissions modeling. According to SCAG, giving people more transportation choices and providing greater opportunities for biking and walking reduces the number of people who drive alone and encourages people to use alternative modes of travel.¹²⁰

The Project would provide a pedestrian-friendly design, promote access from the nearby transit, as well as provide bicycle storage areas for Project residents, employees, and visitors. The Project would create a pedestrian-friendly environment where the Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road. The ground floor retail uses at the corner of Sepulveda Boulevard and Jefferson Boulevard, along with the market, would serve as pedestrian points of interest on the Project Site. The Paseo Courtyard, located between the retail uses at Sepulveda Boulevard and Jefferson Boulevard would provide open space for people to gather and interact with the retail. People would be able to access the residential lobby through the Machado Park along Machado Road. Pedestrians would also be able to easily access the retail market from Sepulveda Boulevard or from Machado Road. Pedestrians would also be able to access the market from the Paseo Courtyard by walking past the retail uses.

Additionally, bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available throughout the Project Site and bicycle lockers would be provided for residents in the subterranean parking level. The Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City. Separate from the Project, the City intends to implement a bicycle share facility adjacent to the Machado Park located along Machado Road between Sepulveda Boulevard and Jefferson Boulevard. The bicycle share facility would allow for connections to the City’s proposed bicycle lanes along Jefferson Boulevard and Sepulveda Boulevard as part of the City’s Action Plan.

Further, the Project would promote alternate modes of transit as the Project Site is in close proximity to the Westfield Culver City Transit Center, which is located approximately 0.7 miles south, and existing public transit stops where the Culver City Bus has multiple stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Los Angeles County Metropolitan Transportation Authority (Metro) E (Expo) Line Light Rail at the La Cienega Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro C (Green) Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service to the Metro E (Expo) Line Light Rail

¹²⁰ SCAG, 2020-2045 RTP/SCS, page 42.
4. Environmental Impacts Analysis
4.5 Greenhouse Gas Emissions

at the Expo/Sepulveda Station. The Project’s specific location in close proximity to the Westfield Culver City Transit Center, bus routes, its close proximity to off-site retail, restaurant, commercial, and job destinations, and its highly walkable environment support the conclusion from this analysis that the Project has been properly located so that its development would minimize VMT. As such, the Project would not conflict with regional plans to reduce VMT and associated GHG emissions.

The Project would generate indirect growth associated with construction employment and up to 112 new employees (refer to Section 4.9, Population and Housing, of this Draft EIR for additional details regarding new employees generated by the Project). According to SCAG, Culver City’s forecast population, household, and employment growth of 1,293 persons, 862 households, and 4,137 jobs is predicted between 2020 and 2045, respectively. As such, the estimated 112 new employees generated by the Project are within SCAG’s employment growth assumptions of Culver City. The Project would provide up to 230 residences, including 19 affordable units for very low income households, and 529 residents. The Project’s increase in population would represent approximately 27 percent of the household growth and 41 percent of the population growth projected for the City in 2045. The Project’s increase in approximately 529 new residents is consistent with SCAG’s growth projections for the period between 2020 and 2045, the RTP/SCS horizon year, for the City as a whole. As such, the Project would not generate growth beyond the range of development anticipated within the established SCAG regional forecast for the City. The Project would not increase or induce residential density growth not otherwise anticipated.

SCAG’s 2020-2045 RTP/SCS states that 38 percent of all trips in the region are less than 3 miles.121 The 2020-2045 RTP/SCS intends to decrease these trips by extending local bikeway networks. The Project would be consistent with this 2020-2045 RTP/SCS goal by installing the CALGreen Code required number of bicycle parking spots. The Project would also be consistent with and support the goals of the 2020-2045 RTP/SCS strategies to promote active transportation and supports improvements in local bike networks as the Project promotes the use of bicycles as it is located close to many Culver City bike paths. This would be consistent with regional plans to reduce transportation-related GHG emissions as part of the overall statewide strategy under AB 32. Therefore, the Project would be consistent with the SCAG 2020-2045 RTP/SCS regional and local trip and VMT reduction goals.

Project Consistency with City Goals and Actions

The significance of the Project’s GHG emissions is also evaluated based on whether they would be generated in connection with a design that is consistent with relevant City goals and actions designed to encourage development that results in the efficient use of public and private resources.

The Project would be designed to include building features that would include such items as energy-efficient appliances, water-efficient plumbing fixtures and fittings, and water-efficient landscaping, use high efficacy lighting throughout the Project, use of refrigerants that minimize or eliminate compounds that lead to ozone depletion, and development of a measurement and verification plan to document building energy consumption and compliance with the City’s Green Building Program and the CALGreen Code, as indicated in Table 4.5-4. In addition, the Project would install a solar

121 SCAG, 2020-2045 RTP/SCS.
photovoltaic system that meets the City’s requirement of 1 kW of solar photovoltaics per 10,000 sf of new development. The Project would also provide 132 EV capable spaces, 63 EV charging stations, and 63 EV-ready spaces. Therefore, as the Project’s GHG emissions would be generated in connection with a development located and designed to be consistent with the applicable City goals and actions for GHG emission reductions, and the impact would result be less than significant impacts.

Generation of Direct or Indirect GHG Emissions

Construction

As explained above, the emissions of GHGs associated with construction of the Project were calculated for each year of construction activity. Detailed emissions calculations are provided in Appendix F. Results of the Project’s construction phase GHG emissions calculations are presented in Table 4.5-5, *Project Construction Greenhouse Gas Emissions*. Although construction-related GHGs are one-time emissions, any assessment of Project emissions should include construction emissions. The SCAQMD recommends that a project’s construction-related GHG emissions be amortized over the project’s 30-year lifetime so that GHG reduction measures will address construction GHG emissions as part of the operational GHG reduction strategies. The Project’s estimated construction GHG emissions have been amortized over a 30-year period in accordance with SCAQMD guidance.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>CO₂e (Metric Tons) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction Emissions</td>
<td>10,434</td>
</tr>
<tr>
<td>Amortized Construction Emissions (30-years)</td>
<td>348</td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix F.

Operation

As previously stated, the Project would remove all existing buildings. Table 4.5-6, *Existing Site GHG Emission to be Removed*, summarizes the emissions to be applied as a credit to evaluate the Project’s net increase in GHG emissions.
Table 4.5-6
EXISTING SITE GHG EMISSIONS TO BE REMOVED

<table>
<thead>
<tr>
<th>Emissions Sources</th>
<th>CO₂e (Metric Tons per Year)</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (Landscaping Equipment)</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Energy (Electricity + Natural Gas)</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>2,274</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,560</td>
<td></td>
</tr>
</tbody>
</table>

a Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix F.

b CO₂e emissions are calculated using the global warming potential values from the Intergovernmental Panel on Climate Change Fourth Assessment Report.

As explained above, the emissions of GHGs associated with operation of the Project were calculated using CalEEMod, taking into account the Project’s compliance with the portions of the City’s Green Building Code and mandatory Green Building Program applicable to new developments. Physical and operational Project characteristics for which sufficient data is available to quantify the reductions from building energy and resource consumption have been included in the quantitative analysis, and include but are not limited to the following: installation of 1 kW of solar photovoltaics per 10,000 sf of new development (conservatively assumed to be incorporated as part of compliance with 2019 Title 24 Standards), water reduction and efficiency features such as: installation of energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping (refer to the Project’s Initial Study, attached as Appendix A-2 of this Draft EIR for estimated waste demand of the Project), reduced building energy usage consistent with 2019 Title 24 Building Energy Efficiency Standards, and trip reductions as discussed in the Project’s Transportation Study where the Project would represent an urban infill development and would be located near existing public transit stops, thereby reducing vehicle trips and VMT compared to model default assumptions. As discussed under Methodology section above, the MOU includes transit credit from public transit stops, a reduction due to internal capture given the mixed-use nature of the Project, and the Project would also feature a TDM Program that would otherwise reduce Project-related VMT (refer to Section 4.11, Transportation, of this Draft EIR, for additional details regarding the TDM program features).

Maximum annual net GHG emissions resulting from motor vehicles, energy (i.e., electricity, natural gas), water conveyance, and waste sources were calculated for the expected first full operating year, 2025. The maximum first full operating year GHG emissions from operation of the Project are shown in Table 4.5-7, *Estimated Annualized Unmitigated Project Greenhouse Gas Emissions*. With the implementation of the Project’s green building measures, the Project would

122 Fehr & Peers, Transportation Impact Study, April 2021. Provided in Appendix J of this Draft EIR.
123 Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.
achieve GHG reductions for electricity, water, mobile sources, and solid waste as compared to a scenario without GHG reducing features and measures.

<table>
<thead>
<tr>
<th>Emissions Sources</th>
<th>Proposed Project</th>
<th>Project Without GHG Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Operational Year (2025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (Electricity + Natural Gas)</td>
<td>1,400</td>
<td>2,274</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>4,249</td>
<td>4,262</td>
</tr>
<tr>
<td>Solid Waste(^b)</td>
<td>133</td>
<td>238</td>
</tr>
<tr>
<td>Water(^b)</td>
<td>66</td>
<td>94</td>
</tr>
<tr>
<td>Stationary Source</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Area (Landscaping Equipment)(^b)</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Amortized Construction Emissions</td>
<td>348</td>
<td>348</td>
</tr>
<tr>
<td>Existing Emissions</td>
<td>2,560</td>
<td>2,560</td>
</tr>
<tr>
<td>Total Net Project Emissions</td>
<td>3,740</td>
<td>4,725</td>
</tr>
<tr>
<td>Emissions Reduction</td>
<td>1,021</td>
<td>—</td>
</tr>
<tr>
<td>Percent Reduction</td>
<td>21.6%</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^a\) Totals may not add up exactly due to rounding in the modeling calculations. Detailed emissions calculations are provided in Appendix F.

\(^b\) Modeling provided in Appendix F included a 15,000 sf park. Machado Park, described in this Draft EIR, is now 13,200 sf, and the modeling estimates presented are conservative as a reduction in open space would similarly result in a decrease in area emissions as well as solid waste and water consumption.

Emissions reductions from the Project’s two highest GHG-emitting sources, mobile and electricity, would occur over the next decade due to state mandates discussed above, and beyond, ensuring that the Project’s total GHG emissions would be further reduced. Emissions from electricity would decline as utility providers, including SCE, meet their RPS obligations to provide 50 percent of their electricity from renewable electricity sources by 2030 consistent with SB 350, which would achieve additional reductions in emissions from electricity demand. Although the actual reduction will depend on the mix of fossil fuels that SCE will replace with renewables and the relative CO\(_2\) intensities of those fossil fuels. Project emissions from mobile sources would also decline in future years as older vehicles are replaced with newer vehicles resulting in a greater percentage of the vehicle fleet meeting more stringent combustion emissions standards, such as the model year 2017-2025 Pavley Phase II standards. Therefore, the Project would not generate GHG emissions that may have, either directly or indirectly, a significant impact on the environment, and the impact would be less than significant.
As discussed above, the Project would be consistent with statewide, regional and local plans, policies, regulations, and recommendations to reduce GHG emissions from development. The primary focus of many of the statewide and regional mandates, plans, policies and regulations is to address worldwide climate change. According to CAPCOA, “GHG impacts are exclusively cumulative impacts; there are no non-cumulative GHG emission impacts from a climate change perspective.” Due to the complex physical, chemical and atmospheric mechanisms involved in global climate change, there is no basis for concluding that the Project’s annual GHG emissions would cause a measurable change in global GHG emissions sufficient to create a significant Project level impact on global climate change. Newer construction materials and practices, energy efficiency requirements, and newer appliances tend to emit lower levels of air pollutant emissions, including GHGs, as compared to those built years ago; however, the net effect is difficult to quantify. The GHG emissions of the Project alone is not expected to cause a direct physical change in the environment. It is global GHG emissions in their aggregate that contribute to climate change, not any single source of GHG emissions alone. Because of the lack of evidence indicating that the Project’s GHG emissions would cause a measurable change in global GHG emissions sufficient to create a significant project-level impact on global climate change, and the fact that the Project incorporates physical and operational Project characteristics that would ensure its consistency with City goals and actions, Project emissions are not anticipated to contribute considerably to global climate change. The Project is also considered to be consistent with the GHG reduction goals of HSC Division 25.5 and associated GHG reduction plans, and it is not expected that Project development would impede their goals. In fact, as discussed above, the Project’s location and development comply with the recommendations in these documents and would meet their goals.

Cumulative Impacts

Worldwide man-made emissions of GHGs were approximately 49,000 MMTCO$_2$e in 2010 including ongoing emissions from industrial and agricultural sources and emissions from land use changes (e.g., deforestation). Emissions of CO$_2$ from fossil fuel use and industrial processes account for 65 percent of the total while CO$_2$ emissions from all sources accounts for 76 percent of the total. Methane emissions account for 16 percent and N$_2$O emissions for 6.2 percent. In 2013, the United States was the world’s second largest emitter of carbon dioxide at 5,300 MMT (China was the largest emitter of carbon dioxide at 10,300 MMT).

CARB compiles GHG inventories for the State of California. As previously stated, based on the 2018 GHG inventory data California emitted 0.8 MMTCO$_2$e more GHG emissions compared to 2017, but GHG emissions have been on a declining trend overall since 2007 and emissions remained below 1990 levels. Despite the population and economic growth between 1990 and 2018, California’s net GHG emissions were reduced to below 1990 levels in 2016. According to CARB, the declining trend coupled with the state’s GHG reduction programs (such as the Renewables Portfolio Standard, LCFS, vehicle efficiency standards, and declining caps under the Cap and Trade

124 California Air Pollution Control Officers Association (CAPCOA), CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, 2008.
Program) demonstrate that California is on track to meet the 2020 GHG reduction target codified in HSC, Division 25.5, also known as AB 32 and amended by SB 32. As indicated previously, Table 4.5-1 identifies and quantifies statewide anthropogenic GHG emissions and sinks (e.g., carbon sequestration due to forest growth) in 1990 and 2018. As shown in the table, the transportation sector is the largest contributor to statewide GHG emissions at 40 percent in 2018.

CEQA requires that lead agencies consider the cumulative impacts of GHG emissions from even relatively small (on a global basis) increases in GHG emissions. Small contributions to this cumulative impact (from which significant effects are occurring and are expected to worsen over time) may be potentially considerable and therefore significant. In the case of global climate change, the proximity of the Project to other GHG emission generating activities is not directly relevant to the determination of a cumulative impact because climate change is a global condition. As stated above, GHG emission impacts are, by their very nature cumulative, as both the CNRA and CAPCOA have recognized. Therefore, an analysis of a project’s GHG emission impacts also serves as a cumulative impact assessment.

Although HSC Division 25.5 sets a statewide target for statewide 2020 and 2030 GHG emission levels, its implementing tools (e.g., CARB’s Climate Change Scoping Plan) make clear that the reductions are not expected to occur uniformly from all sources or sectors. CARB has set targets specific to the transportation sector (land use-related transportation emissions), for example, and under SB 375, SCAG must incorporate these GHG-reduction goals into its Regional Transportation Plan and demonstrate that its Sustainable Communities Strategy is consistent with the Regional Housing Needs Assessment. One of the goals of this process is to ensure that the efforts of State, regional and local planning agencies accommodate the contemporaneous increase in population and employment with a decrease in overall GHG emissions. For example, adopting zoning designations that reduce density in areas which are expected to experience growth in population and housing needs, is seen as inconsistent with anti-sprawl goals of sustainable planning. Although development under a reduced density scenario would result in lower GHG emissions from the use of that individual parcel of land compared to what is currently or hypothetically allowed (by creating fewer units and fewer attributable vehicle trips), total regional GHG emissions would likely fail to decrease at the desired rate or, worse, would increase if regional housing and employment needs of an area were then met with a larger number of less-intensive development projects. Therefore, it is not simply a cumulative increase in regional development or the resultant GHG emissions that potentially threatens GHG reduction goals, but the configuration and design of that development.

With implementation of good planning policies, the land use sector can accommodate growth and still be consistent with statewide plans to reduce GHG emissions. To that end, various agencies are required to develop programs to guide future building and transportation development toward minimizing resource consumption and reducing resultant pollution. As discussed above, the City

128 CAPCOA, CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act.
has adopted the CALGreen Code and a Green Building Program that include mandatory measures to minimize and reduce GHG emissions from energy consumption.

As discussed in the tables above, the Project’s design and location would be consistent with applicable GHG reduction strategies recommended by the City, region, and State. In addition, the Project would support and be consistent with relevant and applicable GHG emission reduction strategies in SCAG’s 2020-2045 RTP/SCS. The Project would concentrate employment growth in an area served by the Culver City Bus Lines and the Metro E (Expo) Line, local bus lines, and bicycle facilities. As such, the Project would be consistent with SCAG’s 2020-2045 RTP/SCS policies for the concentration of growth in proximity to transit.

Furthermore, the overwhelming majority of the Project-related GHG emissions are from two highly regulated source sectors, including electricity generation and transportation fuels. These sectors are already covered entities under the RPS and the Cap-and-Trade Program and as such would be reduced sector-wide in accordance with the GHG reduction targets of HSC Division 25.5, in addition to the previously discussed GHG emissions reductions from the Project-specific energy efficiency design features, and substantial VMT-reducing land use characteristics of the Project. As indicated above, the CEQA Guidelines were amended in response to SB 97. In particular, the CEQA Guidelines were amended to specify that compliance with a GHG emissions reduction program renders a cumulative impact insignificant. Per CEQA Guidelines Section 15064(h)(3), a project’s incremental contribution to a cumulative impact can be found not cumulatively considerable if the project would comply with an approved plan or mitigation program that provides specific requirements that would avoid or substantially lessen the cumulative problem within the geographic area of the project. To qualify, such a plan or program must be specified in law or adopted by the public agency with jurisdiction over the affected resources through a public review process to implement, interpret, or make specific the law enforced or administered by the public agency. Examples of such programs include a “water quality control plan, air quality attainment or maintenance plan, integrated waste management plan, habitat conservation plan, natural community conservation plan, [and] plans or regulations for the reduction of greenhouse gas emissions” (emphasis added). Put another way, CEQA Guidelines Section 15064(h)(3) allows a lead agency to make a finding of non-significance for GHG emissions if a project complies with the California Cap-and-Trade Program or other regulatory schemes to reduce GHG emissions.

Given that the Project would generate GHG emissions consistent with applicable reduction plans and policies, and given that GHG emission impacts are cumulative in nature, the Project’s incremental contribution to cumulatively significant GHG emissions would be less than cumulatively considerable, and impacts would be less than significant.

4.5.5 Mitigation Measures

No mitigation measures are required as impacts would be less than significant

4.5.6 Level of Significance After Mitigation

Not applicable. Project-specific and cumulative impacts related to GHG emissions would be less than significant.
4. Environmental Impacts Analysis

4.5 Greenhouse Gas Emissions

This page intentionally left blank
4.6 Hazards and Hazardous Materials

4.6.1 Introduction

This section analyzes potential impacts associated with hazards and hazardous materials that could occur during construction and operation of the Project. Hazards and hazardous materials are generally defined as any material that is flammable, combustible, corrosive, caustic, explosive, toxic, poison, or an irritant that has the potential to cause harm to humans, animals, or the environment, either by itself or through interaction with other factors. Hazardous materials are defined, strictly regulated, and closely monitored under a series of regulations administered by an array of government agencies as described in this section. The analysis is based largely on the Phase I Environmental Site Assessment, 5350/5380 Sepulveda Boulevard and 11111 Jefferson Boulevard, Culver City, California 90230 (Phase I ESA), dated January 7, 2021; the Phase II Environmental Site Assessment, 5350/5380 Sepulveda Boulevard and 11111 Jefferson Boulevard, Culver City, California 90230 (Phase II ESA), dated September 14, 2019; and a Vapor Intrusion Human Health Risk Assessment (VIHHRA), dated November 25, 2020, all prepared by Stantec Consulting Services Inc. (Stantec). The Phase I ESA, Phase II ESA, and VIHHRA are provided in Appendix G-1, G-2, and G-3, respectively, of this Draft EIR.

4.6.2 Environmental Setting

Historical Site Conditions

According to the Phase I ESA, based on review of historical documents including aerial photographs, the Project Site appears to have been used for agricultural purposes prior to circa 1960. By 1963, the post office building was developed and by 1979 a restaurant and gas station were both developed on the Project Site. By 1994, the gasoline station was demolished and the existing oil change business was developed by 2002.¹

The Phase I ESA recommended additional assessments based on the past uses on the Project Site. Specifically, with regard to the agricultural uses that were present on the Project Site prior to 1960, it is unknown whether residual pesticides or heavy metals associated with herbicide applications are present above regulatory screening levels, human health risk criteria or California hazardous waste levels.

Existing Site Conditions

Existing Site Improvements

The Project Site is located in a highly urbanized area of Culver City and is currently developed with a Valvoline Instant Oil Change facility, a Coco’s Bakery Restaurant, a United States Post Office, and associated areas of asphalt-paved surface parking.

¹ As noted in the 11111 Jefferson Boulevard Mixed Use Project – Cultural Resources Assessment Report prepared by ESA and provided in Appendix C of this Draft EIR, the post office was first developed in 1961. Six years later, a restaurant was developed in 1967.
Potentially Hazardous Materials/Conditions on the Project Site

Based on research, testing, monitoring, and interviews conducted as part of the Phase I and Phase II ESAs, assessments are provided below as to whether any of the following three types of hazardous conditions, defined by American Society for Testing and Materials (ASTM) Standard of Practice E1527-13, occur on the Project Site:

- **Recognized Environmental Conditions (RECs):** An REC is considered to be the presence or likely presence of any hazardous substances or petroleum products on a property under conditions that indicate an existing release, past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term is not intended to include de minimis conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies.

- **Controlled Recognized Environmental Conditions (CRECs):** A CREC is a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (e.g., as evidenced by the issuance of a no further action letter or equivalent or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (e.g., property use restrictions, activity and use limitations, institutional controls, or engineering controls).

- **Historical Recognized Environmental Conditions (HRECs):** an HREC is considered to be a past release of any substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (e.g., property use restrictions, activities and use limitations, institutional controls, or engineering controls).

Hazardous Materials Database Review

As part of the Phase I ESA, a regulatory agency database search report was obtained from Environmental Data Resources, Inc. (EDR), a third-party hazardous material records search company, for known or suspected contaminated sites and for sites that store, generate, or use hazardous materials on and within the vicinity of the Project Site. These databases list properties by location and provide information regarding past use and the presence of hazardous materials and/or conditions. The database search was conducted in accordance with ASTM requirements, including applicable search radius requirements (1/8 to 1 mile, depending on the database). The full report provided by EDR can be found in Appendix D of the Phase I ESA. Relevant listings applicable to the Project Site and adjacent and nearby properties are discussed below.

Project Site

The Project Site is identified in the Hazardous Waste Information System (HAZNET), Facility Index System (FINDS), Recovered Government Archive Leaking Underground Storage Tank (RGA LUST), Los Angeles Co. Hazardous. Materials System (HMS), Aboveground Storage Tanks (AST), Statewide Environmental Evaluation and Planning System Underground Storage Tanks (SWEEPS UST), Hazardous Substance Storage Container Database Underground Storage Tanks (HIST UST), California Facility Inventory Database Underground Storage Tanks (CA FID UST),
Enforcement and Compliance History Online (ECHO), EDR Hist Auto, Resource Conservation and Recovery Act – Small Generator (RCRA)-SQG, Listing of leaking underground storage tank (LUST), Cortese, Historical “Cortese” Hazardous Waste & Substances Sites List (HIST CORTESE), CERS, CERS HAZ WASTE, CERS TANKS, HWTS, and RCRA Nongen/NLR environmental database reports. According to the listings, the Project Site was occupied by a gasoline service station between 1969 and 1994. There were no violations for various HAZNET listing for the disposal of waste oil and other organic solids off-site. According to the SWEEPS UST listings, one 5,000-gallon gasoline underground storage tank (UST), two 10,000-gallon fuel USTs, and one 1,000-gallon oil UST were located on the Project Site.

Off-Site Adjacent and Nearby Properties
The records search identified two facilities as the most likely potential sources to a pose a REC, CREC, or HREC for the Project Site. The first is a grocery store located northeast of the Project Site in the Studio Village Shopping Center, which is identified as a large quantity generator of hazardous waste (i.e., pharmaceutical waste, detergent and soil, nicotine, and sales) with no reported violations. Given there are no violations, this facility is considered unlikely to represent an environmental concern to the Project Site. The second is a dry cleaners located in the Studio Village Shopping Center and was identified as a dry cleaner that had equipment utilizing perchloroethylene from 1985 to 1989. Given that the facility is not adjoining and because there is no indication of release, this facility is considered unlikely to represent an environmental concern to the Project Site.

Field Reconnaissance Results
As part of the Phase I ESA, a field reconnaissance was conducted and consisted of an inspection of the Project Site and a perimeter survey of the surrounding properties.

Project Site
Hazardous Substances and Petroleum Products as Defined by Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 42 U.S. Code Section 9601(14): Several small, quart sized or smaller, containers of new motor oil, engine additives, lubricants, brake fluids etc. were observed on shelves in the mechanics pit of the Valvoline Instant Oil Change. The containers appeared in good condition without any indication of leaking.

Drums (greater than 5 gallons): Four 30-gallon drums were observed containing motor oil and automatic transition fluid, and coolant along the northern wall of the mechanics pit of the Valvoline Instant Oil Change. Additional AST containing waste coolant, new oil, and waste oil were also observed in the mechanics pit. No signs of spilling were observed. Four 55-gallon drums of used oil filters were observed located in the trash enclosure located along the northern exterior of the Valvoline Instant Oil Change. The drums were labeled and in good condition and no obvious signs of spills were observed.

PCB-Containing Equipment: A pad mounted transformer was located in the northeastern corner along the exterior of the Coco’s Bakery Restaurant chain. The transformer appeared to be in good condition without any sign of leaking.
Off-Site Adjacent and Nearby Properties

No hazardous materials were observed as part of the field reconnaissance on adjacent or nearby properties that would present a significant environmental concern to the Project Site.

Underground Storage Tanks

No visible evidence of existing USTs was found on the Project Site; however, based on review of historical documents and regulatory records, one 5,000-gallon gasoline UST, two 10,000-gallon fuel USTs, and one 1,000-gallon oil UST were removed from the Project Site in 1986. A County of Los Angeles Department of Public Works (DPW) letter dated October 16, 1996 stated that the site investigation and remedial action for the USTs formerly located at the Project Site was completed and no further action was required. However, as no soil vapor data were in the agency files, further evaluation was undertaken as described in Subsection 4.6.4, Environmental Impacts, under Threshold HAZ-2.

In addition, two pump islands and a 338-gallon sand/grease interceptor for industrial waste were located on the Project Site, and were also removed from the Project Site in 1986.

Aboveground Storage Tanks

Three ASTs, including one 250-gallon oil AST, one 300-gallon waste coolant AST, and one 1,000-gallon waste oil AST were observed on the Project Site. The ground surface beneath the ASTs appeared to be in good conditions with no cracking. No visible evidence, reports, or other evidence of the former presence of ASTs was discovered.

Interviews

According to interviews conducted, there is one operational hydraulic lift and one non-operational hydraulic lift located in the receiving areas of the United States Post Office.

Soil Sampling and Testing

As part of the Phase II dated September 14, 2019, soil samples from the Project Site were collected from four (4) locations on the Project Site for analysis of pesticides, lead and arsenic associated with herbicides. The laboratory reported concentrations of pesticides and lead that were below the residential screening level published by the United States Protection Agency (USEPA) regional screening level. However, arsenic was detected at concentrations between 1.6 milligram per kilogram (mg/kg) and 3.2 mg/kg, which is above the residential screening level of 0.11 mg/kg, but within expected background concentrations. Currently, the regulatory agencies use the background concentrations for arsenic of up to 12 mg/kg. As such, the concentrations of pesticides, leads, and arsenic are not of concern.

Three (3) soil borings were drilled on the Project Site where the reported USTs and pump islands were reportedly located at a depth of 5, 10, and 15 feet below ground surface (bgs). Each soil sample was analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPHg), diesel (TPHp), and oil (TPHo) as well as volatile organic compounds (VOCs). Based on the results of the soil borings, no soil contaminants that exceeded the screening levels were detected. Soil vapor samples were also collected on the Project Site. Low concentrations of benzene, ethylbenzene, toluene, total xylenes tetrachlorethylene (PCE), and B-3 trichloroethylene (TCE) were reported based on the soil
vapor samples. All concentrations were found to be below the California Department of Toxic Substances (DTSC) Human and Ecological Risk Office (HERO) Note 3 Modified Indoor Air Screening Levels (MIASLs) for residential uses using an attenuation factor of 0.001. However, the concentrations are above the newly published San Francisco Bay Area Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) using an attenuation factor of 0.03. With concentrations above the ESLs of 0.03, the soil vapor is a potential REC for human health risk resulting from possible residential or commercial exposure to soil vapor. Given the exceedances to the RWQCB ESLs, it was recommended a VIHHRA recommended for the former gasoline service station area.

A soil vapor sample was also taken to evaluate if a release had occurred from the hydraulic lift that were noted during the interview process. However, it should be noted that the boring where samples were taken could not be located directly adjacent to the lift, therefore minor impacts could be present that may require some level of remedial action at the time the lift is removed. Low concentrations of benzene, ethylbenzene, toluene, total xylenes, and PCE were reported based on the soil vapor sample. All reported concentrations are below the California DTSC HERO Note 3 MIASLs for residential uses using DTSC-recommended attenuation factor of 0.001. However, they are above the newly published San Francisco Bay Area RWQCB ESLs using RWQCB-recommended attenuation factor of 0.03. Given the exceedances to the RWQCB ESLs, this area was also recommended to be included in the VIHHRA recommended for the former gasoline service station area.

Lead-Based Paint, Asbestos, and Polychlorinated Biphenyls

As the United State Post Office were constructed in the 1960s and the Coco’s Bakery Restaurant was constructed by 1979, it is possible that asbestos-containing building materials (ACBMs), lead-based paint (LBP), and/or other hazardous paint residues are present in the buildings.

Asbestos-Containing Materials

Asbestos-containing materials (ACMs) have historically been present in a wide variety of building materials, although the use of ACMs as building materials was substantially curtailed in 1981 with the adoption of regulatory controls on their use. Given that the majority of the existing on-site buildings were constructed prior to 1981, ACMs may be present in some on-site buildings. The Phase I ESA recommends conducting a comprehensive, pre-demolition ACM survey in accordance with the sampling protocol of the Asbestos Hazard Emergency Response Act (AHERA) prior to any activities with the potential to disturb building materials to determine whether ACM are present. Further, in the event ACM is detected, it is recommended proper removal and disposal of the materials identified prior to any activities with the potential to disturb them.

2 San Francisco Bay Area RWQCB ESLs are commonly used as for screening-level assessments in California by regulatory agencies who do not have any corresponding ESLs, such as the Los Angeles RWQCB. On their website, the LARWQCB provides a link to ESLs as part of their Brownfields Cleanup and Redevelopment Agency Program here: https://www.waterboards.ca.gov/losangeles/water_issues/programs/remediation/brownfields.html, accessed February 19, 2021. The ESL reference link directs users to the San Francisco Bay Area RWQCB ESL’s Technical Document webpage here, https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html, accessed February 19, 2021.
Lead-Based Paints

Lead is a highly toxic metal that affects virtually every system of the body. LBP is defined as any paint, varnish, stain, or other applied coating that has 1 mg/cm² (or 5,000 micrograms per gram (ug/g) or 0.5 percent by weight) or more of lead. If released into the environment, these materials could pose a significant hazard to construction workers or the public. Given that the post office and restaurant were both constructed by 1979, with the prior gasoline station being demolished in 1994 and replaced by the existing oil change business in 2002, LBPs may be present in some on-site buildings. The Phase I ESA recommends conducting a comprehensive, pre-demolition LBP survey in accordance with the applicable protocol identified in State of California, Title 17, Division 1, Chapter 8 (Title 17). Further, in the event LBP is detected, Stantec recommends proper removal and disposal of the materials identified prior to any activities with the potential to disturb them in compliance with applicable portions of Federal Occupational Safety and Health Administration (OSHA) 29 CFR 1926.62 and the DOSH 8 CCR Section 1532.1 would be required.

Polychlorinated Biphenyls

Polychlorinated biphenyls (PCBs) were once used as industrial chemicals whose high stability contributed to both their commercial usefulness and their long-term deleterious environmental and health effects. These substances have been listed as carcinogens by USEPA. PCBs were banned from general commercial use in 1977. PCBs are regulated by the USEPA under the Toxic Substances Control Act (TSCA). The TSCA contains provisions controlling the continued use and disposal of existing PCB-containing equipment. Items which may potentially impact the Project Site with PCBs include electrical capacitors and transformers, fluorescent light ballasts, hydraulic oils used in hydraulic lifts and elevators, vacuum pumps, gas turbines, and other petroleum products manufactured prior to the 1977 ban. As described above, the Phase I ESA observed a pad mounted transformer along the exterior of the Coco’s Bakery Restaurant. The transformer appeared to be in good condition without any signs of leaking.

Schools in the Site Vicinity

School children are sensitive to hazardous materials emissions and are thus considered a sensitive land use. The Exceptional Children’s Foundation (ECF), which serves as a special education school, is located at 5350 Machado Road, directly adjacent to and north of the Project Site across Machado Road. Temple Akiba, which includes a childhood center, temple sanctuary, and classrooms, is located 100 feet west of the Project Site across Sepulveda Boulevard. In addition, El Rincon Elementary School, located at 11177 Overland Avenue, is located approximately 0.20 miles east of the Project Site.

Methane, Oil and Gas

As discussed in the Phase I ESA, based on the Solid Waste Management System database, the Project Site is not located within 300 feet of an oil or gas well or 1,000 feet of a methane producing site. In addition, according to the California Department of Conversation, Geologic Energy Management Division’s (CalGEM) online mapping system (CalGEM Well Finder), no oil or natural gas wells are located on or adjacent to the Project Site, indicating that methane is not considered to be a significant environmental concern in this area. The nearest well is approximately
4. Environmental Impacts Analysis

4.6 Hazards and Hazardous Material

0.44 miles northwest of the Project Site, but the status of the well is listed as “idle” on the CalGEM Well Finder.3

The Phase I ESA notes that according to the National Pipeline Mapping System, an active subterranean petroleum pipeline is located adjacent to the Project Site. The pipeline is identified as a crude oil pipeline operated by ExxonMobil Oil Corp and is located immediately adjacent to the Project Site along Jefferson Boulevard. There is no known release from this pipeline; furthermore, should there be a release from this pipeline it would be the responsibility of the operator.

Radon

Radon is a colorless, odorless, naturally occurring, radioactive, inert, gaseous element formed by radioactive decay of radium (Ra) atoms. Radon sampling was not conducted as part of the Phase I ESA or Phase II ESA. However, the Phase I ESA determined that as the Project Site has no current or proposed occupied subgrade areas, as such, further investigation of indoor radon is not warranted.

4.6.3 Regulatory Framework

The use, storage, and disposal of hazardous materials are subject to federal, State, and local regulations that are applicable to the Project Site as further discussed below.

Federal

Hazardous Materials Management

The Federal Resource Conservation and Recovery Act (RCRA) (42 U.S.C. secs. 6901-6992k) regulates the generation, transportation, treatment, storage, and disposal of hazardous waste. Under RCRA regulations, generators of hazardous waste must register and obtain a hazardous waste activity identification number. RCRA allows individual states to develop their own program for the regulation of hazardous waste as long as it is at least as stringent as RCRA. The State of California has developed the California Hazardous Waste Control Law (HWCL) (Health and Safety Code sec. 25100 et seq. and 22 California Code of Regulations [CCR] sec. 66260.1 et seq.) and the USEPA has authorized RCRA enforcement to the State of California. Primary authority for the statewide administration and enforcement of HWCL rests with California Environmental Protection Agency’s (CalEPA) DTSC.

The Federal Occupational Safety and Health Act of 1970, which is implemented by the Federal Occupational Safety and Health Administration (OSHA), contains provisions with respect to hazardous materials handling. Federal OSHA requirements, as set forth in 29 Code of Federal Regulations (CFR) Section 1910, et. seq., are designed to promote worker safety, worker training, and a worker’s right-to-know. The U.S. Department of Labor has delegated the authority to administer OSHA regulations to the State of California. The California Occupational Safety and Health Administration (Cal/OSHA) (codified in the CCR, Title 8, or 8 CCR generally and in the Labor Code secs. 6300-6719) is administered and enforced by the Division of Occupational Safety

and Health (DOSH). Cal/OSHA is very similar to the OSHA program. Among other provisions, Cal/OSHA requires employers to implement a comprehensive written Injury and Illness Prevention Program (IIPP) for potential workplace hazards, including those associated with hazardous materials.

The Safe Drinking Water and Toxic Enforcement Act (22 CCR sec. 12000 et seq.), Proposition 65, lists chemicals and substances believed to have the potential to cause cancer or deleterious reproductive effects in humans, restricts the discharges of listed chemicals into known drinking water sources at levels above the regulatory levels of concern, requires public notification of any unauthorized discharge of hazardous waste, and requires that a clear and understandable warning be given prior to a known and intentional exposure to a listed substance.

In order to comply with the Federal RCRA and the Occupational Safety and Health Act of 1970, the City administers and enforces Federal and State laws through the Culver City Fire Department (CCFD). The CCFD administrates hazardous waste inspections for generators and monitors their activities, including handling, storage, transportation, and disposal. Specifically, business and facilities that handles hazardous waste and/or materials at any one time during a year equal to, or greater than a total volume of 55 gallons, a total weight of 500 pounds, or 200 cubic feet of a compressed gas will be constituted as a hazardous materials handler and must report hazardous waste information to the California Environmental Reporting System (CERS). The Health Hazardous Materials Division’s Hazardous Waste Program provides a detailed Generator Requirements Summary Chart to give inspectors a list of requirements as they apply to Large Quantity Generators (LQGs), Small Quantity Generators (SQGs), and more. Different documentation required include manifests, biennial reports, personnel training plans, and contingency plans.

Polychlorinated Biphenlys

PCBs are regulated under the TSCA. These regulations ban the manufacture of PCBs although the continued use of existing PCB-containing equipment is allowed. TSCA also contains provisions controlling the continued use and disposal of existing PCB-containing equipment. The disposal of PCB wastes is also regulated by TSCA (40 CFR 761), which contains life cycle provisions similar to those in RCRA. Provisions relating to PCBs are contained in the HWCL, which lists PCBs as hazardous waste. In California, CalEPA is the primary administration and enforcement agency.

State

Underground Storage Tanks

USTs are regulated under Subtitle I of RCRA and its regulations which establish construction standards for new UST installations (those installed after December 22, 1988), as well as standards for upgrading existing USTs and associated piping. Since 1998, all non-conforming tanks were required to be either upgraded or closed.

The State regulates USTs pursuant to Health and Safety Code, Division 20, Chapter 6.7, and CCR Title 23, Division 3, Chapter 16 and Chapter 18. The State’s UST program regulations include among others, permitting USTs, installation of leak detection systems and/or monitoring of USTs.
for leakage, UST closure requirements, release reporting/corrective action, and enforcement. Oversight of the statewide UST program is assigned to the State Water Resources Control Board (SWRCB) which has delegated authority to the Regional Water Quality Control Board (RWQCB) and typically on the local level, to the fire department. The CCFD administers and enforces Federal and State laws and local ordinances for USTs at the Project Site. Plans for the construction/installation, modification, upgrade, and removal of USTs are reviewed by CCFD inspectors. If a release is documented that affects groundwater, the project file is transferred to the RWQCB for oversight.

Asbestos-Containing Materials

In California, any facility known to contain ACMs is required to have a written Asbestos Operations and Maintenance (O&M) Program. Removal of ACM must be conducted in accordance with the requirements of South Coast Air Quality Management District (SCAQMD) Rule 1403. Rule 1403 regulations require that the following actions be taken: (1) a survey of the facility prior to issuance of a permit by SCAQMD; (2) notification of SCAQMD prior to construction activity; (3) asbestos removal in accordance with prescribed procedures; (4) placement of collected asbestos in leak-tight containers or wrapping; and (5) proper disposal.

Lead-Based Paint

Cal/OSHA has established limits of exposure to lead contained in dusts and fumes. Specifically, CCR Title 8, Section 1532.1 establishes the rules and procedures for conducting demolition and construction activities and establishes exposure limits, exposure monitoring, and respiratory protection for workers exposed to lead.

Local

Hazardous Materials Disclosure Reporting Program

Senate Bill 1082, passed in 1993, created the Unified Hazardous Waste and Hazardous Materials Management Regulatory Program (Unified Program) which requires the administrative consolidation of six hazardous materials and waste programs under one agency, a Certified Unified Program Agency (CUPA). The City of Culver City (City) is a member of the LA Co CUPA which requires that every business that handles more than 55 gallons, 5-pounds, or 200 cubic feet or more of a hazardous material (as defined by the California Health & Safety Code) at any one time report their inventories of hazardous materials to the Los Angeles County Fire Department and the Culver City Fire Department (CCFD). This requirement is also applicable to quantities as low as one pound of materials classified as “extremely hazardous” (as defined by the California Health & Safety Code). Per the City’s CUPA/Hazardous Materials Disclosure Reporting Program, business that meet the above hazardous materials thresholds must submit Reporting Forms manifesting the hazardous materials used, and an Emergency Plan for responding to any potential spills of these materials, to the Los Angeles County Fire Department and CCFD to be kept on file by these departments.\(^4\)

4.6.4 Environmental Impacts

Methodology

The evaluation of hazardous conditions and materials associated with construction and/or operation of the Project is based primarily on the Phase I ESA (dated January 7, 2021) and Phase II ESA (dated September 14, 2019) prepared for the Project by Stantec and included as Appendix G-1 and G-2, respectively, of this Draft EIR.

The Phase I ESA was conducted in conformance with the requirements of ASTM Designation E 1527-13, and All Appropriate Inquiry (AAI) as defined by the USEPA in Title 40 of the Code of Federal Regulations, Part 312. The purpose of the Phase I ESA was to identify adverse environmental conditions including RECs, CRECs, HRECs of the Project Site. The Phase I ESA includes the results of a visual reconnaissance of the Project Site; interviews with key individuals, and review of reasonably ascertainable documents. See the Phase I ESA for additional discussion of the analysis methodology.

The Phase II ESA evaluated the potential impacts to the Project Site associated with the identified and potential RECs. The tasks performed as part of the Phase II ESA included collection of soil and soil vapor samples across the Project Site. Soil samples were collected from four soils borings, four shallow hand auger borings, and three soil vapor points.

Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to hazards and hazardous materials if it would:

- **HAZ-1**: Create a significant hazard to the public or the environment through routine transport, use, or disposal of hazardous materials;
- **HAZ-2**: Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment;
- **HAZ-3**: Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school;
- **HAZ-4**: Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment;
- **HAZ-5**: For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, results in a safety hazard or excessive noise for people residing or working in the project area;
- **HAZ-6**: Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan; or
- **HAZ-7**: Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires.
The City determined in the Initial Study that the following environmental issue areas would result in no impacts or less-than-significant impacts and, therefore, are scoped out of this Draft EIR. Please refer to Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue areas:

- **HAZ-1**: Create a significant hazard to the public or the environment through routine transport, use, or disposal of hazardous materials;
- **HAZ-5**: For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, results in a safety hazard or excessive noise for people residing or working in the project area;
- **HAZ-6**: Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan; or
- **HAZ-7**: Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires.

As detailed in the Initial Study, regarding HAZ-1, risks associated with hazards to the public or environment posed by the transport, use or disposal of hazardous materials during construction and operation of the Project would be compliant with applicable and required standards and regulations. Regarding HAZ-5, the Project Site is not located within an airport land use plan or within two miles of a public or private airport. The nearest airports are the Santa Monica Municipal Airport and the Los Angeles International Airport (LAX), located approximately 3.15 miles northwest and 3.5 miles south of the Project Site, respectively. Therefore, the Project would not result in an airport-related safety hazard or excessive noise for people residing or working in the Project area. Regarding HAZ-6, the Project would implement a Construction Traffic Management Plan (see Project Design Feature PDF-TRAF-1) to ensure that adequate emergency access is maintained during construction. For Project operation, the CCFD would review and approve Project Site access and circulation plans such that the Project would not impair implementation or physically interfere with adopted emergency response or emergency evacuation plans in the case of an emergency. Regarding HAZ-7, the Project Site is not located in an area of moderate or very high fire hazard and would redevelop an infill site within a highly urbanized area that is not proximate to wildlands or high fire hazard areas. No further analysis of these issues are therefore included in this Draft EIR.

Project Characteristics and Project Design Features

Project Characteristics

Construction of the Project would involve the temporary use of hazardous substances in the form of fuels, oils, lubricants, solvents, paint, adhesives, surface coatings and other finishing materials, and cleaning agencies. Hazardous materials used during construction would be transported, used, stored and disposed of in accordance with applicable laws, regulations and manufacturer instructions.

Operation of the Project would involve the long-term use of many of the same types of small quantities hazardous materials that are currently used on the Project Site (e.g., ethylene glycol, hydraulic oil, acetone, paints kerosene, diesel, gasoline, propane, janitorial/maintenance supplies,
pesticides, etc.) and generate similar hazardous wastes (e.g., off-specification aged organics, ACM waste, aqueous solution with organic residues, inorganic solids, hydrocarbon solvents, latex, paint sludge, slop, aqueous solution, lead-acid batteries, ballasts, etc.). However, it is anticipated that the use of these materials would occur in smaller quantities given modernized facilities and the transition to more use of digital media.

The use of any hazardous materials during Project construction and operation would comply with applicable regulatory requirements and manufacturer instructions regarding the transport, use, storage and disposal of hazardous materials. Examples are provided below:

- **Hazardous Materials Management (Hazardous Materials Handling):** Cal/OSHA has requirements, as set forth under CFR Section 1910 and CCR Title 8, for hazardous materials handling and the implementation by on-site employers of comprehensive written IIPPs for potential hazardous materials workplace hazards. Compliance with these requirements would ensure that hazardous materials are used and handled on the Project Site in compliance with applicable regulations which have been formulated to provide for the safe handling of hazardous materials and to minimize the potential for hazardous materials spills/releases.

- **Hazardous Materials Management (Responding to Accidental Releases/Spills):** The City of Culver City has a CUPA/Hazardous Materials Disclosure Reporting Program. This program requires projects that use hazardous materials over certain quantity thresholds to submit Reporting Forms manifesting the hazardous materials used to the Los Angeles County Fire Department and CCFD, and to implement an Emergency Plan for responding to any potential releases/spills of these materials. Compliance with the requirements of this program would ensure that any accidental releases/spills of hazardous materials are contained and cleaned up quickly, under certain cases under the auspices of the County Fire Department and CCFD, and that these departments have knowledge of the types and quantities of hazardous materials used and stored on-site so as to be able to properly respond to an emergency on the Project Site.

- **ACMs and LBPs:** The renovation or demolition of buildings that contain ACMs and/or LBPs is subject to abatement regulations, including SCAQMD Rule 1403, Cal/OSHA, California Department of Public Health, DTSC, and City of Culver City Building Code requirements for the proper identification, remediation, removal and disposal of ACM and LBP, and for worker and public safety during these activities. For example, removal of ACM must be conducted in accordance with the requirements of SCAQMD Rule 1403 which requires that the following measures be taken when ACM is found in buildings to be renovated or demolished: (1) a survey of the facility prior to issuance of a permit by SCAQMD; (2) notification of SCAQMD prior to construction activity; (3) asbestos removal in accordance with prescribed procedures; (4) placement of collected asbestos in leak-tight containers or wrapping; and (5) proper disposal. Furthermore, for the ongoing occupancy of on-site buildings to be retained unaltered under the Project, regulations requiring the implementation of Asbestos and PCB O&M Programs to ensure that any ACM and/or LBP does not become airborne over time and represent a potential health hazard, to include: worker training, occupant notification of the presence of ACMs and/or LBPs, monitoring changes in the conditions of these materials over time, job site controls for maintenance work in the area of these materials, safe work practices, recordkeeping, and worker protection. Compliance with the above would ensure that ACM and LBP of any buildings containing such materials is controlled on-site and does not become airborne and migrate to off-site uses, and that on-site workers who continue to work in buildings to be retained that may contain ACM or LBP are protected.
Project Design Features

There are certain practices and features of the Project that would serve to reduce or avoid environmental impacts. The following Project Design Feature (PDF) implemented as part of the Project would serve to reduce or avoid potential impacts associated with hazards and hazardous materials and has been accounted for in the impact analysis.

PDF-TRAFF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant's proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:
 1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.
 2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.
 3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.
 4. Procedures for the training and certification of flag persons.
 5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.
 6. The location of temporary power, portable toilet and trash and materials storage locations.
 7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.
 8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.
Analysis of Project Impacts

Upset and Accident Conditions

Threshold HAZ-2: The Project would result in a significant impact if it would create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.

Impact Statement HAZ-2: The Project would not create a significant hazard to the public or environment through conditions involving the release of hazardous materials with compliance with applicable regulations. Accordingly, impacts would be less than significant.

The Project includes the excavation of soils to accommodate one level of subterranean vehicular parking. As discussed above, soil and soil vapor samples were collected to test the soils as it relates to contamination related to the former agricultural uses, the former gasoline station and former USTs, and existing hydraulic lift within the post office building. With regard to the ASTs observed on the Project Site, all oil containers would be properly removed in accordance with regulatory requirements from the Project Site prior to re-development.

As previously discussed under Subsection 4.6.2, Environmental Setting, under Soil Sampling and Testing, a Phase II ESA was completed dated September 14, 2019. As it relates to the former agricultural uses, testing revealed that the concentrations of pesticides, leads, and arsenic are not of concern. In addition, as it relates to the former gasoline station and former UST as well as the hydraulic lift within the post office building, a VIHHRA was recommended.

A VIHHRA for the Project Site was completed to evaluate potential adverse health effects to future building occupants resulting from the transport of chemicals detected in subsurface soils to indoor air at the Project Site. The VIHHRA used four soil vapor samples. Potential risks were evaluated under a reasonable maximum exposure (RME) scenario consistent with USEPA and DTSC guidance and on a sample point-by-point basis to provide a complete profile of potential cancer risks (CR) and non-cancer hazards (expressed as a Hazard Index or HI) associated with soil vapor at the Project Site.

Potential risks resulting from vapor intrusion were evaluated using both the DTSC soil vapor screening levels derived using the DTSC default attenuation factor of 0.001 for future residential buildings; an attenuation factor of 0.0005 for future commercial buildings; and, the current RWQCB human health risk-based screening levels derived using an attenuation factor of 0.03. The following results were identified:

- The cumulative residential CR estimates for samples collected at 5-feet bgs ranged from 3E-07 at B-1 to 1E-07 at B-3 and B-4. No samples were estimated to be at or above the point-of-departure of 1E-06 when using the 0.001 attenuation factor.

5 Stantec, Vapor Intrusion Human Health Risk Assessment Report. 5350/5380 Sepulveda Boulevard and 11111 Jefferson Avenue, Culver City, CA. November 25, 2020. Provided in Appendix G-3 of this Draft EIR.
The cumulative commercial CR estimates for samples collected at 5-feet bgs ranged from 4×10^{-08} at B-1 to 2×10^{-08} at B-3 and B-4. No samples were estimated to be at or above the point-of-departure of 1×10^{-06} when using the 0.0005 attenuation factor.

The cumulative residential CR estimates for samples collected at 5-feet bgs ranged from 1×10^{-05} at B-1 to 4×10^{-06} at B-3 and B-4. All samples were estimated to be above the point-of-departure of 1×10^{-06} when using the 0.03 attenuation factor.

The cumulative commercial CR estimates for samples collected at 5-feet bgs ranged from 2×10^{-06} at B-1 and B-2 to 1×10^{-06} at B-3 and B-4. No samples were estimated to be at or above the upper bound of the risk range of 1×10^{-04} when using the 0.03 attenuation factor.

The non-cancer HI estimates for all samples, regardless of which screening levels were used, were below the target HI of 1.

As discussed in Chapter 2, Project Description, of this Draft EIR, the Project consists of five stories of development over one subterranean level for vehicular parking and building infrastructure followed by additional parking spaces, retail and offices uses. Residential uses would be located on the third to the fifth floors. Although the cumulative residential CR estimate for all samples were estimated to be at or above the upper bound of the risk range the proposed residential uses would not be in close proximity to soil vapor potentially migrating from the subsurface to indoor spaces, and therefore, residential uses would not be at risk from soil vapor. However, commercial workers on the ground level would be in proximity to soil vapor potentially migrating from the subsurface to occupied spaces, and were further evaluated for potential risk.

To assess potential commercial worker risk, both the current DTSC human health risk-based soil vapor screening levels using a default attenuation factor of 0.0005 for future commercial buildings and Bay Area RWQCB ESLs derived using an attenuation factor of 0.03 were used. The results indicate that estimated potential cancer risks were below the benchmark of 1×10^{-05} for commercial use properties regardless of which screening levels were used. Non cancer hazards were well below the target of 1 when using either screening levels.

Potential risks to residential receptors were also evaluated if either property use changes or residences are located immediately above soil vapor sample locations. Using DTSC residential soil vapor screening levels based on an attenuation factor of 0.001, cumulative cancer risk at each sample location was below the point of departure, indicating no unacceptable risk. Potential cancer risk estimated using soil vapor screening levels based on an attenuation factor of 0.03 exceeded the point-of-departure at all sample locations.

Therefore, based on the findings of the VIHHRA and the low levels of VOCs reported in the soil vapor samples, vapor intrusion would not represent an unacceptable risk to the proposed future building occupants and vapor mitigation measures would not be needed for the Project Site based on the proposed redevelopment.

Furthermore, this analysis is considered conservative as it does not consider mechanical requirements (i.e. ventilation) as required by California Mechanical Code [CCR Title 24]) that would intercept transport and dilute subsurface contaminants in the vapor phase before they may reach occupied spaces. Cal/OSHA also regulates worker exposure to airborne contaminants (such as those identified in the subsurface soils) during operation, requiring administrative or engineering
controls, where required, to meet exposure limits, and implementation of written health and safety programs, worker training, emergency response training, and medical surveillance. Therefore, future building occupants under the Project would not be at risk from soil vapor.

The Project would involve the demolition and removal of the existing on-site buildings where there is potential for the presence of LBP and ACM. Testing of any suspected buildings or portions thereof for LBP or ACM would be conducted in accordance with regulatory requirements, including SCAQMD Rule 1403 and CCR Title 8, Section 1532.1. In the event that LBP and/or ACM are discovered, their removal would be subject to specific and detailed SCAQMD and Cal/OSHA requirements to ensure the proper training, containment, handling, notification, and disposal of these materials by licensed asbestos and LBP abatement contractors. In addition, Cal/OSHA regulates worker exposure to airborne contaminants (such as those identified in the subsurface soils) during construction under Title 8, Section 5155. Airborne Contaminants, which establishes which compounds are considered a health risk, exposure limits for such compounds, protective equipment, workplace monitoring, and medical surveillance required for compliance.

Finally, the Project is not located within 300 feet of an oil or gas well or 1,000 feet of a methane producing site. In addition, according to the CalGEM Well Finder, no oil or natural gas wells are located on or adjacent to the Project Site, indicating that methane is not considered to be a significant environmental concern in this area. While the Project Site is located within USEPA Radon Zone 2 where the predicted average indoor radon concentrations are between 2.0 and 4.0 pCi/L, as the Project Site has no current or proposed occupied subgrade areas, further investigation of indoor radon is not warranted.

Therefore, the Project would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment, and impacts would be less than significant.

Emit Hazardous Materials Within One-Quarter Mile of a School

Threshold HAZ-3: The Project would result in a significant impact if it would emit hazardous emissions or involve handling hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school.

Impact Statement HAZ-3: While the Project would include temporary use of hazardous substances during construction within one-quarter mile of a school, the handling of such materials would occur on the Project Site and be disposed of in accordance with applicable laws and regulations. Accordingly, impacts would be less than significant.

As discussed above, ECF, which serves as a special education school, is located at 5350 Machado Road, directly adjacent to and north of the Project Site across Machado Road. Temple Akiba, which includes a childhood center, temple sanctuary, and classrooms, is located 100 feet west of the Project Site across Sepulveda Boulevard. In addition, El Rincon Elementary School, located at 11177 Overland Avenue, is located approximately 0.20 miles east of the Project Site.
Construction of the Project would involve the temporary use of hazardous substances in the form of paint, adhesives, surface coatings and other finishing materials, and cleaning agents, fuels, and oils. All materials would be used, stored, and disposed of in accordance with applicable laws and regulations and manufacturers’ instructions.

Operation of the Project would not create a significant risk of exposure to hazardous materials for the public or the environment, including the schools. Occupancy of the proposed residential and commercial uses would not cause hazardous substance emissions or generate hazardous waste. Types of hazardous materials to be used in association with the Project such as small quantities of potentially hazardous materials in the form of cleaning solvents, painting supplies, and pesticides for landscaping would be contained, stored, and used in accordance with manufacturers’ instructions and handled in compliance with applicable standards and regulations. Therefore, while the Project would emit small quantities of potentially hazardous materials typical of maintenance or operational uses within one-quarter mile of an existing or proposed school, all materials would be disposed of in accordance with applicable laws and regulations, and impacts would be less than significant.

Listed Hazardous Materials Sites

Threshold HAZ-4: The Project would result in a significant impact if it would be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment.

Impact Statement HAZ-4: The Project Site is located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5. However, as reported in the Phase I ESA, Phase II ESA, and the VIHHRA, the Project would not create a significant hazard to the public or the environment. Therefore, impacts would be less than significant.

Government Code Section 65962.5, amended in 1992, requires the CalEPA to develop and update annually the Cortese List, which is a list of hazardous waste sites and other contaminated sites. While Government Code Section 65962.5 makes reference to the preparation of a list, many changes have occurred related to web-based information access since 1992 and information regarding the Cortese List is now compiled on the websites of the DTSC, the State Water Board, and CalEPA. The DTSC maintains the EnviroStor database, which includes sites on the Cortese List and also identifies potentially hazardous sites where cleanup actions (such as a removal action) or extensive investigations are planned or have occurred. The database provides a listing of Federal Superfund sites [National Priorities List (NPL)]; State Response sites; Voluntary Cleanup sites; and School Cleanup sites. Geotracker is the State Water Resources Control Board’s data management system for managing sites that impact groundwater, especially those that require groundwater cleanup (USTs, Department of Defense, Site Cleanup Program) as well as permitted facilities such as operating USTs and land disposal sites. CalEPA’s database includes lists of sites with active Cease and Desist Orders (CDO) or Cleanup and Abatement Orders (CAO) from the State Water Board.
Based on a review of the databases, as provided in the Phase I ESA and above, the Project Site was identified as in the HAZNET, FINDS, RGA LUST, Los Angeles Co. HMS, AST, SWEEPS UST, HIST UST, CA FID UST, ECHO, EDR Hist Auto, RCRA-SQG, LUST, and HIST CORTESE environmental database reports. According to the listings, the Project Site was occupied by a gasoline service station between 1969 and 1994. There were no violations for the various HAZNET listings for the disposal of waste oil and other organic solids off-site. In addition, according to the SWEEPS UST listings, one 5,000-gallon fuel UST, two 10,000-gallon fuel USTs, and one 1,000-gallon oil UST were located on the Project Site.

As discussed above under the analysis for Threshold HAZ-2, all removal of hazardous materials would be carried out in accordance with regulatory requirements. The Phase II ESA and VIHHRA concluded that future building occupants would not be at risk from the former gasoline service station, hydraulic lift, and soil vapor. Therefore, the Project would not create a significant hazard to the public or the environment, and impacts would be less than significant.

Cumulative Impacts

As indicated in Chapter 3, *Environmental Setting*, of this Draft EIR, 27 cumulative projects (e.g., related projects that are anticipated to be developed or have recently been completed) within an approximately 1.5-mile radius of the Project Site. These projects include residential or standard mixed use development which, like the Project, would not be of a type (e.g., industrial, manufacturing, power generation facilities, etc.) typically associated with the use or emission of large quantities of hazardous materials/waste.

With regard to cumulative impacts related to upset and accident conditions, emission of hazardous materials (including within one-quarter mile of a school), and listed hazardous materials sites, as indicated previously, the Phase I ESA included a hazardous materials database search that identified 15 environmental hazardous materials listings within a 1/8-mile radius of the Project Site and 76 such listings within a one-mile radius. However, as concluded in the Phase I ESA, based on either distance, positions of the sites with respect to assumed groundwater flow direction, the native soils, and regulatory status, none of the sites identified in the environmental records search report are expected to affect soil or groundwater quality at the Project Site. Also as indicated previously, a field reconnaissance of the adjacent properties conducted for the Phase I ESA resulted in the conclusion that these properties do not contain RECs that adversely affect the Project Site. As indicated in the analysis of the hazardous and hazardous materials impacts of the Project above, the Project would not emit hazardous materials (e.g., TACs, ACMs, LBPs, PCBs, etc.) from the identified RECs on the Project Site (e.g. historical agricultural use, former gasoline service station and former UST, and on-site hydraulic lift) that would result in significant health effects to sensitive receptors in the Project vicinity, with compliance with applicable regulations (e.g., Cal-OSHA CFR Section 1910 and CCR Title 8, CUPA/Hazardous Materials Disclosure Reporting Program, SCAQMD Rule 1403, etc.). Therefore, cumulative impacts related to upset and accident conditions,

6 Stantec, Phase I Environmental Site Assessment, March 29, 2019, page 8.1. Provided in Appendix G-1 of this Draft EIR.

7 Stantec, Phase I Environmental Site Assessment, March 29, 2019. Provided in Appendix G-1 of this Draft EIR.
emission of hazardous materials (including within one-quarter mile of a school), and listed hazardous materials sites would be less than significant.

4.6.5 Mitigation Measures

No mitigation measures are required with adherence to applicable hazards and hazardous materials regulations identified in this section.

4.6.6 Level of Significance after Mitigation

Not applicable. Project impacts are less than significant.
4.7 Land Use and Planning

4.7.1 Introduction

Development on the Project Site is guided by land use policies and regulations set forth in local and regional plans and local zoning regulations. This section provides an analysis of the potential impacts of the Project with regard to consistency with applicable land use plans and regulations. Other topical sections in Chapter 4 of this Draft EIR (e.g., Sections 4.1, Air Quality, 4.5, Greenhouse Gas Emissions, and 4.11, Transportation) also include evaluation of relevant plans and policies.

4.7.2 Environmental Setting

Existing Conditions

The Project Site consists of four parcels. The northernmost parcel consists of a surface parking lot with 34 parking spaces used by the Exceptional Children’s Foundation (ECF) as off-site parking. The northern central parcel is occupied by a United States Post Office (27,225 square feet [sf]) built in the early 1960s. The next parcel to the south is occupied by Coco’s Bakery Restaurant (6,064 sf) built in the late 1960s. The southernmost parcel is occupied by Valvoline Instant Oil Change (1,722 sf) built in the 2000s, after the preexisting gas station was demolished in 1994. The Project Site includes approximately 216 existing vehicle parking spaces, including 194 regular spaces, 12 truck loading spaces, and 10 handicap spaces, across all existing uses.

Existing vehicular access to the Project Site is currently provided from 10 driveways: five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. Pedestrian access is provided via sidewalks located along Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Bicycle access is provided by a Class II bicycle lane on Sawtelle Boulevard west of Sepulveda Boulevard and a Class III bicycle lane on Sepulveda Boulevard north of Machado Road. Additional off-street regional bicycle paths are provided by the Ballona Creek Bike Path (Class I) and the Culver Boulevard Bike Path located approximately 0.3 miles and 0.8 miles from the Project Site, respectively.

In addition to the existing buildings and areas of surface parking, there is a mix of ornamental landscaping on the Project Site, including a number of mature eucalyptus and palm trees, with the most concentrated plantings along Machado Road. At the southern end of the Project Site there is a sparsely landscaped open space area with decomposed granite and a decorative fountain. There are also street trees along all three frontages of the Project Site and within the Machado Road landscaped median. In certain areas along the perimeter of the Project Site, there are block walls, chain link fencing and wrought iron fencing. There is monument and other signage for the Coco’s Bakery Restaurant and oil change facility, as well as parking lot and landscape lighting.

Surrounding Uses

As shown on Figure 4.7-1, Project Site and Surrounding Land Uses, the Project Site is located in an urban area and represents infill redevelopment at a key intersection within the area.
Figure 4.7-1
Project Site and Surrounding Land Uses
The area is developed with commercial uses, including retail restaurant and services, along the corridors, generally backed by low density single family residential neighborhoods. A private school and religious institution are also located in the area. More specifically, land uses north of the Project Site and Machado Boulevard include a residential neighborhood (Heritage Park) and a private K-12 school (ECF). To the east across Jefferson Boulevard is the Studio Village Shopping Center and an associated surface parking lot. West of the Project Site across Sepulveda Boulevard is a temple (Temple Akiba) with commercial uses to the south of the temple including Centinela Feed & Pet Supplies, American Legion, a motel, Petco and a bank. There are also residential uses north of Temple Akiba along Sepulveda Boulevard (Studio Village Townhomes), backing the commercial uses along Sepulveda Boulevard (Sunset Park Neighborhood), and to the south of the Studio Village Shopping Center (Blanco Park Neighborhood). Parking for the commercial uses in the area generally consists of surface parking lots with access off of Jefferson Boulevard and Sepulveda Boulevard. Commercial buildings in the area are generally one- to two-stories in height.

4.7.3 Regulatory Framework

Following is a summary of the applicable local and regional regulatory land use plans, policies, and ordinances that apply to development at the Project Site. Specific provisions of these documents that pertain to land use are evaluated under the Environmental Impacts subsection for consistency with the Project.

State

Senate Bill 1818

Senate Bill 1818 (SB) 1818, which became effective January 1, 2005, amended the density bonus law (Government Code Section 65915). SB 1818 imposed new state housing mandates on California cities regarding required density bonuses and incentives for housing developers and lowered the set-aside requirements for affordable units and the density bonus. SB 1818 increased the density bonus to a maximum of 35 percent. In addition, SB 1818 required that jurisdictions provide housing developers with at least one to three incentives, such as reductions in parking, setbacks, open space, etc.) rather than one that was previously required based on the percentage of affordable units in the development. The legislation also authorized housing developers to request a waiver of development standards if necessary to make a development feasible and cities must grant concessions unless certain findings are made. SB 1818 also includes density bonus provisions for senior housing development and for housing developers that donate land to the City for affordable housing and continues previous density bonus provisions to encourage the inclusion of child care facilities in affordable housing developments.

Local

City of Culver City General Plan

State law requires that every city and county prepare and adopt a long-range comprehensive General Plan to guide future development and to identify the community’s environmental, social, and economic goals. The City’s General Plan includes nine elements that have been updated at various points between 1968 and 2014. The City’s General Plan includes the Land Use Element (adopted in 1996 and amended through 2004), the Circulation Element (amended through 1995),
the Housing Element (approved in 2014), the Open Space Element (approved in 1996), the Noise Element (approved in 1996), Conservation Element (adopted in 1973), Seismic Safety Element (adopted in 1974), Public Safety Element (adopted in 1975), and Recreation Element (adopted in 1968). The City’s General Plan elements and policies relevant to the topic of land use and open space are discussed below. Other General Plan elements and policies related to topics addressed in this Draft EIR are discussed in applicable sections in Chapter 4, Environmental Impact Analysis. The Circulation Element is addressed in Section 4.11, Transportation, elements and policies relevant to the topic of Housing are addressed in Section 4.9, Population and Housing, and Noise and Public Safety Elements are addressed in Sections 4.8, Noise, 4.10.1, Fire Protection, and 4.10.2, Police Protection, of this Draft EIR.

Land Use Element

As shown on Figure 4.7-2, General Plan Land Use Element Map, the General Plan Land Use designation of the Project Site is General Corridor Commercial. This designation is generally applied to properties located along sections of Sepulveda, Washington, Venice and Jefferson Boulevards and Centinela and Slauson Avenues. The designation allows a range of small- to medium-scale commercials uses, with an emphasis on community-serving retail to which patrons often travel by car. The General Corridor Commercial designation is intended to support desirable existing and future neighborhood and community servicing commercial uses, and limited medium-density housing opportunities compatible with adjacent residential neighborhoods. The designation is characterized by areas with a two-to three-story height limit, recognizing the proximity to residential neighborhoods, and other areas with up to a 56-foot height limit.

More specifically, adjacent Land Use designations to the north include Planned Residential Development and Low Density Single Family, to the east across Jefferson Boulevard is Regional Commercial, to the south and west the properties along Sepulveda Boulevard are designated General Corridor Commercial with Low Density Single Family further to the west. The General Corridor Commercial along Sepulveda Boulevard reflects the long-standing existence of retail and service uses within this area of the City.¹

The Project Site’s Land Use designation of General Corridor Commercial has a corresponding Zone of Commercial General (CG Zoning District) for medium-scale commercial uses, emphasizing community-serving retail, office and service uses while also accommodating mixed use and live/work developments.² As indicated in the Land Use Element, Figure LU-12, the Project Site is located within the Southern-Central Sub-Area of the City. Issues specific to the Southern-Central Sub-Area, that do not apply to the Project Site or adjacent areas, pertain to erosion and slides in the hillside areas in Culver Crest and the residential density along Kinston Avenue. No specific objectives or policies were identified for or are directly applicable to the Project Site.

² The City revised the commercial zoning categories; C-3 was changed to General Commercial (CG) and is the corresponding zone for the General Corridor Commercial General Plan designation. As indicated in CCMC Section 17.220.010B.: “The CG Zoning District is consistent with the General Corridor land use designation of the General Plan.”
Figure 4.7-2
General Plan Land Use Element Map
Open Space Element
The intent of the Open Space Element is to protect, expand, and enhance, visible and usable open space resources. The Open Space Element identifies existing City resources; provides open space definitions and standards; and presents goals, objectives and open space policies. Objective 1 addresses open space protection and acquisition, Objectives 2 and 3 address active and passive recreation, respectively, and Objective 4 addresses natural areas. Policy 2.C of the Open Space Element encourages private sponsorship of bikeway or public park land improvements in exchange for development incentives. In addition, Policy 3.E is to provide seating, bike rack, and drinking fountains in passive recreation areas. The Open Space Element also addresses the streetscape, which is implemented through the City’s Bicycle & Pedestrian Action Plan (Action Plan), the Urban Forest Master Plan, and the Municipal Code.

City of Culver City General Plan Update
The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The current General Plan update is the first time all of the elements are to be updated at one time. The process was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022. Since the General Plan Update is not yet adopted, the analysis in this section compares the Project to the current General Plan.

Culver City Bicycle & Pedestrian Action Plan
The City updated the Bicycle & Pedestrian Master Plan with the Action Plan which received public input from 2017 through 2019. The Action Plan was adopted by the City Council in June 2020. The Action Plan establishes the visions and values that focus on establishing walking and cycling as viable modes of travel for all trip types. The Action Plan aims to provide a safe, convenient, and accessible active transportation network. The Action Plan includes goals to support increased access to neighborhood destinations and transit stations, empowering residents to live a more active lifestyle, and increasing affordability and collaboration for transportation within the community. The approved Action Plan shows that both Jefferson Boulevard and Sepulveda Boulevard, immediately adjacent to the Project Site, are planned as Class IV Separated Bikeways.

Culver City Urban Forest Master Plan
The Culver City Urban Forest Master Plan (UFMP) is a comprehensive long-term management plan that includes designations of tree species to be planted on each street segment when an existing tree must be removed, and best management practices for tree planning, preservation, and

6 As defined by Caltrans, a Class IV separated bikeway is an on-street facility that is physically separated from other motor vehicle traffic by a vertical element or barrier, such as a curb, bollards, or vehicle parking aisle.
maintenance. In addition, the UFMP includes recommendations for green connections throughout the City to encourage recreation, walking, biking and public transit use. Recommendations are also provided for plant palettes and planting structure, places of priority, designations of trees and plants to assist with wayfinding and placemaking, and action areas and strategies to be implemented by the City in public areas. As indicated in the UFMP, in the vicinity of and adjacent to the Project Site, Sepulveda Boulevard is designated as a proposed pedestrian route and Jefferson Boulevard is designated as a pedestrian area, where additional trees and landscaping are recommended to improve and enhance public connections.

City of Culver City Zoning Code

The Culver City Zoning Code (Title 17 of the Culver City Municipal Code [CCMC]) implements the policies of the General Plan by classifying and regulating the uses of land and structures within the City. The Project Site is comprised of four parcels. As shown on Figure 4.7-3, Zoning Map, the zoning designation of the majority of the Project Site is CG (General Commercial) while the northernmost parcel (APN 4215-001-020) adjacent to Machado Road is split-zoned CG and R-1 (Residential Single-Family). The Project Site’s Jefferson and Sepulveda frontages are subject to the Commercial Zero Setback Overlay Zone, which requires zero setbacks for those frontages. However, the provisions of subsection 17.400.065 of the Zoning Code (Mixed Use Development Standards) related to setbacks supersede the requirements of the Commercial Zero Setback Overlay Zone. The CG zoning is consistent with the General Corridor Commercial land use designation in the General Plan, while the R-1 zoning is not consistent with the General Corridor Commercial land use designation in the General Plan. As previously stated, the General Corridor Commercial designation is intended to support desirable existing and future neighborhood and community servicing commercial uses, and limited medium-density housing opportunities compatible with adjacent residential neighborhoods.

The CG zone identifies areas along major corridors appropriate for small- to medium-scale commercial uses, emphasizing community-serving retail, office and service uses. The CG zone permits limited industrial uses (media studios and recycling); recreation, education and public assembly; certain residential uses, including mixed use and live/work developments; retail and service uses; and transportation and communication uses. As indicated in CCMC Section 17.220.010B, the CG zoning district is consistent with the General Plan Corridor Commercial land use designation of the General Plan.

8 City of Culver City, Culver City Urban Forest Master Plan, 2015, page 61.
9 City of Culver City, Municipal Code (CCMC) Section 17.220.015.
Figure 4.7-3
Neighborhoods Map
The R-1 zone identifies areas characterized by single-family dwellings. The standards of the R-1 District are intended to protect the existing density and maintain the character of single-family residential neighborhoods. The R-1 zone permits recreation, education and public assembly; residential uses; service, such as small family day care; and limited transportation and communication uses (underground pipelines and utility lines). Therefore, the R-1 zoning is not consistent with the General Corridor Commercial land use designation in the General Plan.

Adjacent zoning designations include CG directly across Sepulveda Boulevard with RHD (Residential High Density Multiple) further to the northwest (Studio Village Townhomes). The area further west backing the CG designated properties along Sepulveda Boulevard (Sunset Park Neighborhood) is designated R-1. Across Machado Road, the Heritage Park residential area is designated PD (Planned Development). Across Jefferson Boulevard the Studio Village Shopping Center area is designated CRR (Commercial Regional Retail).

Chapter 17.240, Planned Development Zoning District
As indicated in Subsection 17.240.010, the Planned Development (PD) Zoning District can be applied to sites suitable for combined commercial, residential and/or live/work uses within a physically integrated and contiguous area. The PD Zoning District, which may only be applied to sites of one acre or larger in size, is consistent with the Planned Residential Development Land Use designation of the General Plan, and can be consistent with various residential and commercial land use designations of the General Plan, including the General Corridor designation currently applied to the Project Site. Within a PD district, the development standards and allowable uses are established by a Comprehensive Plan and are developed as part of the project approval process.

Chapter 17.560, Comprehensive Plans
Pursuant to Subsection 17.560.005 (Purpose), a Comprehensive Plan allows for flexibility in the application of zoning code standards to a proposed development, in order to consider innovation in site planning and other aspects of project design, and more effective design responses to site features, uses on adjoining properties, and other impacts.

As specified in Subsection 17.560.015.B (Comprehensive Plan Requirements), Comprehensive Plans shall include, but not be limited to the following:

1. A site plan, showing building(s), various functional use areas, parking and circulation.
2. A description of development standards, which may include, but not be limited to, building heights, setbacks and parking requirements.
3. Preliminary building plans, including floor plans and exterior elevations.
4. Landscape plans, including a plant palette.
5. Lighting and signage plans.
6. Civil engineering plans, including site grading, public rights-of-way improvements, drainage, trash/recycling areas, and public utility extensions, as necessary.

10 City of Culver City, CCMC Section 17.210.015.
7. Proposed use and occupancy, construction type, building height and area of each building or structure, and proposed distances between buildings or structures, and setbacks to property lines.

8. Other information or applicable materials as may be deemed necessary by the Director.

As stated in Subsection 17.560.020 (Findings and Decision), a Comprehensive Plan may be approved, provided that the facts submitted and evaluated during the review process support the following findings:

A. The proposed Comprehensive Plan can be substantially completed within 4 years.

B. The proposed development is capable of creating an environment of sustained desirability and stability, or adequate assurance will be provided such objective will be attained.

C. The proposed uses will not be substantially detrimental to present and potential surrounding uses, but will have a beneficial effect.

D. The streets and thoroughfares serving the development are suitable and adequate to carry anticipated traffic, and the development will not generate traffic that will overload the adjacent street network.

E. The proposed development is compatible with the surrounding area.

F. The types and locations of any proposed commercial development can be economically justified.

G. The Comprehensive Plan is in conformance with the General Plan, or a concurrent General Plan amendment is in process.

H. Any exception from the standards and requirements of this Title is warranted by the design and amenities incorporated in the Comprehensive Plan, and is desired by the Council.

I. Existing and proposed utility services are adequate for the proposed uses.

J. The Comprehensive Plan has complied with all applicable City requirements.

Pursuant to Subsection 17.560.025 (Comprehensive Plan Modifications, Major and Minor), major changes or alterations to an approved Comprehensive Plan shall be considered by the Commission at a public hearing, which shall make recommendations to the Council. The Council may then approve, conditionally approve, or disapprove the proposed changes or alteration, after a public hearing.

As stated in Subsection 17.560.030 (Conditions of Approval), the Council may approve a Comprehensive Plan in compliance with Subsection 17.560.020 (Findings and Decision), and may impose conditions upon the project, including the City’s “Comprehensive Standard Conditions of Approval for Site Plan Review and Other Discretionary Planning and Zoning Applications.” Conditions may relate to both on- and off-site improvements that are necessary to mitigate project-related impacts, and to carry out the purpose and requirements of the Comprehensive Plan and all applicable development standards and design guidelines.

Subsection 17.400.065, Mixed-Use Development Standards

Pursuant to Subsection 17.400.065(B), the use regulations, development standards, site planning and design standards, and performance requirements described in Subsections 17.400.065(D)
through (J) apply to all mixed use developments in the City where allowed by the applicable Zoning Districts. As described above, these requirements may be revised as to specific mixed use development projects through the rezoning to the PD Zoning District and implementation of a Comprehensive Plan. Subsection 17.400.065 also authorizes the use of the City’s Community Benefit Incentives Program for mixed use developments, which permits density increases with the provision of specified community benefits.\(^{11}\)

Regional

Southern California Association of Governments

The Southern California Association of Governments (SCAG) is the designated regional planning agency for six counties: Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial. SCAG is a joint powers agency with responsibilities pertaining to regional issues. SCAG’s mandated responsibilities include developing plans and policies with respect to the region’s population growth, transportation programs, air quality, housing, land use, sustainability, and economic development.

On September 3, 2020, SCAG’s Regional Council adopted the 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (2020 RTP/SCS). The 2020 RTP/SCS presents the transportation vision for the region through the year 2045 and builds upon and expands land use and transportation strategies previously established to increase mobility options and achieve a more sustainable growth pattern. The 2020 RTP/SCS includes new initiatives at the intersection of land use, transportation, and technology to close the gap and reach the State’s greenhouse gas (GHG) reduction goals. Also, the 2020 RTP/SCS contains baseline socioeconomic projections that are used as the basis for SCAG’s transportation planning, and the provision of services by other regional agencies. The 2020 RTP/SCS includes ten goals that fall into four core categories: economy, mobility, environment, and healthy/complete communities.

Exhibit 3.8 of the 2020 RTP/SCS identifies the Project Site as a High Quality Transit Area (HQTA), a corridor-focus Priority Growth Area within one half mile of an existing or planned fixed guideway transit stop or bus corridor with a 15-minute headway where transit oriented development (TOD) can be realized and are a cornerstone of land use planning best practice in the SCAG region.

Air Quality Management Plan

The Air Quality Management Plan (AQMP) of the South Coast Air Quality Management District (SCAQMD) presents strategies for achieving the air quality planning goals set forth in the Federal and California Clean Air Acts, including a comprehensive list of pollution control measures aimed at reducing emissions. The SCAQMD, which was established in 1977 pursuant to the Lewis-Presley Air Quality Management Act, is responsible for bringing air quality in the South Coast Air Basin (Air Basin) into conformity with federal and State air pollution standards. The SCAQMD is also responsible for monitoring ambient air pollution levels throughout the Air Basin and for

\(^{11}\) Because the Project obtained vested development rights pursuant to Senate Bill 330, the Project is not subject to the revisions to the City’s Community Benefit Incentives Program and Subsection 17.400.065 adopted on February 8, 2021. See City Council File No. 21-645 for City action on revisions to the Community Benefit Incentives Program and Subsection 17.400.065.
developing and implementing attainment strategies to ensure that future emissions will be within federal and State standards. Additional discussion of the AQMP, and Project consistency with the AQMP, is addressed in Section 4.1, *Air Quality*, of this Draft EIR.

Los Angeles County Metropolitan Transportation Authority

The Los Angeles County Metropolitan Transportation Authority (Metro) is the transportation planning agency for Los Angeles County. Metro develops and oversees transportation plans, policies, and funding programs to address mobility, accessibility, and related environmental issues. Metro directly operates bus, light rail, heavy rail, and bus rapid transit services. Relevant to the Project is the Active Transportation Strategic Plan, discussed below.

Active Transportation Strategic Plan

Metro’s Active Transportation Strategic Plan (ATSP) identifies strategies to increase walking, biking, and transit use in Los Angeles County.12 Specifically, the ATSP focuses on improving first and last mile access to transit stations to increase transit ridership, and proposes a regional network of active transportation facilities, such as shared use paths and on-street bikeways. The ATSP includes the following objectives:

- Identify improvements that increase first last mile access to transit by active modes.
- Work with partners to create a regional active transportation network.
- Develop supporting programs and policies related to education, enforcement, encouragement, and evaluation.
- Provide guidance for setting regional active transportation policies and guidelines to guide future investment.
- Develop a funding strategy and explore opportunities to expedite implementation.

The ATSP provides the following regional active transportation network guiding principles:

- Connect cities and communities
- Serve desire lines
- Serve Main Street
- Harness continuous rights-of-way
- Link to transit
- Address existing safety problems
- Design for all ages and abilities

The ATSP includes several recommendations to improve first last mile access to transit stations such as: bike share stations and bicycle services, sidewalk widening or addition, enhanced

pedestrian crossings, enhanced bicycle facility, traffic calming measures, enhanced bus waiting areas, street furniture, landscaping and shade, lighting, and park-and-ride lots.

As listed in Appendix B of the ATSP13 and as shown on Map 5, Central Los Angeles Proposed Regional Active Transportation Network, existing Class I Bicycle Facilities along Ballona Creek would connect with proposed Class III Bicycle Facilities on Sepulveda Boulevard, directly adjacent to the Project Site. This would then connect to the proposed Class III Bicycle Facilities on Jefferson Boulevard, also located directly adjacent to the Project Site.

4.7.4 Environmental Impacts

Methodology

The CEQA Guidelines Section 15125(d) requires that an EIR discuss project inconsistencies with applicable general plans, specific plans, and regional plans. For purposes of this analysis, the Project is considered consistent with regulatory plans if it meets the intent of the plans and/or would not preclude the attainment of their primary goals. The criterion for determining significance with respect to a land use plan emphasizes conflicts with plans adopted for the purpose of avoiding or mitigating an environmental effect, recognizing that an inconsistency with a plan, policy, or regulation does not necessarily equate to a significant physical impact on the environment. The analysis of potential land use impacts of the Project therefore considers consistency with adopted plans, regulations, and development guidelines that regulate land use on the Project Site and whether any such inconsistencies are tied to significant physical impacts on the environment associated with the Project.

Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to Land Use and Planning if it would:

- **LU-1** Physically divide an established community; or
- **LU-2** Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect.

The City determined in the Initial Study that the following environmental issue area would result in no impacts or less-than-significant impacts and, therefore, is scoped out of this Draft EIR. Please refer to Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue area:

- **LU-1** Physically divide an established community.

As detailed in the Initial Study, provided in Appendix A-2 of the Draft EIR, the Project Site is currently developed with three commercial buildings, and the Project vicinity is highly urbanized.

and generally built out. The Project would represent redevelopment and infill development of an already fully developed site, and would not close any public streets or notably alter established infrastructure in the area. Therefore, the Project would not physically divide an established community. No further analysis of this issue is therefore included in this Draft EIR.

Project Characteristics and Project Design Features

Project Characteristics

To accommodate the Project, the three existing single story commercial buildings, totaling 35,011 sf, and associated surface parking would be demolished. As more fully described in Chapter 2, Project Description, of this Draft EIR the Project would involve the construction of 230 residential dwelling units, including 19 units affordable to very low income households, with a total of 244,609 square feet (sf) of residential area (including the residential lobby and residential amenity room); 55,050 sf of ground floor retail area, including a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail spaces, and a 1,950 sf gym/studio fitness center; and 11,450 sf of second floor office uses within a five story building. Parking would be provided in one subterranean level and on the first and second floors of the building with a total of 633 vehicular parking spaces. The office uses on the second floor would be oriented towards Sepulveda Boulevard. The second floor parking area would be screened from the street. The Project would provide 71 long-term and 26 short-term bicycle parking spaces in various locations throughout the Project Site. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road.

The proposed five-story building would be 67 feet in height (70.5 feet including the parapet) with a total building area of 555,221 sf, including parking, and usable building area of 311,109 sf.14-15 The Project would have a 2.08 floor area ratio (FAR).16

The Project would include private and publicly accessible open space. Ground level open space would include; a publicly accessible park at the corner of Machado Road and Sepulveda Boulevard (Machado Park), a public paseo with an interior courtyard adjacent to the ground floor retail uses at the intersection of Sepulveda Boulevard and Jefferson Boulevard (Paseo Courtyard), and a courtyard at the building entrance on Sepulveda Boulevard across from Janisann Avenue (Entry Courtyard). Private open space with residential amenities would be located on the third level of the development. The amenities would include a courtyard and an amenity room, which would provide: a fitness center, BBQ area, conference room/business center, pool and sun deck that would be set back from Sepulveda and screened by the residential building.

The setbacks would vary on the Project Site. Ground floor retail uses on the southern portion of the Project Site along Sepulveda and Jefferson Boulevards would be located approximately five feet from the property lines, which would serve to activate the pedestrian environment. The Paseo

14 The building height is measured pursuant to CCMC Section 17.300.025, which requires that height be measured as the vertical distance from the existing grade of the site to an imaginary plane located the allowed number of feet above and parallel to the grade. The existing grade on the Project Site has been established as 34.8 feet.

15 CCMC Section 17.220.020, Table 2-7 establishes a 56-foot height limit in the CG zone. The Project includes a request for additional height as a concession or incentive for the provision of affordable housing through the Density Bonus Program in accordance with SB 1818.

16 FAR is the measurement of a building’s floor area in relation to the size of the lot. In accordance with the City’s code, FAR is calculated by dividing the usable square footage (311,109 sf) by the lot area (149,553 sf).
Courtyard is intended to contribute to a sense of place and provide a gathering area to activate the pedestrian environment (see Figure 2-8). The proposed market on the northwestern portion of the Project Site would have a five-foot setback along Sepulveda Boulevard, and setbacks along Machado Road would vary from about 5 feet to 23 feet.

Building materials would be varied and would include concrete, wood, and glass. The overall color palette would be warm and soft, including white, brown, and grey with splashes of accent colors, which would contribute to the architectural look and feel of the structure. Cascading vertical landscaping would be provided from the third floor to the ground level. Public art in the form of murals with a unique design and feel would be painted on prominent sides of the buildings. Bay windows would pop out of the building and private balconies on the upper floors of the residential units would provide articulation that would break up the building mass. In addition, the parking structure would be screened through the use of vertical panels, including green panels, and landscaping. The roof of the building would be flat. Landscaping would be installed in the proposed open space areas, including Machado Park, as well as in locations facing the public realm. Street trees would be planted along the street frontages in accordance with City requirements.

The Project would, at a minimum, meet Culver City’s mandatory Green Building Program requirements. The Project would include sustainability features focused on energy efficiency, water conservation, and the reduction of greenhouse gas emissions, in the building design, construction, and operation. Such features include energy-efficient appliances, the use of solar photovoltaic power, water efficient plumbing fixtures and fittings, and water-efficient landscaping. The Project would be required to provide 20 percent EV capable spaces, 10 percent EV charging stations, and 10 percent EV-ready spaces, resulting in a minimum of 132 EV capable spaces, 66 EV charging stations, and 66 EV-ready spaces.

The Project includes an amendment to the zoning designation for the Project Site from CG and R-1 to PD with adoption of a Comprehensive Plan that would serve as the overarching entitlement mechanism for the Project Site. Implementation of the Project would include, but not necessarily be limited to, the following discretionary entitlements, reviews, and approvals, as described in Chapter 2, Project Description:

- Zoning Map Amendment;
- Adoption of a Comprehensive Plan for the Project, which would establish the development standards for the Project Site;
- Community Benefits Request;
- Density Bonus Request;
- Tentative Parcel Map\(^{17}\);
- Certification of the EIR for the Project;
- Demolition Permits to remove the existing on-site structures to allow for construction of the Project;

\(^{17}\) The Tentative Parcel Map will merge the four existing parcels into one ground lot parcel and create new vertical airspace lots for the retail, office and residential uses.
4. Environmental Impacts Analysis
4.7 Land Use and Planning

- Construction Permits, including building, grading, excavation, foundation, and associated permits;
- Haul Route Permit, as may be required by Culver City; and
- Other discretionary and ministerial approvals as needed and as may be required.

Project Design Features

Aside from the Project characteristics described above, there are no Project Design Features relative to land use and planning.

Analysis of Project Impacts

Threshold LU-1: The Project would have a potentially significant impact if it would cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect.

Impact Statement LU-1: The Project, with the approval of the Comprehensive Plan and requested entitlements, would be in substantial conformance with applicable adopted land use plans, policies, guidance, and regulations adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, impacts with respect to land use plans, policies, guidelines, and regulations would be less than significant.

City of Culver City General Plan

As shown in Figure 4.7-2, the Culver City General Plan land use designation of the Project Site is General Corridor, a commercial designation that allows small- to medium-scale uses that occur along major streets and is generally applied to sections of Sepulveda, Washington, Venice and Jefferson Boulevards, Centinela and Slauson Avenues. The designation is intended to support desirable existing and future neighborhood and community servicing commercial uses, and limited medium-density housing opportunities compatible with adjacent residential neighborhoods. The designation is characterized by areas with a two-to three-story height limit, recognizing the proximity to residential neighborhoods, and other areas with up to a 56-foot height limit.

The Project is proposing a Comprehensive Plan that would allow a mixed-use development with approximately 555,221 sf of multi-family residential housing, community-serving ground-level retail uses and office uses. The Project would include 230 residential units, of which 19 would be affordable units. The residential units would range in size and would include studio, 1-bedroom and 2-bedroom units. The commercial floor area would include retail, restaurant, fitness, and office space. Structured parking would be provided with one subterranean level and two above ground levels. The Project would also include approximately 28,800 sf of publicly accessible ground level open space in various locations on the Project Site.

No change to the Project Site’s existing General Plan land use designation is proposed. The Project would redevelop four underutilized parcels with an integrated, high-quality, mixed-use development that would provide 230 residential units and approximately 66,500 sf of commercial uses. The Project would provide a transition between the surrounding residential neighborhoods.
and the commercial uses. As such, the Project would not conflict with the City’s General Plan land use designation, and the physical impacts of the Project on the environment would be less than significant, as demonstrated in this Draft EIR.

Table 4.7-1, Comparison of the Project to Applicable Policies of the Culver City General Plan, evaluates the consistency of the Project with objectives and policies of the adopted General Plan Land Use Element and Open Space Element.

<table>
<thead>
<tr>
<th>Objective/Policy</th>
<th>Analysis of Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use Element</td>
<td></td>
</tr>
<tr>
<td>Policy 2.B. Continue to allow and encourage multiple family housing opportunities in areas designated for such development.</td>
<td>Consistent. The Project would provide 230 multiple family residences on a property that is designated General Corridor and zoned CG and R-1. The Project would involve rezoning to PD, which would permit multifamily residential. Both the General Plan designation and the new zoning support certain residential uses, including mixed use. The Project would provide 230 residential units and approximately 66,500 sf of commercial floor area. Thus, the Project would provide a mixed-use development in an area that is designated for such development.</td>
</tr>
<tr>
<td>Policy 2.E. Develop standards and guidelines for residential unit development in appropriate commercial areas.</td>
<td>Consistent. As described under Project Characteristics, the Comprehensive Plan would incorporate standards to ensure that the proposed mixed use development would be compatible with the surrounding area. The Comprehensive Plan would include the uses, setbacks, height, parking, as well as open space and landscape requirements. The Project Site is located in an area surrounded by a mix of uses. North of the Project Site, across Machado Road, is a single family residential neighborhood and a school and northwest of the Site, across Sepulveda Boulevard, is multi-family housing. Commercial uses are located to the east across Jefferson Boulevard and to the south across Sepulveda Boulevard. The standards in the Comprehensive Plan would result in the development of retail uses at the ground floor along Jefferson and Sepulveda Boulevards, office on the second floor, and residential uses on the upper floors. Open space and gathering areas would be provided along the streets, at the intersections, and within the Project Site. Therefore, the development of the Project, which would include both commercial and residential uses, would serve as a transition between the surrounding residential uses to the north and the commercial uses to the east and south.</td>
</tr>
<tr>
<td>Objective 3. Affordable Housing. Encourage the provision of housing opportunities for all members of the community.</td>
<td>Consistent. As indicated above, the Project would provide 230 residential units, of which 19 would be affordable. In addition, the Project would provide a mix of units, with 54 studio units, 113 one-bedroom units, and 63 two-bedroom units. Through the provision of affordable units and a range in unit size, the Project would provide housing opportunities for all members of the community.</td>
</tr>
<tr>
<td>Objective/Policy</td>
<td>Analysis of Project Consistency</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Objective 5. Economic Diversity. Encourage new business opportunities that expand Culver City’s economic base and serve the needs of the City’s residential and business community.</td>
<td>Consistent. The Project would redevelop underutilized commercial properties with a mix of residential and commercial uses. The Project would remove 35,011 sf of commercial floor and provide approximately 66,500 sf of new commercial floor area, providing new business opportunities through a mix of uses including a market, restaurants, gym/studio fitness center, office, and retail. The mix of uses would serve the residential and business community and would expand the City’s economic base, including provision of 112 new jobs.</td>
</tr>
<tr>
<td>Policy 5.D. Provide development incentives for projects that provide specific community or neighborhood needs.</td>
<td>Consistent. The Project would provide approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, in three distinct ground level locations on the Project Site accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site. The 13,800 sf Machado Park, would include amenities such as a children’s play area and terraced landscaping and seating, and would link the publicly accessible open space areas along Machado Road from Sepulveda Boulevard to Jefferson Boulevard. The approximately 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard would welcome pedestrian, bike, bus and other foot traffic through and into the Project Site. An additional 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue would provide sheltered access to corner food offerings as well as a direct path to both the grocer entrance and the courtyard spaces. The provision of open space and gathering area and the provision of affordable housing, as well as the high quality design of the Project would offset the increase in height at the Project Site. In addition, the Project would provide affordable housing and the increase in height from 56 feet to 67 feet (70.5 feet including the parapet) would be a concession or incentive for the provision of affordable housing through the Density Bonus Program in accordance with SB 1818.</td>
</tr>
<tr>
<td>Policy 5.F. Encourage “extended-hour” businesses in areas that could benefit from increased levels of activity and security.</td>
<td>Consistent. The Project would provide a mix of residential and commercial uses that would promote pedestrian activity in the area. As discussed above, the Project would include three distinct publicly accessible open space areas, including Machado Park at the intersection of Machado Road and Sepulveda Boulevard, Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard, and the Entry Courtyard at the building entrance on Sepulveda Boulevard across from Janisann Avenue. These areas would serve to activate the Project Site. In addition, the Project would include restaurants and a grocery store that would be open beyond typical office hours, as well as residential uses, thereby extending the hours of activity on the Site. The Project would incorporate a security program to ensure the safety of residents, employees, and visitors. Site security would include the provision of 24-hour video surveillance and roving security personnel. Thus, the Project would encourage increased levels of activity and would provide security to ensure safety.</td>
</tr>
</tbody>
</table>
Objective/Policy

Objective 6. Commercial Corridors. Revitalize the physical character and economic well being of the City’s commercial corridors.

Policy 6.A. Encourage revitalization of commercial corridors in the City through new development and renovation of existing structures with incentives which address development standards and the project approval process.

Consistent. The Project would revitalize the physical character of the area through the redevelopment of the four parcels with a cohesively designed integrated mixed-use development that would provide 230 residential units and approximately 66,500 sf of commercial uses. The Project would also revitalize the Project Site through development of the surface parking lots with significant open space and usable square footage. Therefore, the Project would improve the physical character and economic well-being of the Sepulveda and Jefferson Boulevard commercial corridors.

Policy 6.B. Focus commercial development into cohesive districts by identifying and encouraging intensities and qualities of commercial uses that are sensitive to their locations, and by emphasizing specific uses (i.e., neighborhood serving or general commercial corridors).

Consistent. The Project would result in a mixed-use development in a commercial area that is adjacent to residential and other commercial uses. The Project would provide approximately 66,500 sf of commercial floor area, including a market, restaurants and café, office, gym/studio fitness center, and retail space. The commercial uses would provide goods and services to the residents on-site that would also serve adjacent neighborhoods and be compatible with uses along the Sepulveda and Jefferson Boulevard commercial corridors.

Policy 6.J. Plan for streetscape improvements (street trees, landscaping, street furniture, special lighting, decorative paving, screening walls) and façade improvements along commercial corridors that complement each focus area and improve the physical environment.

Consistent. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards. In addition, the Project would provide new 8-foot sidewalk, curb, and street trees on the southern edge of Machado Road along the Project Site frontage. The Project would also remove portions of the median on Machado Road that would improve vehicular circulation. The Project would improve the streetscape through the removal of 7 existing driveways, resulting in 3 remaining driveways to serve the Project Site. The removal of driveways would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site. Pedestrian circulation would also be enhanced through the proposed traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard. Furthermore, the Project would contribute to the streetscape and pedestrian experience through the provision of ground floor commercial uses and publicly accessible ground level open space areas, including the 13,800 sf Machado Park, with amenities such as a children’s play area and terraced landscaping and seating, the 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard, and the 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue. The Paseo Courtyard would include landscaping, seating areas, and lighting as shown in Figure 2-11.

Policy 8.A. Support desirable retail establishments in proximity to residential neighborhoods that provide needed goods and services.

Consistent. The Project would result in a mixed-use development with 230 residential units and approximately 66,500 sf of commercial uses. The retail establishments on the Project Site would include a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail space, and 1,950 sf gym/studio fitness center, which would provide needed goods and services in proximity to existing residential neighborhoods while also serving Project residents, in addition to residents in the surrounding neighborhoods.
4. Environmental Impacts Analysis

4.7 Land Use and Planning

<table>
<thead>
<tr>
<th>Objective/Policy</th>
<th>Analysis of Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 12. Urban Design. Ensure that new</td>
<td>Consistent. The Project would redevelop four underutilized parcels with an integrated, high-quality, mixed-use development that would provide 230 residential units and approximately 66,500 sf of commercial uses. The Project would create an active streetscape through the provision of ground level commercial uses as well as approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, in three distinct ground level locations on the Project Site that would be connected with pedestrian access around and through the Project Site. The provision of publicly accessible open space at the intersections would contribute to a sense of place and would provide a gathering area that would liven the pedestrian environment. The open space areas would include amenities, such as a children's play area (Machado Park), terraced landscaping and seating areas. With the provision of open space, the building setbacks would vary on the Site with the commercial portions close to the street in some locations, which would serve to activate the street. Private balconies on the upper floors for the residential units would provide articulation and would break up the building mass. In addition, the parking structure would be screened through the use of vertical panels, including green panels, and landscaping. High-quality building materials would be varied and would include concrete, wood, and glass. The overall color palette would be warm and soft, including white, brown, and grey with splashes of accent colors, which would contribute to the architectural look and feel of the structure. Cascading vertical landscaping would be provided from the third floor to the ground level. Public art in the form of murals with a unique design and feel would be painted on prominent sides of the buildings.</td>
</tr>
<tr>
<td>construction and renovation of existing residential and non-residential buildings and streetscapes are accomplished with the highest quality of architectural and site design.</td>
<td></td>
</tr>
</tbody>
</table>

Open Space Element

| Objective 3. Passive Recreation. Provide passive recreational open space within walking distance of all City neighborhoods. | **Consistent.** As indicated above in Policy 5.D, the Project would provide approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, in three distinct ground level locations on the Project Site that would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site. The open space and gathering areas on the Project Site would be within walking distance from nearby neighborhoods, including Heritage Park, Lindberg Park, and Blanco Park. The 13,800 sf Machado Park, which would include amenities such as a children’s play area and terraced landscaping and seating, would link the publicly accessible open space areas along Machado Road from Sepulveda Boulevard to Jefferson Boulevard. The approximately 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard would welcome pedestrian, bike, bus and other foot traffic through and into the Project Site. An additional 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue would provide sheltered access to corner food offerings as well as a direct path to both the grocer entrance and the courtyard spaces. In addition, the Project would provide common open space for Project residents in the form of the amenity room and open air courtyard. Balconies with a minimum size of 52 sf for studios, 62 square feet for one-bedroom units, and 72 square feet for two-bedroom units would be provided for the residential uses. |

As discussed in Table 4.7-1, the Project would be consistent with the objectives and policies of the Land Use Element. The Project would support Land Use Element Policy 2.B by encouraging multi-family housing opportunities; Policy 2.E by implementing standards and guidelines for residential development in commercial areas; Objective 3 by providing housing for all members of the public, including the provision of affordable housing; Objective 5 by providing new business opportunities that expand the City’s economic base while serving the needs of the residential and business communities; Policy 5.D by serving community and neighborhood needs in part through available development incentives; Policy 5.F by promoting increased activity and levels of safety through a mix of residential, commercial and open space uses; Policy 6, 6.A, and 6.J through revitalizing the commercial corridor through a unified development with various open space and streetscape improvements; Policy 8.A by providing retail uses in proximity to residential neighborhoods; Objective 12 by supporting urban design through high quality architecture and site design.

More specifically, the Project would provide a mixed-use development consisting of 230 units of multi-family housing, of which 19 would be affordable units, as well as 66,500 sf of commercial uses. The housing units would range in size and would include studio, one-bedroom and two-bedroom units, thereby providing housing opportunities for all members of the community. The commercial uses would include retail, restaurant, fitness, and office space, which would contribute to the economic diversity within the City. The commercial uses would also provide goods and services for the residents of the multi-family residences within the Project as well as the nearby residential neighborhoods. The Project would redevelop four underutilized parcels with large areas of surface parking with a site plan that would revitalize the area through a cohesive design that would integrate uses and provide various community benefits, including 28,800 sf of publicly accessible open space and affordable housing, as well as roadway and streetscape improvements. The Project would activate the pedestrian environment in the area by providing ground level commercial space that fronts on the streets, and pedestrian walkways through the Project Site, including its publicly accessible open space areas. The provision of publicly accessible open space at the intersections would contribute to a sense of place and would provide a gathering area that would liven the pedestrian environment (see Figure 2-8). In addition, the Project would install new 8-foot wide sidewalks and landscaping along the three street frontages and would provide safe connections to the residential neighborhood to the south through the provision of a proposed traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard. The removal of seven driveways would improve circulation and access in the Project vicinity and would eliminate pedestrian and vehicular conflicts.

The Project would be 67 feet (70.5 feet including the parapet) in height, with height above the 56-foot height limit generally applicable in the CG zone allowed as a concession for the provision of affordable housing through the Density Bonus Program in accordance with SB 1818. The Project would occupy the triangular property surrounded by streets which in conjunction with commercial uses would provide a separation from the single family residences in the Project vicinity. The lower levels of the building would be designed to provide a human-scale with entryways and windows. In addition, the buildings would have vertical and horizontal breaks that would serve to break up

18 Pursuant to Government Code Section 65915(j)(1), any exceedance of zoning or General Plan standards due to the application of the Density Bonus Program would not create inconsistencies.
the mass of the structures as shown in the renderings provided in Chapter 2, Project Description (see Figures 2-8 and 2-10). Building heights would vary with a lower portion in the center serving to provide a more human scale building at the Entry Courtyard. In addition, the provision of three distinct publicly accessible open space areas results in larger building setbacks at these locations, which also serve to break up the mass of the building and provide focal points and gathering place as well as visual interest. Thus, the Project would improve the visual character of the area through the site plan and building design and would create connections with the surrounding urban environment.

In regards to the General Plan Open Space Element, the Project would be consistent with the Objective 3 by providing approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, in three distinct ground level locations on the Project Site that would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site. Publicly accessible open space would include Machado Park, with amenities, such as seating, landscaping, and a children’s play area. In addition, the Project would provide common open space for Project residents in the form of the amenity room, an open air courtyard, and private balconies. As the Project would be consistent with applicable objectives and policies of the General Plan, it would have a less than significant impact with respect to consistency with the General Plan.

Culver City Bicycle & Pedestrian Action Plan

Although the objectives, policies, and actions of Action Plan are directed towards the City and therefore not directly applicable to the Project, the Project would support the Action Plan through the provision of bicycle parking and other bicycle amenities that would serve to encourage alternative forms of transportation. The preceding Bicycle & Pedestrian Master Plan identified existing and proposed bicycle facilities in the Project vicinity. The existing bicycle facility in the Project vicinity is the Ballona Creek Class I Bike Path/Multi-Use Path, with access off of Sepulveda Boulevard. Proposed bicycle facilities in the Project area include sharrows, bike routes, and bike-friendly streets along Sepulveda and Jefferson Boulevards, Overland Avenue, Sawtelle Boulevard, and Playa Avenue. In addition, various bike paths and bike friendly streets are also proposed within the residential neighborhoods in the vicinity of the Project Site. The approved Action Plan shows that both Jefferson Boulevard and Sepulveda Boulevard, immediately adjacent to the Project Site, are planned as Class IV Separated Bikeways.\(^\text{19}\)

With regard to construction activities, such activities would be primarily contained within the Project Site. However, temporary lane closures along Sepulveda Boulevard and Jefferson Boulevard may be necessary for new utility connections and sewer line upgrade, street work, and other activities. As described in Section 4.11, Transportation, the Project would include a Construction Management Plan as a Project Design Feature (PDF-TRAF-1), which would define the scope and schedule of construction activities, identify construction site management responsibilities, and provide measures to ensure minimal impacts to neighboring land uses and disruption to pedestrian, vehicle, and alternative transportation modes as well as public transit. With

\(^{19}\) As defined by Caltrans, a Class IV separated bikeway is an on-street facility that is physically separated from other motor vehicle traffic by a vertical element or barrier, such as a curb, bollards, or vehicle parking aisle.
implementation of the Construction Management Plan, impacts on bicyclists and pedestrians during construction would be less than significant.

The Project would provide 71 long-term and 26 short-term bicycle parking spaces in various locations throughout the Project Site. Bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market. Bicycle lockers would be provided for residents in the subterranean parking level. Bicycle racks and parking areas would conform to the Bicycle & Pedestrian Facility Design Guidelines, included as Appendix D of the Action Plan. As described in Section 4.11, Transportation, bicycle parking and related amenities would be provided in compliance with City requirements.

In addition, the Project would include the installation of new 8-foot wide sidewalks along the three street frontages, Sepulveda and Jefferson Boulevards, and Machado Road. These sidewalks would increase the width of existing sidewalks and would be consistent with the City’s plan to increase the pedestrian capability in the area.

The Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City.

Separate from the Project, the City is considering implementing a bicycle share facility on the Project Site adjacent to the Machado Park. The bicycle share facility would allow users to connect to the City’s proposed bicycle lanes along Jefferson Boulevard and Sepulveda Boulevard as part of the City’s Action Plan.

During construction and operation, the Project would not result in the removal of or interference with the existing and future bicycle designations along Sepulveda and Jefferson Boulevards. As the Project would include facilities to enhance and support bicycle and pedestrian activity, including activity in an area proximate to the Westfield Culver City Transit Center (Westfield Transit Center) which is located approximately 0.7 miles south of the Project Site, the Project would support and not adversely affect the existing and planned bicycle and pedestrian networks. The Project would be consistent with the intent of the Action Plan and impacts would be less than significant.

Culver City Urban Forest Master Plan

As previously described, the UFMP includes recommendations for green connections throughout the City to encourage recreation, walking, biking and public transit use to be implemented by the City. In the vicinity of the Project Site, Sepulveda Boulevard is designated as a proposed pedestrian route and Jefferson Boulevard is designated as a pedestrian area, where additional trees and landscaping are recommended to improve and enhance public connections.
The Project would install new 8-foot wide sidewalks on Sepulveda Boulevard and Jefferson Boulevard, as well as on Machado Road. The Project would provide several open space areas including Machado Park, a publicly accessible park located at the corner of Machado Road and Sepulveda; Paseo Courtyard located at the corner of Sepulveda Boulevard and Jefferson Boulevard; and Entry Courtyard located at the building entrance on Sepulveda Boulevard across from Janisann Avenue. The open space areas proposed on the Project Site would total 28,800 sf and exceed the minimum requirement of 17,250 sf of common and/or private open space. The Project would also include a proposed traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard. These improvements would enhance pedestrian access from Sepulveda Boulevard and Jefferson Boulevard, which are designated by the UFMP as a proposed pedestrian route and a pedestrian area, respectively. Additional tree and landscaping would be installed consistent with the UFMP to improve and enhance public connections. Therefore, the Project would be consistent with the green connections envisioned in the UFMP and impacts would be less than significant.

City of Culver City Zoning Code

As shown on Figure 4.7-3, the Culver City zoning of the Project Site is CG and R-1. The CG zone identifies areas along major corridors appropriate for small- to medium-scale commercial uses, emphasizing community-serving retail, office and service uses. The CG zone permits limited industrial uses (media studios and recycling); recreation, education and public assembly; certain residential uses, including mixed use and live/work developments; retail and service uses; and transportation and communication uses. The R-1 zone generally identifies areas characterized by single-family dwellings and permits recreation, education and public assembly; residential uses; service, such as small family day care; and limited transportation and communication uses (underground pipelines and utility lines).

The Applicant is seeking approval of a Zone Change from CG and R-1 to PD to accommodate the Project, which proposes a mixed-use development consisting of 230 residential dwelling units, of which 19 would be affordable units; ground floor retail area, including a market, restaurants, café, and gym/studio fitness center; office uses; and publicly accessible open space. The Project would result in a density of 67.1 units per acre, which is below the 68 unit acres allowed. The five-story building would have a 2.08 FAR. The Applicant is proposing a Comprehensive Plan for the Project Site in accordance with CCMC Section 17.560. Per CCMC Section 17.560, Comprehensive Plans allow for flexibility in the application of zoning code standards for proposed development. The purpose of a Comprehensive Plan is to allow consideration of innovation in site planning and other aspects of project design, and more effective design responses to site features, uses on adjoining properties, and other impacts than the zoning code standards would produce without adjustment. The proposed Comprehensive Plan would permit the proposed mixed-use development, which is allowed in the CG zone, and establish the development standards for the property. While the Comprehensive Plan would allow for adjustment in setbacks and other development standards from

20 City of Culver City, CCMC Section 17.220.015.
21 City of Culver City, CCMC Section 17.210.015.
22 Mixed use density = 35 du/acre; community benefit = +15 du/acre; base density = 50 du/acre. SB 1818 calculation result in 50 du/acre times 0.35 = +18 (17.5 rounded up). The total density allowed on the Site is 50 + 18 = 68 units to the acre.
those established in the CG and R-1 zone, it would not adjust City road and driveway width, parking space, open space, landscaping, lighting, and tree replacement requirements currently applicable to the Project. The proposed Comprehensive Plan for the Project is on file at the City of Culver City Planning Department.

Table 4.7-2, **Comparison of the Project to Applicable Land Use Regulations of the Culver City Zoning Code**, evaluates the consistency of the Project with applicable regulations of the Culver City Zoning Code that pertain to Planned Development Zoning Districts. The Comprehensive Plan would also be subject to conditions of approval to ensure that the Project would meet all of the required findings presented below. Therefore, with approval of the Comprehensive Plan, the Project would be consistent with the Culver City Zoning Code and impacts would be less than significant.

TABLE 4.7-2
Comparison of the Project to Applicable Land Use Regulations of the Culver City Zoning Code

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Code Provision</th>
<th>Analysis of Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.240.015 Planned Development (PD) District Requirements: 17.240.015.A (Requirements for the PD District)</td>
<td>Development standards, allowable land uses and permit requirements for the PD Zoning District shall be established by a Comprehensive Plan (Chapter 17.560);</td>
<td>Consistent. A Comprehensive Plan would be adopted as part of the Project, which would result in a mixed-use development with 230 residential units and approximately 66,500 sf of commercial uses. The commercial uses would include a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail space, 1,950 sf gym/studio fitness center, and 11,450 sf of office uses. The five-story building would be 67 feet in height (70.5 feet including the parapet) with a total building area of 555,221 sf, including parking, and usable building area of 311,109 sf. The Project would have a 2.08 FAR. Setbacks on the Project Site would vary. The Project would also provide approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, in three distinct ground level locations on the Project Site that would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site.</td>
</tr>
<tr>
<td>17.240.015.B (Minimum Site Area)</td>
<td>The PD Zoning District may only be applied to sites of 1 acre or larger.</td>
<td>Consistent. The Project Site is 3.43 acres in size and therefore, the PD zoning would be appropriate for the Project Site.</td>
</tr>
<tr>
<td>17.240.015.C (Permit Requirements)</td>
<td>All development proposed within a PD Zoning District shall require approval of a Comprehensive Plan in compliance with Chapter 17.560 (Comprehensive Plans). Land use permit requirements for changes in land use after the initial Comprehensive Plan approval may be established by the Council through the rezoning of the site to apply the PD Zoning District, and/or through the approval of the Comprehensive Plan.</td>
<td>Consistent. The Project would require a Zoning Map Amendment from CG and R-1 to PD. In addition, the proposed development would require the adoption of a Comprehensive Plan, which would provide allowable uses and development standards. If changes in land uses are proposed to the initially adopted Comprehensive Plan, they will be adopted pursuant to the applicable requirements.</td>
</tr>
<tr>
<td>17.240.015.D (Allowable Land Uses and Development Standards)</td>
<td>Except as otherwise provided by this Section, allowable land uses, and site planning and development standards for the PD Zoning District shall be determined by the Council through the rezoning of the site</td>
<td>Consistent. While the allowed uses and development standards for planned districts are developed as part of the project approval process, this Draft EIR evaluates the proposed Project that is reflected in the Comprehensive Plan. As indicated above, the Project Site is currently zoned CG, which allows certain residential uses, including mixed use and live/work developments. The triangular-shaped</td>
</tr>
</tbody>
</table>
Code Section | Code Provision | Analysis of Project Consistency
--- | --- | ---
17.240.015.E (Height) | No building or structure in the PD Zone may exceed 56 feet in height, unless a height exception is granted pursuant to § 17.300.025 (Height Measurement and Height Limit Exceptions). | **Consistent.** As indicated above, the five-story building would be 67 feet in height (70.5 feet including the parapet), which would be permitted as an incentive through the Density Bonus Program. Pursuant to state law, any exceedance of zoning or General Plan standards due to the application of the Density Bonus Program would not create inconsistencies. The height increase allows the Project to provide 19 units affordable to very low income households. |
17.240.015.F (Underground Utilities) | All utilities, including telephone, cable television, and electric systems, required within the limits of all PD Zones shall be located underground. (Ord. No. 2005-007 § 1 (part)) | **Consistent.** The Project would install all listed utilities underground. |
17.560 Comprehensive Plans Requirements: 17.560.005 (Purpose) | This Chapter provides procedures for reviewing Comprehensive Plans, which allow for flexibility in the application of zoning code standards to a proposed development. The purpose is to allow consideration of innovation in site planning and other aspects of project design, and more effective design responses to site features, uses on adjoining properties, and other impacts than the zoning code standards would produce without adjustment. | **Consistent.** The Comprehensive Plan would be subject to City review and approval and has been developed to allow for innovative site planning while employing design for buildings, landscaping, and circulation to ensure compatibility of the Project with the surrounding area. |
17.560.015.B (Comprehensive Plan Requirements) | All Comprehensive Plans shall include, but not be limited to, the following: 1. A site plan, showing building(s), various functional use areas, parking and circulation. 2. A description of development standards, which may include, but not be limited to, building heights, setbacks; building plans, including floor plans and exterior elevations. | **Consistent.** The Comprehensive Plan conforms to these requirements, as preliminarily determined by the City and subject to final approval of the Plan, which includes a Site Plan; Project Summary; parking and circulation plans; development standards; parking requirements; building heights; setbacks; building plans, including floor plans and elevations; landscape plans; lighting plans; civil engineering plans including identification of utility and trash/recycling areas; technical reports; and detailed information of the proposed development by building level. |

23 See Government Code Section 65915(j)(1).
4. Environmental Impacts Analysis

4.7 Land Use and Planning

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Code Provision</th>
<th>Analysis of Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Lighting and signage plans.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Civil engineering plans, including site grading, public rights-of-way improvements, drainage, trash/recycling areas, and public utility extensions, as necessary.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Proposed use and occupancy, construction type, building height and area of each building or structure, and proposed distances between buildings or structures, and setbacks to property lines.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Other information or applicable materials as may be deemed necessary by the Director.</td>
<td></td>
</tr>
</tbody>
</table>

17.560.020 (Comprehensive Plan Findings)

A Comprehensive Plan may be approved, provided that the facts submitted and evaluated during the review process support the following findings:

A. The proposed Comprehensive Plan can be substantially completed within 4 years.
B. The proposed development is capable of creating an environment of sustained desirability and stability, or adequate assurance will be provided such objective will be attained.
C. The proposed uses will not be substantially detrimental to present and potential surrounding uses, but will have a beneficial effect.
D. The streets and thoroughfares serving the development are suitable and adequate to carry anticipated traffic, and the development will not generate traffic that will overload the adjacent street network.
E. The proposed development is compatible with the surrounding area.
F. The types and locations of any proposed commercial development can be economically justified.
G. The Comprehensive Plan is in conformance with the General Plan, or a concurrent General Plan amendment is in process.

Consistent. Findings in support of the Comprehensive Plan would be prepared in accordance with Culver City Zoning Code 17.560.020. Project characteristics would be supportive of the required findings including the following:

A. The development anticipated in the Comprehensive Plan would be substantially completed in approximately 26 months with an estimated 2024 completion date.
B. The Project would create an environment of sustained desirability and stability by revitalizing an underutilized site with the development of a unified mixed-use project. The Project would provide 230 residential units and 66,500 sf of commercial floor area, including a market. The Project would include approximately 28,800 sf of publicly accessible open space, which would exceed the minimum requirement of 17,250 sf of common and/or private open space, as well as private residential open space and amenities. The Project would implement street and streetscape improvements surrounding the Site. The Project would provide much needed housing and would provide goods and services to residents on the Project Site as well as in the surrounding areas. The approved resolution would include conditions of approval, and the Final EIR would include a Mitigation Monitoring and Reporting Program to assure Project objectives will be attained.
C. As analyzed in Chapter 4, Environmental Impact Analysis, of this Draft EIR, numerous Project Design Features and mitigation measures would be incorporated as a component of the Project to reduce impacts from implementation of the Project to the greatest extent feasible. Furthermore, characteristics of the Project that would have a beneficial effect include the provision of neighborhood servicing commercial uses, publicly accessible open space, including Machado Park, as well as street and streetscape improvements.
D. As discussed in Section 4.11, Transportation, the Project would implement a Transportation Demand Management Program as a mitigation measure to reduce traffic impacts. The Transportation Impact Study, provided in Appendix J of the Draft EIR, analyzed 11 intersections as part of a level of service (LOS) non-CEQA analysis. The level of service (LOS) analysis, which is subject to City review and approval, evaluates the Project-generated traffic effects on the
Analysis of Project Consistency

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Code Provision</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.</td>
<td>Any exception from the standards and requirements of this Title is warranted by the design and amenities incorporated in the Comprehensive Plan, and is desired by the Council.</td>
<td>Street network to help identify means for avoiding overloading of the adjacent street network.</td>
</tr>
<tr>
<td>I.</td>
<td>Existing and proposed utility services are adequate for the proposed uses.</td>
<td></td>
</tr>
<tr>
<td>J.</td>
<td>The Comprehensive Plan has complied with all applicable City requirements.</td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td>The Project would locate multi-family residential units and commercial floor area on a commercial corridor. The Project would serve as a transition from the commercial uses to the east on Jefferson Boulevard and the residential uses to the north of the Project Site. The Project would contribute to the City’s housing stock and would provide goods and services for residents on the Site and in the surrounding areas. As analyzed in Chapter 4, Environmental Impact Analysis, of this Draft EIR, the Project would incorporate Project Design Features and mitigation measures to ensure compatibility with the surrounding area to the extent feasible. In addition, the proposed open space areas at the intersections would result in substantial building setbacks. The proposed setbacks coupled with the street widths would result in the building being over 100 feet from the surrounding residential neighborhoods.</td>
<td></td>
</tr>
<tr>
<td>F.</td>
<td>The Project would include 66,500 sf of commercial floor area that would include a 38,600 sf market, 10,600 sf of restaurants and café, 3,900 sf of retail space, 1,950 sf gym/studio fitness center, and 11,450 sf of office uses. The uses would provide goods and services to residents within the Project, in the surrounding neighborhoods, and to other City residents and visitors.</td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td>The Comprehensive Plan would allow development of a mixed-use Project on property that is zoned CG, which supports certain residential uses, including mixed use and live/work developments. As indicated above, the five-story building would be 67 feet in height (70.5 feet including the parapet), which would be permitted as an incentive through the Density Bonus Program. Pursuant to state law, any exceedance of zoning or General Plan standards due to the application of the Density Bonus Program would not create inconsistencies. The height increase allows the Project to provide 19 units affordable to very low income households.</td>
<td></td>
</tr>
<tr>
<td>H.</td>
<td>The proposed standards and requirements under the proposed Comprehensive Plan would be considered and approved by the City Council as part of the approval process.</td>
<td></td>
</tr>
<tr>
<td>I.</td>
<td>As analyzed in the Initial Study, which is provided in Appendix A-2 of this Draft EIR, there would be adequate infrastructure to accommodate additional demand on water supply, wastewater, and solid waste facilities generated by the Project.</td>
<td></td>
</tr>
<tr>
<td>J.</td>
<td>As part of the approval process, the Planning Commission and City Council will ensure that the Comprehensive Plan complies with all applicable City requirements.</td>
<td>Consistent. If changes to the Comprehensive Plan are proposed at some point in the future, corresponding amendments would be proposed in compliance with Section 17.560.025.</td>
</tr>
</tbody>
</table>

4. Environmental Impacts Analysis
4.7 Land Use and Planning

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Code Provision</th>
<th>Analysis of Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.2.010</td>
<td>B. The Director may administratively approve minor changes or alterations to an approved Comprehensive Plan, subject to appeal pursuant to Chapter 17.640 (Appeals); provided the Director makes [the identified] findings.</td>
<td>Consistent. The Comprehensive Plan would be subject to the final resolution and conditions of approval adopted by the City Council.</td>
</tr>
<tr>
<td>17.560.030 (Conditions of Approval)</td>
<td>C. If the Director determines the above findings cannot be made, then the request shall be considered a major change, and referred to the Commission for review at a public hearing, and to Council for review at a public hearing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Maintenance, rehabilitation, renovation, and reconstruction of existing structures, which will not alter the site plan, shall not require a Comprehensive Plan or any Comprehensive Plan modification, minor or major.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. All determinations required by this Subsection are subject to appeal pursuant to Chapter 17.640 (Appeals).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Council may approve a Comprehensive Plan in compliance with Subsection 17.560.020 (Findings and Decision), and may impose conditions upon the project, including the City's "Comprehensive Standard Conditions of Approval for Site Plan Review and Other Discretionary Planning And Zoning Applications," as adopted by the Commission to ensure that the project will meet all of the required findings. Conditions may relate to both on- and off-site improvements that are necessary to mitigate project-related impacts, and to carry out the purpose and requirements of the Comprehensive Plan and all applicable development standards and design guidelines.</td>
<td></td>
</tr>
</tbody>
</table>

Other approvals that would be required for the Project include, but may not limited to: certification of the EIR; a Zoning Map Amendment from CG and R-1 to PD; adoption of a Comprehensive Plan that provides allowable uses and development standards; community benefits request; density bonus request; tentative parcel map; and other approvals as needed, including demolition, grading, excavation, and building permits as well as haul route permits. None of these approvals would
conflict with an applicable land use plan, policy or regulation of an agency with jurisdiction over the Project adopted for the purpose of avoiding or mitigating an environmental effect. These approvals have been assessed as part of the Project throughout this document.

With City approval of the requested Zone Map Amendment and the Comprehensive Plan, the Project would not conflict with the City’s zoning of the Project Site. Furthermore, the physical impacts of the Project on the environment would be less than significant or less than significant with the implementation of mitigation measures, as demonstrated in this Draft EIR. Accordingly, the impact of the Project in association with land use and zoning would be less than significant and no mitigation measures are necessary.

SCAG’s 2020 RTP/SCS

SCAG’s 2020 RTP/SCS incorporate goals that are applicable to the Project. These SCAG goals are discussed below. *Table 4.7-3, Consistency of the Project with Applicable Goals of the 2020 RTP/SCS*, provides a detailed analysis of the Project’s consistency with applicable RTP/SCS goals.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Analysis of Proposed Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encourage regional economic prosperity and global competitiveness.</td>
<td>Consistent. This goal pertains to SCAG funding and policies. The Project would not adversely affect the capacity to encourage regional economic prosperity and global competitiveness. As the Project does provide regional economic benefits and does so in a manner consistent with other RTP/SCS goals as discussed below, and within a HQTA, the Project would support SCAG choices regarding this goal.</td>
</tr>
<tr>
<td>2. Improve mobility, accessibility, reliability, and travel safety for people and goods.</td>
<td>Consistent. The location of the Project Site, in proximity to the Westfield Transit Center and multiple regional and local bus lines; the I-405 and I-10; and bicycle facilities would maximize mobility and the accessibility to the Project Site. The Project would provide approximately 66,500 sf of commercial floor area, including a market, restaurants and café, office, gym/studio fitness center, and retail space. The commercial uses would provide goods and services to the residents on-site that would also serve adjacent neighborhoods and be compatible with uses along the Sepulveda and Jefferson Boulevard commercial corridors. Additionally, the Project would reduce the number of driveways to access the Project Site from 10 to 3, which would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site. The Project would also include a traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard to allow for mid-block pedestrian accessibility to the Project Site.</td>
</tr>
<tr>
<td>3. Enhance the preservation, security, and resilience of the regional transportation system.</td>
<td>Consistent. The proximity of the Project Site to alternative transit modes, including regional and local bus lines, would support the region’s transportation investment and the sustainability of the regional transportation system.</td>
</tr>
<tr>
<td>4. Increase person and goods movement and travel choices within the transportation system.</td>
<td>Consistent. The location of the Project Site, in proximity to the Westfield Transit Center and multiple regional and local bus lines; the I-405 and I-10; and bicycle facilities, particularly in an HQTA, would support an increase in person and goods movement and increase the available travel choices within the transportation system.</td>
</tr>
<tr>
<td>5. Reduce greenhouse gas emissions and improve air quality.</td>
<td>Consistent. The Project would develop the building on an infill location close to retail, restaurant, and services, educational and religious institutions, and in close proximity to existing public transit.</td>
</tr>
<tr>
<td>Goal</td>
<td>Analysis of Proposed Project Consistency</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>6.</td>
<td>Consistent. The Project includes the provision bicycle parking spaces and associated amenities and pedestrian amenities in proximity to the Westfield Transit Center and multiple regional and local bus lines as well as commercial points of interest including the Westfield Culver City Mall and commercial businesses along Sepulveda Boulevard and Jefferson Boulevard, thereby promoting a healthier and more active lifestyle. The Project would provide a market and gym/studio fitness center as part of the commercial component, which would be easily accessible to Project residents and residents of the surrounding neighborhoods.</td>
</tr>
<tr>
<td>7.</td>
<td>Consistent. The Project would develop residential and commercial uses within proximity to the Westfield Transit Center and multiple regional and local bus lines; the I-405 and I-10; and bicycle facilities, thus supporting an integrated regional development pattern and transportation network.</td>
</tr>
<tr>
<td>8.</td>
<td>Consistent. This goal pertains to SCAG leveraging new transportation technologies and data-driven solutions that result in more efficient travel. The Project would not adversely affect SCAG’s ability to develop more efficient travel consistent with this goal.</td>
</tr>
<tr>
<td>9.</td>
<td>Consistent. Development of the proposed residential and commercial mixed-use Project would include diverse housing types in support of this goal, including 211 market-rate units and 19 units affordable to very low income households, within proximity to multiple transportation options, as evidenced by the Project Site’s location within an HQTA and provision of bicycle and pedestrian amenities.</td>
</tr>
<tr>
<td>10.</td>
<td>Consistent. As detailed in the Initial Study, provided in Appendix A-2 of this Draft EIR, the Project Site does not contain agricultural uses or related operations, nor is the Project Site located within a designated riparian habitat or support suitable habitat for candidate, sensitive, or special status species; as such, the development of the Project would not conflict with this goal to promote conservation of natural agricultural lands and restoration of habitats.</td>
</tr>
</tbody>
</table>

Based on the analysis presented in Table 4.7-3, the Project would be consistent with applicable 2020 RTP/SCS goals. The Project would locate 230 residential units near the Westfield Transit Center and multiple regional and local bus lines, the I-405 and I-10, and bicycle facilities. In
addition, the Project includes the provision of bicycle and pedestrian amenities within an HQTA. As shown in Table 4.7-3, the Project would be consistent with 2020 RTP/SCS goals to encourage economic prosperity; improve mobility, accessibility, reliability, and travel safety; enhance the preservation security, and resilience of the regional transportation system; increase the productivity of the transportation system, reduce GHG emissions and improvement of air quality; support healthy and equitable communities; adapt to climate change and support an integrated regional development pattern; leverage new transportation technologies and data driven solutions that result in more efficient travel; encourage development of diverse housing types; and promote conservation of natural and agricultural lands and restoration of habitats. Therefore, the Project would result in a less than significant impact with regard to consistency with the 2020 RTP/SCS.

Metro’s Active Transportation Strategic Plan

As previously stated, the ATSP provides strategies to increase walking, biking, and transit use; including improving first and last mile access to transit stations. Although many of the objectives, recommendations, and guiding principles are directed towards Metro and other jurisdictions and not individual private projects, the Project would include the provision of bicycle parking spaces throughout the Project Site as well as providing outdoor open space areas along Sepulveda Boulevard and Jefferson Boulevard. New 8-foot wide sidewalks would also be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road. These improvements would enhance pedestrian access to the Westfield Transit Center and multiple regional and local bus lines as well as to the Ballona Creek Channel and planned bicycle facilities, which are part of a proposed Regional Active Transportation Network.

The proposed bicycle parking facilities, landscaping, open space, and sidewalk improvements would be consistent with the objective of the ATSP to provide improvements that increase first last mile access to transit by active modes.

Furthermore, the Project would support the following regional active transportation network guiding principles of the ATSP:

- Connect cities and communities (by providing bicycle and pedestrian facilities along Sepulveda Boulevard and Jefferson Boulevard linking residents, employees, and visitors to the Westfield Transit Center and multiple regional and local bus lines as well as the Ballona Creek Channel)
- Serve desired lines/link to transit (including the Westfield Transit Center and multiple regional and local bus lines along Sepulveda Boulevard and Jefferson Boulevard)

As described for the Culver City BPMP, Project implementation would not interfere with existing Ballona Creek Class I Bike Path/Multi-Use Path. Therefore, based on the proposed bicycle parking facilities, landscaping, open space, and sidewalk improvements, development of the Project would facilitate access to the Westfield Transit Center and multiple regional and local bus lines and support a regional network of active transportation facilities the Project would be consistent with the ATSP and impacts would be less than significant.

Conclusion

Based on the analysis above, with approval of the requested discretionary actions, the Project would not conflict with or impede implementation of applicable land use plans, policies, or regulations of
an agency with jurisdiction over the Project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, the impact would be less than significant.

Cumulative Impacts

Chapter 3, *Environmental Setting*, provides a list of projects that are planned or are under construction in the Project area, within an approximately 1.5-mile radius. These projects are summarized in Table 3-1, *Related Projects List*, and mapped on Figure 3-1, *Related Projects Map*. As shown, 27 related projects occur within an approximately 1.5-mile radius of the Project Site, including 21 in Culver City and 6 in the City of Los Angeles. The related projects reflect infill development within the larger, built out Culver City and adjacent City of Los Angeles area.

The proposed Project would redevelop the underutilized parcels that comprise the Project Site and would represent infill development on an already urbanized site within a corridor-focus Priority Growth Area and is located near the Westfield Transit Center and multiple regional and local bus lines. In addition, the Project includes the provision of bicycle and pedestrian amenities within an HQTA. The Project would be consistent with the General Plan land use and the proposed zoning designation of PD. The Project would also be consistent with other local and regional land use plans as discussed above.

Related projects are subject to CEQA review and review by City regulatory agencies. Most notably, related projects seeking increases in permitted densities or height are subject to review by the Culver City Planning Division Commission and other City departments and divisions for consistency with plan provisions and other City requirements. The related projects represent infill development and as such are consistent with local and regional policies to concentrate development near public transit and encourage alternative transportation. Based on this and based on the determination that the Project would be consistent with the adopted land use plans and zoning, cumulative impacts regarding consistency with the land use regulatory framework would be less than significant.

4.7.5 Mitigation Measures

The Project would result in less than significant impacts with respect to land use consistency with plans, policies, and regulations. Therefore, no mitigation measures are required.

4.7.6 Level of Significance after Mitigation

Not applicable. Project impacts are less than significant.
This page intentionally left blank
4.8 Noise

4.8.1 Introduction

This section analyzes potential noise and vibration impacts that would result from the Project. The analysis describes the existing noise environment in the vicinity of the Project Site, estimates future noise and vibration levels at surrounding land uses resulting from construction and operation of the Project, identifies the potential for significant impacts, and includes mitigation measures to address significant impacts. An evaluation of the Project’s contribution to potential cumulative noise impacts is also provided. Noise worksheets and technical data used in this analysis are provided in Appendix H, Noise Documentation, of this Draft EIR.

4.8.2 Environmental Setting

Noise and Vibration Basics

Noise

Sound can be described as the mechanical energy of a vibrating object transmitted by pressure waves through a liquid or gaseous medium (e.g., air). Noise is generally defined as unwanted sound (i.e., loud, unexpected, or annoying sound). Acoustics is defined as the physics of sound. In acoustics, the fundamental scientific model consists of a sound (or noise) source, a receiver, and the propagation path between the two. The loudness of the noise source and obstructions or atmospheric factors affecting the propagation path to the receiver determines the sound level and characteristics of the noise perceived by the receiver. Acoustics primarily addresses the propagation and control of sound.

Sound, traveling in the form of waves from a source, exerts a sound pressure level (referred to as sound level) that is measured in decibels (dB), which is the standard unit of sound amplitude measurement. The dB scale is a logarithmic scale that describes the physical intensity of the pressure vibrations that make up any sound, with 0 dB corresponding roughly to the threshold of human hearing and 120 to 140 dB corresponding to the threshold of feeling and pain, respectively. Pressure waves traveling through air exert a force registered by the human ear as sound.

Sound pressure fluctuations can be measured in units of hertz (Hz), which correspond to the frequency of a particular sound. Typically, sound does not consist of a single frequency, but rather a broad band of frequencies varying in levels of magnitude, with audible frequencies of the sound spectrum ranging from 20 to 20,000 Hz. The typical human ear is not equally sensitive to this frequency range. As a consequence, when assessing potential noise impacts, sound is measured using an electronic filter that deemphasizes the frequencies below 1,000 Hz and above 5,000 Hz in a manner corresponding to the human ear’s decreased sensitivity to these extremely low and extremely high frequencies. This method of frequency filtering or weighting is referred to as A-weighting, expressed in units of A-weighted decibels (dBA), which is typically applied to community noise measurements. Some representative common outdoor and indoor noise sources and their corresponding A-weighted noise levels are shown in Figure 4.8-1, Decibel Scale and Common Noise Sources.
<table>
<thead>
<tr>
<th>NOISE LEVEL (dBA, Leq)</th>
<th>COMMON INDOOR NOISE LEVELS</th>
<th>COMMON OUTDOOR NOISE LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Rock Band</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Inside Subway Train (New York)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Food Blender at 3 Ft.</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Garbage Disposal at 3 Ft.</td>
<td>Noisy Urban Daytime</td>
</tr>
<tr>
<td>70</td>
<td>Shouting at 3 Ft.</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Vacuum Cleaner at 10 Ft.</td>
<td>Gas Lawn Mower at 100 Ft.</td>
</tr>
<tr>
<td>50</td>
<td>Large Business Office</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Dishwasher Next Room</td>
<td>Quiet Urban Daytime</td>
</tr>
<tr>
<td>30</td>
<td>Small Theater, Large Conference Room (Background) Library</td>
<td>Quiet Urban Nighttime</td>
</tr>
<tr>
<td>20</td>
<td>Concert Hall (Background)</td>
<td>Quiet Suburban Nighttime</td>
</tr>
<tr>
<td>10</td>
<td>Broadcast and Recording Studio</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Threshold of Hearing</td>
<td></td>
</tr>
</tbody>
</table>

COMMON INDOOR NOISE LEVELS
- Rock Band
- Inside Subway Train (New York)
- Food Blender at 3 Ft.
- Garbage Disposal at 3 Ft.
- Shouting at 3 Ft.
- Vacuum Cleaner at 10 Ft.
- Large Business Office
- Dishwasher Next Room
- Small Theater, Large Conference Room (Background) Library
- Concert Hall (Background)
- Broadcast and Recording Studio
- Threshold of Hearing

COMMON OUTDOOR NOISE LEVELS
- Jet Flyover at 1000 Ft.
- Gas Lawn Mower at 3 Ft.
- Diesel Truck at 50 Ft.
- Noisy Urban Daytime
- Gas Lawn Mower at 100 Ft.
- Commercial Area Heavy Traffic at 300 Ft.
- Quiet Urban Daytime
- Quiet Urban Nighttime
- Quiet Suburban Nighttime
- Quiet Rural Nighttime

Figure 4.8-1
Decibel Scale and Common Noise Sources
4. Environmental Impacts Analysis

4.8 Noise

Noise Exposure and Community Noise

An individual’s noise exposure is a measure of noise over a period of time; a noise level is a measure of noise at a given instant in time, as presented in Figure 4.8-1. However, noise levels rarely persist at that level over a long period of time. Rather, community noise varies continuously over a period of time with respect to the sound sources contributing to the community noise environment. Community noise is primarily the product of many distant noise sources, which constitute a relatively stable background noise exposure, with many of the individual contributors unidentifiable. The background noise level changes throughout a typical day, but does so gradually, corresponding with the addition and subtraction of distant noise sources, such as changes in traffic volume. What makes community noise variable throughout a day, besides the slowly changing background noise, is the addition of short-duration, single-event noise sources (e.g., aircraft flyovers, motor vehicles, sirens), which are readily identifiable to the individual.

These successive additions of sound to the community noise environment change the community noise level from instant to instant, requiring the noise exposure to be measured over periods of time to legitimately characterize a community noise environment and evaluate cumulative noise impacts. The following noise descriptors are used to characterize environmental noise levels over time, which are applicable to the Project:

- **L_{eq}**: The equivalent sound level over a specified period of time, typically, 1 hour ($L_{eq}(1)$). The L_{eq} may also be referred to as the average sound level.
- **L_{max}**: The maximum, instantaneous noise level experienced during a given period of time.
- **L_{min}**: The minimum, instantaneous noise level experienced during a given period of time.
- **L_{x}**: The noise level exceeded a percentage of a specified time period. For instance, L_{50} and L_{90} represent the noise levels that are exceeded 50 percent and 90 percent of the time, respectively.
- **L_{dn}**: The average A-weighted noise level during a 24-hour day, obtained after an addition of 10 dB to measured noise levels between the hours of 10:00 P.M. to 7:00 A.M. to account nighttime noise sensitivity. The L_{dn} is also termed the day-night average noise level (DNL).
- **CNEL**: The Community Noise Equivalent Level (CNEL) is the average A-weighted noise level during a 24-hour day that includes an addition of 5 dB to measured noise levels between the hours of 7:00 P.M. to 10:00 P.M. and an addition of 10 dB to noise levels between the hours of 10:00 P.M. to 7:00 A.M. to account for noise sensitivity in the evening and nighttime, respectively.

Effects of Noise on People

Noise is generally loud, unpleasant, unexpected, or undesired sound that is typically associated with human activity that is a nuisance or disruptive. The effects of noise on people can be placed into four general categories:

- Subjective effects (e.g., dissatisfaction, annoyance)
- Interference effects (e.g., communication, sleep, and learning interference)
4. Environmental Impacts Analysis

4.8 Noise

- Physiological effects (e.g., startle response)
- Physical effects (e.g., hearing loss)

Although exposure to high noise levels has been demonstrated to cause physical and physiological effects, the principal human responses to typical environmental noise exposure are related to subjective effects and interference with activities. Interference effects interrupt daily activities and include interference with human communication activities, such as normal conversations, watching television, telephone conversations, and interference with sleep. Sleep interference effects can include both awakening and arousal to a lesser state of sleep.¹

With regard to the subjective effects, the responses of individuals to similar noise events are diverse and influenced by many factors, including the type of noise, the perceived importance of the noise, the appropriateness of the noise to the setting, the duration of the noise, the time of day and the type of activity during which the noise occurs, and individual noise sensitivity. Overall, there is no completely satisfactory way to measure the subjective effects of noise or the corresponding reactions of annoyance and dissatisfaction on people. A wide variation in individual thresholds of annoyance exists, and different tolerances to noise tend to develop based on an individual’s past experiences with noise. Thus, an important way of predicting a human reaction to a new noise environment is the way it compares to the existing environment to which one has adapted (i.e., ambient noise environment). In general, the more a new noise level exceeds the previously existing ambient noise level, the less acceptable the new noise level will be judged by those hearing it. With regard to increases in A-weighted noise level, the following relationships generally occur:²

- Except in carefully controlled laboratory experiments, a change of 1 dBA in ambient noise levels cannot be perceived.
- Outside of the laboratory, a 3 dBA change in ambient noise levels is considered to be a barely perceivable difference.
- A change in ambient noise levels of 5 dBA is considered to be a readily perceivable difference.
- A change in ambient noise levels of 10 dBA is subjectively heard as doubling of the perceived loudness.

These relationships occur in part because of the logarithmic nature of sound and the decibel scale. The human ear perceives sound in a non-linear fashion; therefore, the dBA scale was developed. Because the dBA scale is based on logarithms, two noise sources do not combine in a simple additive fashion, but rather logarithmically. Under the dBA scale, a doubling of sound energy corresponds to a 3 dBA increase. In other words, when two sources are each producing sound of the same loudness, the resulting sound level at a given distance would be approximately 3 dBA higher than one of the sources under the same conditions. For example, if two identical noise sources produce noise levels of 50 dBA, the combined sound level would be 53 dBA, not 100 dBA. Under the dBA scale, three sources of equal loudness together produce a sound level of

¹ California Department of Transportation (Caltrans), Technical Noise Supplement (TeNS), September 2013, Section 2.2.1.
² Caltrans, TeNS, Section 2.2.1.
Environmental Impacts Analysis

4.8 Noise

approximately 5 dBA louder than one source, and ten sources of equal loudness together produce a sound level of approximately 10 dBA louder than the single source.³

Noise Attenuation

When noise propagates over a distance, the noise level reduces with distance depending on the type of noise source and the propagation path. Noise from a localized source (i.e., point source) propagates uniformly outward in a spherical pattern, referred to as “spherical spreading.” Stationary point sources of noise, including stationary mobile sources such as idling vehicles, attenuate (i.e., reduce) at a rate of between 6 dBA for acoustically “hard” sites and 7.5 dBA for “soft” sites for each doubling of distance from the reference measurement, as their energy is continuously spread out over a spherical surface (e.g., for hard surfaces, 80 dBA at 50 feet attenuates to 74 at 100 feet, 68 dBA at 200 feet, etc.). Hard sites are those with a reflective surface between the source and the receiver, such as asphalt or concrete surfaces or smooth bodies of water. No excess ground attenuation is assumed for hard sites and the reduction in noise levels with distance (i.e., distance loss) is simply the geometric spreading of the noise from the source. Soft sites have an absorptive ground surface, such as soft dirt, grass, or scattered bushes and trees, which in addition to geometric spreading, provides an excess ground attenuation value of 1.5 dBA (per doubling distance).⁴ Most sites are a combination of both hard and soft surfaces; therefore, using the hard site criteria of 6 dBA is the more conservative approach.

Roadways and highways consist of several localized noise sources on a defined path, and hence are treated as “line” sources, which approximate the effect of several point sources. Noise from a line source propagates over a cylindrical surface, often referred to as “cylindrical spreading.” Line sources (e.g., traffic noise from vehicles) attenuate at a rate between 3 dBA for hard sites and 4.5 dBA for soft sites for each doubling of distance from the reference measurement.⁵ Therefore, noise due to a line source attenuates less with distance than that of a point source with increased distance.

Additionally, receptors located downwind from a noise source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Atmospheric temperature inversion (i.e., increasing temperature with elevation) can increase sound levels at long distances (e.g., more than 500 feet). Other factors such as air temperature, humidity, and turbulence can also have significant effects on noise levels.⁶

Vibration

Vibration can be interpreted as energy transmitted in waves through the ground or man-made structures, which generally dissipate with distance from the vibration source. Because energy is lost during the transfer of energy from one particle to another, vibration becomes less perceptible with increasing distance from the source.

³ Caltrans, TeNS, Section 2.2.1.1.
⁴ Caltrans, TeNS, Section 2.1.4.2.
⁵ Caltrans, TeNS, Section 2.1.4.1.
⁶ Caltrans, TeNS, Section 2.1.4.3.
As described in the Federal Transit Administration’s (FTA) *Transit Noise and Vibration Impact Assessment*, groundborne vibration can be a serious concern for nearby neighbors of a transit system route or maintenance facility, causing buildings to shake and rumbling sounds to be heard.\(^7\) In contrast to airborne noise, groundborne vibration is not a common environmental problem, as it is unusual for vibration from sources such as buses and trucks to be perceptible, even in locations close to major roads. Some common sources of groundborne vibration are trains, heavy trucks traveling on rough roads, and construction activities, such as blasting, pile-driving, and operation of heavy earth-moving equipment.

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal in inches per second (in/sec), and is most frequently used to describe vibration impacts to buildings. The root mean square (RMS) amplitude is defined as the average of the squared amplitude of the signal and is most frequently used to describe the effect of vibration on the human body. Decibel notation (VdB) is commonly used to measure RMS. The relationship of PPV to RMS velocity is expressed in terms of the “crest factor,” defined as the ratio of the PPV amplitude to the RMS amplitude. PPV is typically a factor of 1.7 to 6 times greater than RMS vibration velocity.\(^8\) The decibel notation VdB acts to compress the range of numbers required to describe vibration. Typically, groundborne vibration generated by man-made activities attenuates rapidly with distance from the source of the vibration. Sensitive receptors for vibration include buildings where vibration would interfere with operations within the building or cause damage (especially historic buildings and older non-engineered timber and masonry structures), locations where people sleep, and locations with vibration sensitive equipment.\(^9\)

The effects of groundborne vibration include movement of the building floors, rattling of windows, shaking of items on shelves or hanging on walls, and rumbling sounds. In extreme cases, vibration can cause damage to buildings. Building damage is not a factor for most projects, with the occasional exception of blasting and pile-driving during construction. Annoyance from vibration often occurs when the vibration levels exceed the threshold of perception by only a small margin. A vibration level that causes annoyance will be well below the damage threshold for normal buildings.

Existing Conditions

Noise-Sensitive Receptor Locations

Some land uses are considered more sensitive to noise than others due to the amount of noise exposure and the types of activities typically involved at the receptor location. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, nursing homes, and parks are generally more sensitive to noise than commercial and industrial land uses. Existing noise sensitive uses within 500 feet of the Project Site include the following:

4. Environmental Impacts Analysis

4.8 Noise

- North (Residential): Single-family residential uses within the Heritage Park neighborhood located approximately 80 to 120 feet to the north of the Project Site across Machado Road.
- North (School): The private K-12 school, Exceptional Children’s Foundation (ECF) Kayne Eras Center, is located approximately 80 feet to the north of the Project Site across Machado Road.
- West and Southwest (Residential): Single-family residential uses within the Sunkist Park neighborhood and multi-family residential uses at the Studio Village Townhomes are located approximately 300 feet to the southwest and approximately 180 feet to the west of the Project Site, respectively, across Sepulveda Boulevard.
- West and Southwest (School, Temple, and Motel): Temple Akiba (which includes a childhood center, temple sanctuary, and other classrooms) is located approximately 100 feet to the west of the Project Site across Sepulveda Boulevard. The Circle K Motel is located approximately 100 feet to the southwest of the Project Site across Sepulveda Boulevard.

All other noise-sensitive uses are located at greater distances from the Project Site (i.e., greater than 500 feet away) and would experience lower noise levels associated with the Project. Therefore, additional sensitive receptors beyond those identified above are not evaluated.

Ambient Noise Levels

The existing noise environment at the Project Site is comprised primarily of vehicle traffic including trucks, buses, etc. on Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Secondary noise sources include nearby commercial and residential activities. To quantify the existing noise environment, short-term (15-minute) measurements were conducted at nine locations, identified as R1 through R9 in **Figure 4.8.2, Noise Measurement Locations**. A 15-minute measurement is a reasonable duration for sampling ambient noise levels where street traffic is the dominant source, as traffic noise generally does not vary significantly within an hour. Ambient sound measurements were conducted on Tuesday, October 13, 2020, to characterize the existing noise environment in the Project vicinity.

- Measurement Location R1 represents the noise environment of the Project Site and ECF.
- Measurement Location R2 represents the noise environment of the Project Site and ECF.
- Measurement Locations R3 and R4 represent the noise environment of the single-family residential uses north of Machado Road (Heritage Park Neighborhood).
- Measurement Location R5 represents the noise environment of multi-family residential uses to the west of Sepulveda Boulevard (Studio Village Town Homes).
- Measurement Location R6 represents the noise environment of the Temple Akiba.
- Measurement Location R7 represents the noise environment of the Circle K Motel.
- Measurement Location R8 represents the noise environment of the single-family residential uses located to the southwest of the Temple Akiba (Sunkist Park Neighborhood).
- Measurement Location R9 represents the noise environment of the single-family residential uses located at the intersection of Ballona Lane and Lantana Lane (Heritage Park Neighborhood).
Figure 4.8-2
Noise Measurement Locations
Noise measurements were conducted using Larson-Davis LxT1 Sound Level Meters (SLM). The Larson-Davis LxT1 SLM is a Type 1 standard instrument as defined in the American National Standard Institute (ANSI) S1.4. All instruments were calibrated and operated according to the applicable manufacturer specification. The recording microphones were placed at a height of 5 feet above the local grade elevation. The sound level meters were setup to collect the hourly average noise level (L_{eq}).

It should be noted that ambient noise measurements were taken during the COVID-19 pandemic. Due to ongoing restrictions on non-essential uses, traffic volumes under pandemic conditions are lower when compared to pre-pandemic conditions. The noise analysis herein determines significance based on the Project’s potential to generate temporary or long term noise levels that would exceed or increase noise above ambient conditions. Therefore, ambient noise levels capturing lower pandemic-era traffic conditions provide a conservative analysis, as use of these noise levels reflect a greater incremental increase in noise over baseline ambient conditions with the Project than would occur if baseline noise levels reflected higher pre-pandemic traffic conditions.

The results of the ambient sound measurements are summarized in Table 4.8-1, Summary of Ambient Noise Measurements. As shown therein, the measure noise levels ranged from 49.9 dBA L_{eq} at R9 to 74.8 dBA L_{eq} at R7.

<table>
<thead>
<tr>
<th>Location</th>
<th>Measured Ambient Noise Levels, dBA L_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>65.4</td>
</tr>
<tr>
<td>R2</td>
<td>64.9</td>
</tr>
<tr>
<td>R3</td>
<td>64.3</td>
</tr>
<tr>
<td>R4</td>
<td>69.6</td>
</tr>
<tr>
<td>R5</td>
<td>65.1</td>
</tr>
<tr>
<td>R6</td>
<td>65.2</td>
</tr>
<tr>
<td>R7</td>
<td>74.8</td>
</tr>
<tr>
<td>R8</td>
<td>55.8</td>
</tr>
<tr>
<td>R9</td>
<td>49.9</td>
</tr>
</tbody>
</table>

Table 4.8-1

Summary of Ambient Noise Measurements

Existing Roadway Noise Levels

To further characterize the Project area’s ambient noise environment, CNEL noise levels attributed to existing traffic on local roadways were calculated using a traffic noise prediction model, which was developed based on calculation methodologies provided in the Federal Highway...
The traffic noise model which was developed based on calculation methodologies provided in the Caltrans TeNS document and traffic data provided in the Project’s Transportation Assessment provided in Appendix J to this Draft EIR. This methodology, considered an industry standard, allows for the definition of roadway configurations, barrier information (if any), and receiver locations.

Vibration-Sensitive Receptor Locations

Typically, groundborne vibration generated by man-made activities (i.e., rail and roadway traffic, operation of mechanical equipment, and typical construction equipment) diminishes rapidly with distance from the vibration source. Construction activities, such as impact pile driving, would have the greatest effect on vibration sensitive land uses in the Project vicinity. Energy is lost during the transfer of energy from one particle to another and as a result, vibration becomes less perceptible with increasing distance from the source. Therefore, with respect to potential structural damage, structures in close proximity (adjacent) to the Project Site are considered more vibration sensitive. Structures located nearest to the Project Site that are considered sensitive receptors with regard to structural damage from vibration include residential uses to the north, Temple Akiba, the Circle K Motel, and the American Legion Post 46 office to the west.

With respect to human annoyance, sensitive land uses include buildings where vibration-sensitive equipment is used (e.g., hospitals, research, and manufacturing), as well as residential land uses and buildings where people normally sleep, and land uses where a quiet environment is an important aspect of operation, such as schools and churches. Generally, industrial or commercial (including office) uses are not considered vibration-sensitive. Sensitive receptors potentially subject to human annoyance due to vibration in the Project vicinity include the residential uses and ECF to the north, residential uses, Temple Akiba, and Circle K Motel to the west.

Table 6-1:

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Adjacent Land Use</th>
<th>Existing CNEL (dBA) 30 feet from Roadway Centerline<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.7</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.0</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>71.9</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>73.8</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.6</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>74.8</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>72.5</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>67.5</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>63.8</td>
</tr>
</tbody>
</table>

^a Calculated based on existing traffic volumes.

4.8.3 Regulatory Framework

Many government agencies have established noise standards and guidelines to protect citizens from potential hearing damage and various other adverse physiological and social effects associated with noise and groundborne vibration. Federal and local policies and/or standards such as those of the FTA, U.S. Environmental Protection Agency (USEPA), and regulations in the City of Culver City General Plan Noise Element, and the Culver City Municipal Code (CCMC) would be applicable to the Project, as summarized below.

Federal

Federal Noise and Vibration Standards

There are no federal noise standards that directly regulate environmental noise related to the construction or operation of the Project.

Under the Occupational Safety and Health Act of 1970 (29 U.S.C. Section 1919 et seq.), the Occupational Safety and Health Administration (OSHA) has adopted regulations designed to protect workers against the effects of occupational noise exposure. These regulations list permissible noise level exposure as a function of the amount of time during which the worker is exposed. The regulations further specify a hearing conservation program that involves monitoring the noise to which workers are exposed, ensuring that workers are made aware of overexposure to noise, and periodically testing the workers’ hearing to detect any degradation.

There are no federal vibration standards or regulations adopted by any agency that are applicable to evaluating vibration impacts from land use development projects such as the Project. However, FTA has adopted vibration criteria that are commonly used to evaluate potential structural damage to buildings by building category from construction activities. The vibration damage criteria adopted by FTA are shown in Table 4.8-3, Construction Vibration Damage Criteria.

<table>
<thead>
<tr>
<th>Building Category</th>
<th>PPV (in/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Reinforced-concrete, steel, or timber (no plaster)</td>
<td>0.5</td>
</tr>
<tr>
<td>II. Engineered concrete and masonry (no plaster)</td>
<td>0.3</td>
</tr>
<tr>
<td>III. Non-engineered timber and masonry buildings</td>
<td>0.2</td>
</tr>
<tr>
<td>IV. Buildings extremely susceptible to vibration damage (such as historic buildings)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

FTA has also adopted vibration criteria associated with the potential for human annoyance from groundborne vibration for the following three land-use categories: Category 1 – High Sensitivity, Category 2 – Residential, and Category 3 – Institutional, as shown in Table 4.8-4, Groundborne Vibration Impact Criteria for General Assessment. FTA defines Category 1 as buildings where vibration would interfere with operations within the building, including vibration-sensitive research.
and manufacturing facilities, hospitals with vibration-sensitive equipment, and university research operations. Vibration-sensitive equipment includes, but is not limited to, electron microscopes, high-resolution lithographic equipment, and normal optical microscopes. Category 2 refers to all residential land uses and any buildings where people sleep, such as hotels and hospitals. Category 3 refers to institutional land uses such as schools, churches, other institutions, and quiet offices that do not have vibration-sensitive equipment but still have the potential for activity interference.

Table 4.8-4
GROUNDBORNE VIBRATION IMPACT CRITERIA FOR GENERAL ASSESSMENT

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Frequent Events a</th>
<th>Occasional Events b</th>
<th>Infrequent Events c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1: Buildings where vibration would interfere with interior operations.</td>
<td>65 VdB d</td>
<td>65 VdB d</td>
<td>65 VdB d</td>
</tr>
<tr>
<td>Category 2: Residences and buildings where people normally sleep.</td>
<td>72 VdB</td>
<td>75 VdB</td>
<td>80 VdB</td>
</tr>
<tr>
<td>Category 3: Institutional land uses with primarily daytime use.</td>
<td>75 VdB</td>
<td>78 VdB</td>
<td>83 VdB</td>
</tr>
</tbody>
</table>

a “Frequent Events” is defined as more than 70 vibration events of the same source per day.
b “Occasional Events” is defined as between 30 and 70 vibration events of the same source per day.
c “Infrequent Events” is defined as fewer than 30 vibration events of the same kind per day.
d This criterion is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes.

State

California Noise Standards

The State of California does not have standards for environmental noise, but the Governor’s Office of Planning and Research (OPR) has established general plan guidelines for evaluating the compatibility of various land uses as a function of community noise exposure, as presented in Figure 4.8-3, Guideline for Noise Compatible Land Use. The purpose of these guidelines is to maintain acceptable noise levels in a community setting for different land use types. Noise compatibility by different land uses types is categorized into four general levels: “normally acceptable,” “conditionally acceptable,” “normally unacceptable,” and “clearly unacceptable.” For instance, a noise environment ranging from 50 dBA CNEL to 65 dBA CNEL is considered to be “normally acceptable” for multi-family residential uses, while a noise environment of 75 dBA CNEL or above for multi-family residential uses is considered to be “clearly unacceptable.”

Land Use Category

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Noise Exposure (L_{dn} or CNEL, dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential – Low Density Single-Family, Duplex, Mobile Home</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Residential – Multiple Family</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Transient Lodging – Motel, Hotel</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>School, Library, Church, Hospital, Nursing Home</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Auditorium, Concert Hall, Amphitheater</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Sports Arena, Outdoor Spectator Sports</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Playground, Neighborhood Park</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Golf Course, Riding Stable, Water Recreation, Cemetery</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Office Building, Business Commercial and Professional</td>
<td>![Table Image]</td>
</tr>
<tr>
<td>Industrial, Manufacturing, Utilities, Agriculture</td>
<td>![Table Image]</td>
</tr>
</tbody>
</table>

- **NORMALLY ACCEPTABLE**: Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.
- **CONDITIONALLY ACCEPTABLE**: New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design.
- **NORMALLY UNACCEPTABLE**: New construction or development should be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirement must be made and needed noise insulation features included in the design.
- **CLEARLY UNACCEPTABLE**: New construction or development should generally not be undertaken. Construction costs to make the indoor environmental acceptable would be prohibitive and the outdoor environment would not be usable.

SOURCE: State of California, General Plan Guidelines, Governor’s Office of Planning and Research, 2003
In addition, California Government Code Section 65302(f) requires each county and city in the State to prepare and adopt a comprehensive long-range general plan for its physical development, with California Government Code Section 65302(f) requiring a noise element to be included in the general plan. The noise element must: (1) identify and appraise noise problems in the community; (2) recognize Office of Noise Control guidelines; and (3) analyze and quantify current and projected noise levels.

The State of California has also established noise insulation standards for new multi-family residential units, hotels, and motels that would be subject to relatively high levels of transportation-related noise. These requirements are collectively known as the California Noise Insulation Standards (Title 24, California Code of Regulations). The noise insulation standards set forth an interior standard of 45 dBA CNEL in any habitable room. They require an acoustical analysis demonstrating how dwelling units have been designed to meet this interior standard where such units are proposed in areas subject to exterior noise levels greater than 60 dBA CNEL. Title 24 standards are typically enforced by local jurisdictions through the building permit application process.

California Vibration Standards

The State of California has not adopted statewide standards or regulations for evaluating vibration or groundborne noise impacts from land use development projects such as the Project.

Local

City of Culver City General Plan Noise Element

The City of Culver City Noise Standards are developed from those of several federal and State agencies including the FHWA, the USEPA, the Department of Housing and Urban Development, the American National Standards Institute, and the State of California Department of Health Services. These standards set limits on the noise exposure level for various land uses. **Table 4.8-5, City of Culver City Exterior Noise Standards**, lists exterior noise level standards and the type of occupancy to which they should be applied. As with the California Noise Standards described above, these General Plan standards are related to the siting of land uses and are not typically used as thresholds of significance for determining noise impacts associated with construction and operation of the Project. However, the standards do provide a means for judging whether an existing noise environment would be compatible with development of a new noise-sensitive land use or whether a new use would create an incompatible noise environment for existing noise-sensitive uses.

<table>
<thead>
<tr>
<th>Zone</th>
<th>dBA CNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>65</td>
</tr>
<tr>
<td>Commercial a</td>
<td>65</td>
</tr>
</tbody>
</table>

*This applies to Hotel, Motel, Transient Lodging, and not to other commercial uses such as retail.

SOURCE: City of Culver City, General Plan, Noise Element, 1996.
Policy 2.A Create a comprehensive ordinance establishing noise regulation criteria, and standards for noise sources and receptors to include but not be limited to the following:

- Noise reduction features during site planning to mitigate anticipated noise impacts on affected noise sensitive land uses, such as schools, hospitals, convalescent homes, and libraries.
- Temporary sound barrier installation at construction site if construction noise is impacting nearby noise sensitive land uses.
- Noise abatement and acoustical design criteria for construction and operation of any new development.

City of Culver City General Plan Update

The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The current General Plan update is the first time all of the elements are to be updated at one time. The process was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022.\(^\text{14}\)

City of Culver City Municipal Code

Chapter 9.07 of the City of Culver City Municipal Code (CCMC) provides specific noise restrictions and exemptions for noise sources within the City. CCMC noise regulations state that construction activity shall be prohibited, except between the hours of 8:00 A.M. and 8:00 P.M. Mondays through Fridays; 9:00 A.M. and 7:00 P.M. Saturdays; 10:00 A.M. and 7:00 P.M. Sundays. There are no established noise limits for noise associated with construction activity when construction occurs within the permitted hours. It is prohibited for any person to operate any radio, disc player or cassette player or similar device at a construction site in a manner that results in noise levels that are audible beyond the construction site property line.

Section 9.07.055(B) of the CCMC prohibits the operation of a loud speaker or sound amplifying equipment for the purposes of transmitting messages, giving instructions, or providing entertainment on an on-going basis which is audible at the subject property line. This section is applicable only to uses that would include regular and on-going amplification, such as outdoor speakers used for a drive-through restaurant.

4.8.4 Environmental Impacts

Methodology

The methodology for evaluating construction and operational noise and vibration is discussed below and the calculation assumptions and results are also provided in Appendix H of this Draft EIR.

On-Site Construction Noise

On-site construction noise impacts were evaluated by determining the noise levels generated by the different types of construction activity anticipated, calculating the construction-related noise level at nearby sensitive receptor locations, and comparing these construction-related noise levels to existing ambient noise levels (i.e., noise levels without construction noise) at those receptors. The types of construction equipment used, construction phasing, and construction schedule were provided by the Project’s construction representative. As indicated by the construction equipment list, no pile driving or vibratory pile installation would be used for Project construction.

Over the course of a construction day, the highest noise levels would be generated when multiple pieces of construction equipment are being operated concurrently. The Project’s estimated construction noise levels were calculated for a scenario in which all pieces of construction equipment would operate simultaneously with the two loudest types of equipment located at the construction area nearest to the affected receptors to present a conservative impact analysis. As previously stated, the ambient noise measurements were taken during the COVID-19 pandemic, which resulted in the ambient noise levels capturing lower pandemic-era traffic conditions to provide a conservative analysis, as use of these noise levels reflect a greater incremental increase in noise over baseline ambient conditions with the Project than would occur if baseline noise levels reflected higher pre-pandemic traffic conditions. The remaining equipment was assumed to be located at the center of the Project Site. Noise reduction provided by existing barriers/walls such as those bounding Heritage Park are also not accounted for to ensure a conservative analysis. The following steps were undertaken to assess construction-period noise impacts.

1. Ambient noise levels at surrounding sensitive receptor locations were estimated based on field measurement data (see Table 4.8-1);
2. Typical noise levels for each type of construction equipment were obtained from the Federal Highway Administration Roadway Construction Noise Model (RCNM);
3. Distances between construction site locations (noise sources) and surrounding sensitive receptors were measured using Project architectural drawings and site plans and Google Earth;
4. The construction noise level was then calculated, in terms of hourly L_{eq}, for sensitive receptor locations based on the standard point source noise-distance attenuation factor of 6.0 dBA for each doubling of distance; and
5. Construction noise levels were then compared to the construction noise significance thresholds identified below.

Off-Site Roadway Noise (Construction and Operation)

Roadway noise impacts have been evaluated using the Caltrans Technical Noise Supplement (TeNS) method based on the roadway traffic volume data provided in the Transportation Study prepared for the Project and included in Appendix J of this Draft EIR. This method allows for the definition of roadway configurations, barrier information (if any), and receiver locations. Roadway noise attributable to Project development was calculated and compared to baseline noise levels that would occur under the “Without Project” condition.
Stationary Point-Source Noise (Operations)

Stationary point-source noise impacts were evaluated by identifying the noise levels generated by outdoor stationary noise sources, such as rooftop mechanical equipment, parking structure, and loading area activity, calculating the hourly L_{eq} noise level from each noise source (incorporating individual usage factor for each equipment) at sensitive receptor property lines, and comparing such noise levels to existing ambient noise levels. More specifically, the following steps were undertaken to calculate outdoor stationary point-source noise impacts:

1. Ambient noise levels at surrounding sensitive receptor locations were estimated based on field measurement data (see Table 4.8-1);
2. Distances between stationary noise sources and surrounding sensitive receptor locations were measured using Project architectural drawings, Google Earth, and site plans;
3. Stationary-source noise levels were then calculated for each sensitive receptor location based on the standard point source noise-distance attenuation factor of 6.0 dBA for each doubling of distance;
4. Noise level increases were compared to the stationary source noise significance thresholds identified below; and
5. For outdoor mechanical equipment, the maximum allowable noise emissions from any and all outdoor mechanical equipment were specified such that noise levels would not exceed the significance threshold identified below.

For purposes of providing a conservative noise analysis for outdoor spaces, it has been assumed that up to 200 people could occupy each outdoor space (Machado Park, Paseo Courtyard, Entry Courtyard, and the third floor residential amenity space) at a time. Simultaneous occupation of the outdoor spaces with this number of people is not anticipated by the Project.

Noise from female adults, male adults, and children talking at a raised level is approximately 63 dBA, 65 dBA, and 65 dBA, respectively, at a distance of 3 feet. As a conservative analysis, it is assumed that each outdoor space would be at full capacity and that half of the visitors would be adults (half male and half female) and half would be children. Of the adults and children, half would be talking simultaneously (assuming approximately half of the occupants talking and the other half listening). One proposed outdoor space, Machado Park, could include a children’s play area. As a conservative assumption, all of the children at Machado Park have been assumed to be talking at the same time. It is assumed that all outdoor spaces except for Machado Park could include amplified sound (i.e. background music) with speakers operating on a regular basis and at a maximum volume of 75 dBA at 25 feet from the speaker. Section 9.07.055(B) of the CCMC prohibits the operation of a loud speaker or sound amplifying equipment for the purposes of transmitting messages, giving instructions, or providing entertainment on an on-going basis which is audible at the subject property line and would only apply to the Entry Courtyard, Paseo Courtyard, and the third floor residential amenity space as those areas would include speakers for ambient music. Machado Park would not include a permanent amplified sound system that would...

be operational on a regular basis; however, the potential for occasional use of a temporary sound amplified system at Machado Park with up to 200 people is analyzed.

Parking-related noise levels were estimated using the methodology recommended by FTA for the general assessment of stationary transit noise source. Using the methodology, the Project’s peak hourly noise level that would be generated by the onsite parking levels was estimated using the following FTA equation for a parking lot:

\[
L_{eq}(h) = SEL_{ref} + 10\log(NA/1000) - 35.6
\]

where

- \(L_{eq}(h)\) = hourly \(L_{eq}\) noise level at 50 feet
- \(SEL_{ref}\) = reference noise level for stationary noise source represented in sound exposure level (SEL) at 50 feet
- \(NA\) = number of automobiles per hour

The Project’s loading dock is located on the north side of the Project along Machado Road and would be enclosed by a concrete roof, concrete wall, and dock doors. However, while trucks maneuver into the loading dock area, trucks would not be fully screened. Therefore, loading dock noise levels were estimated. Based on a noise survey that was conducted at a loading dock and trash collection facilities by ESA, loading dock activity (namely idling semi-trucks and backup alarm beeps) could generate noise levels of approximately 70 dBA \(L_{eq}\) at a reference distance of 50 feet.\(^{16}\)

Groundborne Vibration (Construction and Operations)

Groundborne vibration impacts due to the Project’s construction activities were evaluated by identifying potential vibration sources (i.e., construction equipment), estimating the vibration levels at the potentially affected receptor, and comparing the Project’s activities to the applicable vibration significance thresholds. Vibration levels were calculated based on the FTA published standard vibration velocities for various construction equipment operations.\(^{17}\) The vibration velocities were calculated based on a point source with standard distance propagation conditions, pursuant to FTA procedures. Construction of the Project would not use impact pile driving methods, and as such, impact pile driving vibration is not included in the construction vibration analysis.

\(^{16}\) The loading dock facility noise measurements were conducted at a loading dock facility at a Wal-Mart store using the Larson-Davis 820 Precision Integrated Sound Level Meter (“SLM”) in May 2003. The Larson-Davis 820 SLM is a Type 1 standard instrument as defined in the American National Standard Institute S1.4. All instruments were calibrated and operated according to the applicable manufacturer specification. The microphone was placed at a height of approximately 5 feet above the local grade.

Thresholds of Significance

The significance thresholds below are derived from the Environmental Checklist questions in Appendix G of the CEQA Guidelines. Accordingly, a significant noise or vibration impact would occur if the Project would result in:

- **NOISE-1:** Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- **NOISE-2:** Generation of excessive groundborne vibration or groundborne noise levels; or
- **NOISE-3:** For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

The City determined in the Initial Study that noise issues due to airport proximity would result in no impacts or less-than-significant impacts and, therefore, this issue is scoped out of this Draft EIR. Please refer to Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue:

- **NOISE-3:** For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

As discussed in the Initial Study, the Project Site is not located within the vicinity of a private airstrip, heliport, or helistop or within an airport land use plan or within two miles of a public or private airport. The nearest airports are the Santa Monica Municipal Airport and the Los Angeles International Airport (LAX), located approximately 3.15 miles northwest and 3.5 miles south of the Project Site, respectively. Therefore, the Project would not expose people to excessive noise levels from such uses and no impact would occur. No further analysis of this issue is therefore included in this Draft EIR.

Based on the regulatory framework described above, significant impacts would occur if any of the following criteria are met.

- Project construction activities occur between the hours of 8:00 P.M. and 8:00 A.M. Monday through Friday; 7:00 P.M. and 9:00 A.M. on Saturdays; 7:00 P.M. and 10:00 A.M. on Sundays.
- Project construction activities would not incorporate noise reduction techniques as specified in the City’s General Plan Policy 2.A of the Noise Element.
- Project construction activities would result in noise levels 5 dBA L_{eq} greater than measured ambient noise levels (see Table 4.8-1) at noise-sensitive receptors.
- The Project-related operations would cause ambient noise levels to increase by 5 dBA L_{eq} or more.
- The Project-related operation of the loading dock, or refuse collection area exceeds the average ambient noise level by 10 dBA.
• Potential Building Damage – Project construction activities cause groundborne vibration levels to exceed 0.2 inch-per-second PPV at the nearest residential and school buildings.

• Potential Human Annoyance – Project construction activities cause groundborne vibration levels to exceed 80 VdB at nearby residential uses or 83 VdB at nearby school uses.

Project Characteristics and Project Design

Project Characteristics

The Project would demolish the existing uses on the Project Site. As previously stated under Methodology, the types of construction equipment used, construction phasing, and construction schedule were provided by the Project’s construction representative. As indicated by the construction equipment list, no pile driving or vibratory pile installation would be used for Project construction. Pursuant to the CCMC, Project construction activities must occur between the hours of 8:00 AM and 8:00 PM Monday through Friday; 9:00 AM and 7:00 PM Saturdays; and 10:00 AM and 7:00 PM Sundays.

The Project would construct residential dwelling units (affordable and market rate), ground floor commercial areas, including a market, restaurants and café, retail spaces, and a gym; and second floor office uses within a five story building. The building would be constructed atop one level of subterranean vehicular parking, with parking also provided on the first and second floor of the building. The Project would also include private and publicly accessible open space including: a park open to the public at the corner of Machado Road and Sepulveda Boulevard (Machado Park), a public paseo area with an interior courtyard adjacent to the ground floor retail uses at the intersection of Sepulveda Boulevard and Jefferson Boulevard (Paseo Courtyard), a courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue (Entry Courtyard), and an internal, open air courtyard with amenities located at the third level of the development to serve the residential units on the third through fifth levels.

Access for trucks and deliveries would be off of Machado Road where they would access a loading dock within the Project Site via the northeastern-most retail entrance. The loading dock would be screened from Machado Road by a concrete wall and enclosed by a concrete ceiling and roll-down dock doors to reduce potential noise effects on residents located north of the Project Site.

Project Design Features

In addition to compliance measures, the following Project Design Features (PDFs) would serve to reduce or avoid potential impacts associated with noise and vibration and have been accounted for in the impact analysis:

PDF-NOISE-1 (Project Construction Schedule): Prior to issuance of a building permit, notice of the Project construction schedule shall be provided to all abutting property owners and occupants. Evidence of such notification shall be provided to the Building Division. The notice shall identify the commencement date and proposed timing for all construction phases (demolition, grading, excavation/shoring, foundation, rough frame, plumbing, roofing, mechanical and electrical, and exterior finish).
4.8 Noise

PDF-NOISE-2 (Mechanical Equipment Noise): All mechanical equipment and/or ventilation systems not fully enclosed will be designed, through the use of quiet fans and duct silencers or similar methods, to not exceed 55 dBA L_{eq} from 7:00 AM to 10:00 PM and 50 dBA L_{eq} from 10:00 PM to 7:00 AM at the neighboring property lines including the north and west property lines per sound level limits of the Culver City Noise Element.

PDF-NOISE-3 (Construction Rules Sign): During all phases of construction, a “Construction Rules Sign” that includes contact names and telephone numbers of the Applicant, Property Owner, construction contractor(s), and the City, shall be posted on the Property in a location that is visible to the public. These names and telephone numbers shall also be made available to adjacent property owners and occupants to the satisfaction of the Planning Manager and Building Official.

PDF-NOISE-4 (Compliance with Noise Element): The following noise standards from Policy 2.A of the City’s General Plan Noise Element shall be complied with at all times:

a) No construction equipment shall be operated without an exhaust muffler, and all such equipment shall have mufflers and sound control devices (i.e., intake silencers and noise shrouds) that are no less effective than those provided on the original equipment;

b) All construction equipment shall be properly maintained to minimize noise emissions;

c) If any construction vehicles are serviced at a location onsite, the vehicle(s) shall be setback from any street and other property lines so as to maintain the greatest distance from the public right-of-way and from Noise Sensitive Receptors;

d) Noise impacts from stationary sources (i.e., mechanical equipment, ventilators, and air conditioning units) shall be minimized by proper selection of equipment and the installation of acoustical shielding as approved by the Planning Manager and the Building;

e) The Project shall not allow any delivery truck idling in the loading area. Signs shall be posted prohibiting idling.

PDF-NOISE-5 (Noise Control - Permanent Amplified Sound Systems): Permanent outdoor amplified sound systems that will operate on a regularly scheduled ongoing basis shall be designed so as not to result in a meaningfully perceptible increase in noise beyond the Project Site. Specifically, outdoor amplified sound systems shall not result in an increase of 3 dBA L_{eq} over existing conditions at the Project property line. All speakers shall have a minimum setback of 25 feet from the Project property line and shall be directed internally and shielding from off-site uses. A qualified noise consultant shall provide written documentation that the design of the system(s) complies with the maximum noise level.

PDF-TRAFF (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant's proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City
Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:
 1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.
 2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential
4. Environmental Impacts Analysis

4.8 Noise

delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.

3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.

4. Procedures for the training and certification of flag persons.

5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.

6. The location of temporary power, portable toilet and trash and materials storage locations.

7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.

8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.

Analysis of Project Impacts

Threshold NOISE-1: The Project would have a potentially significant impact on noise if it would result in the generation of a substantial temporary or permanent increase in ambient noise level in the vicinity of the Project in excess of the applicable standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

Construction Noise

Impact Statement NOISE-1a: Construction activities would increase noise levels at off-site noise-sensitive receptors in excess of the applicable thresholds. Therefore, impacts are considered potentially significant, and mitigation measures are required.

On-Site Construction Noise

Construction of the Project would require the use of heavy equipment during the various construction phases at the Project Site. During each stage of development, there would be a different mix of equipment. As such, construction activity noise levels at and near the Project Site
would fluctuate depending on the particular type, number, and duration of use of the various pieces of construction equipment.

Individual pieces of construction equipment anticipated during Project construction could produce maximum noise levels of 74 dBA to 89 dBA L_{max} at a reference distance of 50 feet from the noise source, as shown in Table 4.8-6, *Construction Equipment Noise Levels*. These maximum noise levels would occur when equipment is operating at full power. The estimated usage factor for the equipment is also shown in Table 4.8-6. The usage factors are based on FHWA’s RCNM User’s Guide.18

<table>
<thead>
<tr>
<th>Construction Equipment</th>
<th>Estimated Usage Factor (%)</th>
<th>Noise Level at 50 Feet (dBA, L_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressors</td>
<td>50</td>
<td>78</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>40</td>
<td>82</td>
</tr>
<tr>
<td>Crane</td>
<td>40</td>
<td>81</td>
</tr>
<tr>
<td>Dozer</td>
<td>40</td>
<td>82</td>
</tr>
<tr>
<td>Excavator</td>
<td>40</td>
<td>81</td>
</tr>
<tr>
<td>Forklift</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>Grader</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>Jackhammers</td>
<td>20</td>
<td>89</td>
</tr>
<tr>
<td>Other Equipment</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>Pumps</td>
<td>50</td>
<td>81</td>
</tr>
<tr>
<td>Roller</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>Sweeper/Scrubbers</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>Tractor/Loader/Backhoe</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>Welders</td>
<td>40</td>
<td>74</td>
</tr>
</tbody>
</table>

During Project construction, the nearest and most affected off-site noise-sensitive receptors that would be exposed to increased noise levels include residential and school uses. Sensitive receptor locations correspond to ambient noise measurement locations shown on Figure 4.8-2. Specifically, the nearest off-site noise-sensitive receptor locations include the following:

- **R1:** ECF located north of Machado Road.
- **R2:** ECF located north of Machado Road.
- **R3:** Single-family residential uses north of Machado Road (Heritage Park Neighborhood).
- **R4:** Single-family residential uses north of Machado Road (Heritage Park Neighborhood).

- R5: Multi-family residential uses to the west of Sepulveda Boulevard (Studio Village Town Homes).
- R6: Temple Akiba located west/south of Sepulveda Boulevard.
- R7: Circle K Motel, located west/south of Sepulveda Boulevard.
- R8: Single-family residential uses located to the southwest of the Temple Akiba (Sunkist Park Neighborhood).
- R9: Single-family residential uses located at the intersection of Ballona Lane and Lantana Lane (Heritage Park Neighborhood).

Over the course of a construction day, the highest noise levels would be generated when multiple pieces of construction equipment are being operated concurrently. The Project’s estimated construction noise levels were calculated for a scenario in which all pieces of construction equipment would operate simultaneously with the two loudest types of equipment located at the construction area nearest to the affected receptors to present a conservative impact analysis. The remaining equipment was assumed to be located at the center of the Project Site. The estimated noise levels at the off-site sensitive receptors were calculated using equipment source noise levels identified in the FHWA’s RCNM, and were based on a maximum concurrent operation of hand tools and equipment (i.e., pneumatic hand tools/air compressors, cranes, tractor/loader/backhoe, forklift, generator sets, welders, etc.), which is considered a worst-case evaluation because the Project would typically use less overall equipment on a daily basis, and as such would generate lower noise levels. In addition, the noise levels were estimated including the assumption that there would be some construction phase overlap. Table 4.8-7, Estimate of Construction Noise levels \(L_{eq}\) at Existing Off-Site Sensitive Receptor Locations, shows the estimated construction noise levels that would occur at the nearest off-site sensitive uses during a peak day of construction activity at the Project Site.
TABLE 4.8-7

ESTIMATE OF CONSTRUCTION NOISE LEVELS (L_{eq}) WITHOUT MITIGATION AT EXISTING OFF-SITE SENSITIVE RECEIVER LOCATIONS

<table>
<thead>
<tr>
<th>Off-site Sensitive Land Uses</th>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receiver (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L_{eq})</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Demolition</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Site Preparation</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Grading/Excavation</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Drainage/Utilities/Trenching</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Foundations/Concrete Pour</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Building Construction</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Paving</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Architectural Coating</td>
<td>80</td>
<td>73</td>
<td>65.4</td>
<td>70.4</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition + Site Preparation</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Building Construction + Paving</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Building Construction + Architectural Coating</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Maximum Noise Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Site Preparation</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Grading/Excavation</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Drainage/Utilities/Trenching</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Foundations/Concrete Pour</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Building Construction</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Paving</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Architectural Coating</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition + Site Preparation</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
4.8 Noise

Off-site Sensitive Land Uses

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L<sub>eq</sub>)</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Overlapping Phases

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L<sub>eq</sub>)</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition + Site Preparation</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L<sub>eq</sub>)</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>71</td>
<td></td>
<td>64.3</td>
<td>69.3</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Foundations/Concrete Pour</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Paving</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>80</td>
<td></td>
<td>72</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition + Site Preparation</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

R4

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L<sub>eq</sub>)</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td>120</td>
<td></td>
<td>78</td>
<td>69.6</td>
<td>Yes</td>
</tr>
<tr>
<td>Foundations/Concrete Pour</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Paving</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L<sub>eq</sub>)</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>71</td>
<td></td>
<td>69.6</td>
<td>74.6</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition + Site Preparation</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Environmental Impacts Analysis

4.8 Noise

<table>
<thead>
<tr>
<th>Off-site Sensitive Land Uses</th>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L_{eq})</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition + Site Preparation</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

R5	Demolition	75				Yes
	Site Preparation	69				No
	Grading/Excavation	72				Yes
	Drainage/Utilities/Trenching	74			Yes	
	Foundations/Concrete Pour	76			Yes	
	Building Construction	75			Yes	
	Paving	69				No
	Architectural Coating	180	66	65.1	70.1	No
Overlapping Phases						
Demolition + Site Preparation		76				No
Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour		79				No
Building Construction + Paving		76				No
Building Construction + Architectural Coating		76				No
Maximum Noise Level		79				Yes

R6	Demolition	80				Yes
	Site Preparation	74				Yes
	Grading/Excavation	77				Yes
	Drainage/Utilities/Trenching	79			Yes	
Off-site Sensitive Land Uses

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L_{eq})</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations/Concrete Pour</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Paving</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition + Site Preparation</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

<p>| R7 Demolition | 80 | | | | Yes |
| Site Preparation | 74 | | | | Yes |
| Grading/Excavation | 77 | | | | Yes |
| Drainage/Utilities/Trenching | 80 | | | | Yes |
| Foundations/Concrete Pour | 81 | | | | Yes |
| Building Construction | 81 | | | | Yes |
| Paving | 76 | | | | Yes |
| Overlapping Phases | | | | | |
| Demolition + Site Preparation | 81 | | | | Yes |
| Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour | 85 | | | | Yes |
| Building Construction + Paving | 82 | | | | Yes |
| Building Construction + Architectural Coating | 82 | | | | Yes |
| Maximum Noise Level | 84 | | | | Yes |</p>
<table>
<thead>
<tr>
<th>Off-site Sensitive Land Uses</th>
<th>Construction Phase</th>
<th>Nearest Distance from Construction Activity to Noise Receptor (ft.)</th>
<th>Estimated Maximum Construction Noise Levels (dBA L_{eq})</th>
<th>Ambient Noise Levels</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Site Preparation</td>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drainage/Utilities/Trenching</td>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Foundations/Concrete Pour</td>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Paving</td>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>R8</td>
<td>300</td>
<td>63</td>
<td>55.8</td>
<td>60.8</td>
<td>Yes</td>
</tr>
<tr>
<td>Overlapping Phases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition + Site Preparation</td>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Paving</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td>R8</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Demolition		65				Yes
Site Preparation		60				Yes
Grading/Excavation		63				Yes
Drainage/Utilities/Trenching		75				Yes
Foundations/Concrete Pour		67				Yes
Building Construction		67				Yes
Paving	R9	340	62	49.9	54.9	Yes
Architectural Coating		56				Yes
Overlapping Phases						
Demolition + Site Preparation		66				Yes
Grading/Excavation + Drainage/Utilities/Trenching + Foundations/Concrete Pour		70				Yes
Table: Nearest Distance from Construction Activity to Noise Receptor (ft.)

| Off-site Sensitive Land Uses | Construction Phase | Nearest Distance from Construction Activity to Noise Receptor (ft.) | Estimated Maximum Construction Noise Levels (dBA L_{eq}) | Ambient Noise Levels | Exceed Threshold?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Construction + Paving</td>
<td></td>
<td>68</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Construction + Architectural Coating</td>
<td></td>
<td>68</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Noise Level</td>
<td></td>
<td>70</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.
As shown in Table 4.8-7, construction noise levels are estimated to reach a maximum of 86 dBA L_{eq} at the nearest sensitive receptors (namely R1, R2, and R3). Construction activities would comply with the City’s noise standard (i.e., operating within established construction hours), and therefore, would not violate the CCMC requirement for construction activity. However, as shown in Table 4.8-7, construction activities would result in substantial temporary increases in ambient noise (greater than 5 dBA L_{eq} over ambient levels) at all of the studied sensitive receptors prior to implementation of mitigation measures. Project construction would result in noise levels greater than 5 dBA L_{eq} over ambient levels during all phases of activity at R1, R2, R7, R8, and R9. At receptor R3, Project construction would exceed the threshold during all phases of construction except for site preparation. At R4, Project construction would exceed the threshold during all phases of construction except for demolition, site preparation, paving, architectural coating, and the overlap of demolition and site preparation. At R5, Project construction would exceed the threshold during demolition, grading/excavation, drainage/utilities/trenching, foundations/concrete pour, and building construction. At R6, Project construction would exceed the threshold during all phases of construction except for architectural coating. Construction noise has been estimated at each of the receptor locations shown in Figure 4.8-2 and not at each individual residential lot in the surrounding area. Based on the results of the analysis, it can be assumed that construction noise at residential uses within Heritage Park south of Ballona Lane, the eastern row of homes within Sunkist Park, and the multifamily units with frontages on Sepulveda Boulevard or Machado Road would be significantly impacted by Project construction. In addition, all sensitive uses at Temple Akiba including the worship space and early childhood center, the educational uses at ECF, and the motel rooms with windows overlooking Sepulveda Boulevard would be significantly impacted by Project construction. The level of impact at each residential lot, each motel unit, and each educational or worship space would vary due to varying distances to Project construction and the presence of intervening structures such as existing buildings. As Project construction would result in temporary increases in ambient noise that would exceed thresholds of significance at all studied receptors, construction noise impacts would be significant and mitigation measures would be required.

Off-Site Construction Noise

Construction truck trips would occur throughout the construction period and would be associated with hauling material and excavated soil from the Project Site and delivering concrete and building materials to the Project Site. For purposes of this off-site construction noise analysis, off-site construction noise during the foundations/concrete pour phase was analyzed to represent the worst-case day with the most construction traffic. An estimated maximum of approximately 240 worker trips, 4 vendor trips, and 600 concrete truck trips per day would travel to the Project Site. This analysis assumes that all workers would travel to the Project Site in the same peak hour and truck trips would be evenly distributed over an eight-hour work day for vendor trucks and 16-hour work day for concrete trucks.

Because concrete trucks and worker vehicles would come from a variety of locations, it would be speculative to assume which roadways would be traveled by concrete trucks and worker vehicles. Therefore, noise associated with all peak hour worker and concrete truck trips have been assumed for all segments that are considered for the operational traffic analysis. This analysis represents worst-case construction traffic conditions and the studied segments encompass the possible haul routes for the haul trucks.
As shown in Table 4.8-8, Estimate of Off-Site Construction Traffic Noise Levels, the Project’s construction trips would increase existing traffic noise levels by a maximum of 3.9 dBA L_{eq} along Slauson Avenue north of Jefferson Boulevard where single family residential and commercial uses are present. This increase in noise level would not exceed the significance threshold of a 5 dBA L_{eq} increase in ambient conditions. Impacts would be less than significant and no mitigation is required.

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Calculated Traffic Noise Levels along adjacent Land Uses (dBA L_{eq})</th>
<th>Threshold</th>
<th>Exceed Threshold ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>Existing (A) 72.4</td>
<td>Existing with Project Construction (B) 73.2</td>
<td>Project Increment (B-A) 0.8</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.8</td>
<td>73.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.1</td>
<td>69.9</td>
<td>1.8</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>72.8</td>
<td>73.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/Educational</td>
<td>66.6</td>
<td>69.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.3</td>
<td>73.1</td>
<td>0.8</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.6</td>
<td>73.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential</td>
<td>54.5</td>
<td>54.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>65.6</td>
<td>68.4</td>
<td>2.8</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>66.8</td>
<td>69.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.4</td>
<td>73.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>74.7</td>
<td>75.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>71.6</td>
<td>72.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>73.5</td>
<td>74.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.3</td>
<td>72.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>74.5</td>
<td>75.0</td>
<td>0.5</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>72.2</td>
<td>73.0</td>
<td>0.8</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>73.5</td>
<td>74.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Calculated Traffic Noise Levels along adjacent Land Uses (dBA Leq)

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Calculated Traffic Noise Levels (dBA Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Existing (A)</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td>67.2</td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>67.2</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>63.5</td>
</tr>
</tbody>
</table>

a Pursuant to PDF-TRAF-1, construction traffic would not travel along this roadway segment.

SOURCE: ESA, 2020.

Operational Noise

Impact Statement NOISE-1b: Operation of the Project would not increase noise levels at off-site noise-sensitive receptors in the Project Area in excess of applicable thresholds. Thus, operational noise impacts would be less than significant.

Operational Traffic Noise Compared to Existing Traffic Baseline Conditions

Existing roadway noise levels were calculated along various arterial segments adjacent to the Project Site. Roadway noise attributable to Project development was calculated using the traffic noise model previously described and was compared to baseline noise levels that would occur under the “No Project” condition.

Project impacts are shown in Table 4.8-9, *Off-Site Traffic Noise Impacts-Existing With Project Conditions.* As indicated, the maximum increase in Project-related traffic noise levels over existing traffic noise levels would be 0.3 dBA CNEL, which would occur along the Project Driveway/Janisann Avenue, west of Sepulveda Boulevard adjacent to residential uses. This increase in sound level would be below the 5 dBA increase threshold, and the increase in sound level would be lower at the remaining roadway segments analyzed. The Project-related traffic noise increases would be less than significant, and no mitigation measures are required.
Table 4.8-9
Off-Site Traffic Noise Impacts – Existing with Project Conditions

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Existing (A)</th>
<th>Existing with Project (B)</th>
<th>Project Increment (B-A)</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>72.7</td>
<td>72.8</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.1</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.4</td>
<td>68.5</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.2</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/ Educational</td>
<td>66.9</td>
<td>67.0</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.6</td>
<td>72.6</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.9</td>
<td>72.9</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential</td>
<td>54.8</td>
<td>55.1</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>65.9</td>
<td>65.9</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>67.1</td>
<td>67.1</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.7</td>
<td>72.8</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.0</td>
<td>75.1</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>71.9</td>
<td>71.9</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>73.9</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.6</td>
<td>71.8</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>74.8</td>
<td>74.9</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>72.5</td>
<td>72.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>73.8</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>67.5</td>
<td>67.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>63.8</td>
<td>63.8</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.
Operational Traffic Noise Compared to Future (2024) Traffic Conditions

Future roadway noise levels were also calculated along various arterial segments adjacent to the Project as compared to 2024 baseline traffic noise levels that would occur with implementation of the Project. Project impacts are shown in Table 4.8-10. Off-Site Traffic Noise Impacts – Future (2024) With Project Conditions. As indicated, the maximum increase in Project-related traffic noise levels over existing traffic noise levels would be 0.3 dBA CNEL, which would occur along the Project Driveway/Janisann Avenue, west of Sepulveda Boulevard adjacent to residential uses. This increase in sound level would be below the 5 dBA increase threshold, and the increase in sound level would be lower at the remaining roadway segments analyzed. The Project-related traffic noise increases would be less than significant, and no mitigation measures are required.

Table 4.8-10

Off-Site Traffic Noise Impacts – Future (2024) With Project Conditions

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Future (A)</th>
<th>Future with Project (B)</th>
<th>Project Increment (B-A)</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>73.0</td>
<td>73.1</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.4</td>
<td>73.5</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.8</td>
<td>68.9</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>73.5</td>
<td>73.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/Educational</td>
<td>67.2</td>
<td>67.2</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.8</td>
<td>72.8</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.2</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential</td>
<td>55.0</td>
<td>55.3</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>66.1</td>
<td>66.1</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>67.4</td>
<td>67.5</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.0</td>
<td>73.1</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.4</td>
<td>75.4</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>72.2</td>
<td>72.2</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>74.1</td>
<td>74.2</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.9</td>
<td>72.1</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>75.2</td>
<td>75.2</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>
Operational Traffic Noise Compared to Future (2045) Traffic Conditions

Future roadway noise levels were also calculated along various arterial segments adjacent to the Project as compared to 2045 baseline traffic noise levels that would occur with implementation of the Project. Project impacts are shown in Table 4.8-11, Off-Site Traffic Noise Impacts – Future (2045) With Project Conditions. As indicated, the maximum increase in Project-related traffic noise levels over existing traffic noise levels would be 0.3 dBA CNEL, which would occur along the Project Driveway/Janisann Avenue, west of Sepulveda Boulevard adjacent to residential uses. This increase in sound level would be below the 5 dBA increase threshold, and the increase in sound level would be lower at the remaining roadway segments analyzed. The Project-related traffic noise increases would be less than significant, and no mitigation measures are required.

Operational Fixed Mechanical Equipment Noise

The operation of mechanical equipment such as air conditioning equipment and an emergency generator may generate audible noise levels. A majority of the Project’s mechanical equipment, including an emergency generator, would be located within enclosed mechanical rooms on a subterranean parking level. Mechanical equipment that would be fully shielded from nearby noise sensitive uses would avoid conflicts with adjacent uses and would not result in audible increases in noise levels. A mechanical area at the northwest corner of the building includes one mechanical unit that would be exposed on the top. The Project’s mechanical equipment would be designed pursuant to PDF-NOISE-2. Pursuant to PDF-NOISE-2, exposed mechanical equipment would not exceed 55 dBA L_{eq} from 7:00 AM to 10:00 PM and 50 dBA L_{eq} from 10:00 PM to 7:00 AM at the neighboring property lines including the north and west property lines per the sound level limits of the Culver City Noise Element. Implementation of PDF-NOISE-2 would ensure that operational noise impacts are minimal and less than significant, therefore, no mitigation measures are required.
<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Future (A)</th>
<th>Future with Project (B)</th>
<th>Project Increment (B-A)</th>
<th>Threshold</th>
<th>Exceed Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>73.4</td>
<td>73.5</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.8</td>
<td>73.9</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>69.2</td>
<td>69.3</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>73.9</td>
<td>73.9</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/ Educational</td>
<td>67.6</td>
<td>67.6</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>73.2</td>
<td>73.2</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>73.5</td>
<td>73.6</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential</td>
<td>55.4</td>
<td>55.7</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>66.5</td>
<td>66.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>67.8</td>
<td>67.9</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.4</td>
<td>73.4</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.8</td>
<td>75.8</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>72.6</td>
<td>72.6</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>74.5</td>
<td>74.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>72.3</td>
<td>72.5</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>75.6</td>
<td>75.6</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>73.1</td>
<td>73.2</td>
<td>0.1</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>74.5</td>
<td>74.5</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.2</td>
<td>68.2</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>64.4</td>
<td>64.4</td>
<td>0.0</td>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>

Parking Structure Noise

Vehicular access to the Project Site would be provided from one driveway on Sepulveda Boulevard at Janisann Avenue and two driveways on Machado Road. The driveway on Sepulveda Boulevard and the northeast driveway on Machado Road (closer to Jefferson Boulevard) would serve retail, market, and office uses. The northwest driveway on Machado Road opposite Heritage Place (closer to Sepulveda Boulevard) would provide access for resident and resident guest parking, and for the Exceptional Children’s Foundation parking, all located below grade.

For the purpose of providing a conservative, quantitative estimate of the noise levels that would be generated from vehicles entering and exiting the Project’s parking structure, the methodology recommended by FTA for the general assessment of stationary transit noise sources is used discussed in the Methodology Section.

Based on the Project’s Transportation Impact Study prepared by Fehr & Peers and provided in Appendix J of this Draft EIR, the Project is anticipated to generate 302 trips and 565 trips during the A.M. and P.M. peak hours, respectively. Residential uses would generate up to 86 P.M. peak hour trips. It has been assumed that all residential P.M. peak hour trips would utilize the west driveway on Machado Road and all non-residential trips would be split evenly between the east driveway on Machado Road and the driveway on Sepulveda Boulevard.

Using the FTA’s reference noise level of 92 dBA SEL at 50 feet from the noise source for a parking lot, noise levels from each of the proposed parking access driveways was estimated. Table 4.8-12, Parking Structure Noise Levels (L eq), summarizes estimated parking-related noise levels and potential increases in ambient noise at the nearest sensitive receptors. As shown, parking-related noise from individual driveways as well as the total of all three driveways would not result in significant increases in ambient noise levels. As such, impacts would be less than significant, no mitigation measures are required.

<table>
<thead>
<tr>
<th>Project Driveway</th>
<th>Sensitive Receptor</th>
<th>Estimated Parking Related Noise Levels, (L eq)</th>
<th>Existing Ambient Noise Levels, dBA (L eq)</th>
<th>Ambient + Project Noise Levels, dBA (L eq)</th>
<th>Significance Threshold, dBA (L eq)</th>
<th>Exceed Significance Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machado West</td>
<td>R1</td>
<td>28.8</td>
<td>65.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>36.8</td>
<td>64.9</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>41.7</td>
<td>64.3</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>31.8</td>
<td>69.6</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>24.5</td>
<td>65.1</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>22.9</td>
<td>65.2</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>16.5</td>
<td>74.8</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>15.7</td>
<td>55.8</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>23.6</td>
<td>49.9</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
</tr>
</tbody>
</table>

Environmental Impacts Analysis

4.8 Noise

<table>
<thead>
<tr>
<th>Project Driveway</th>
<th>Sensitive Receptor</th>
<th>Estimated Parking Related Noise Levels, ((L_{eq}))</th>
<th>Existing Ambient Noise Levels, dBA ((L_{eq}))</th>
<th>Ambient + Project Noise Levels, dBA ((L_{eq}))</th>
<th>Significance Threshold, dBA ((L_{eq}))</th>
<th>Exceed Significance Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machado East</td>
<td>R1</td>
<td>43.7</td>
<td>65.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>41.4</td>
<td>64.9</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>34.3</td>
<td>64.3</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>30.1</td>
<td>69.6</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>29.2</td>
<td>65.1</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>21.5</td>
<td>65.2</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>22.4</td>
<td>74.8</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>19.6</td>
<td>55.8</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>25.7</td>
<td>49.9</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda</td>
<td>R1</td>
<td>22.9</td>
<td>65.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>24.7</td>
<td>64.9</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>23.1</td>
<td>64.3</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>20.9</td>
<td>69.6</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>30.5</td>
<td>65.1</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>35.4</td>
<td>65.2</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>41.4</td>
<td>74.8</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>35.7</td>
<td>55.8</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>18.6</td>
<td>49.9</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
</tr>
<tr>
<td>Total Combined Parking Noise</td>
<td>R1</td>
<td>43.9</td>
<td>65.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>42.7</td>
<td>64.9</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>42.4</td>
<td>64.3</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>34.2</td>
<td>69.6</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>33.5</td>
<td>65.1</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>35.8</td>
<td>65.2</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>41.4</td>
<td>74.8</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>35.9</td>
<td>55.8</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>28.3</td>
<td>49.9</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.

Operational Loading Dock Area Noise

Access for trucks and deliveries would be off of Machado Road where they would access a 2,856-square foot loading dock within the Project Site via the northeastern-most retail entrance. The loading dock would be screened from Machado Road by a concrete wall and enclosed by a concrete ceiling and roll-down dock doors to reduce potential noise effects on residents located north of the Project Site, approximately 80 feet from the Project Site. A separate loading and drop-off area for residents is planned in front of the residential lobby entrance on Sepulveda Boulevard.
Loading dock activities such as truck movements/idling and loading/unloading operations generate noise levels that have the potential to adversely impact adjacent land uses during long-term Project operations. Although the proposed retail loading area would be enclosed and screened from the residential uses located approximately 80 feet to the north of the Project Site, noise from trucks maneuvering into the loading area would be exposed. At a distance of 80 feet, loading truck activity would be 66 dBA Leq at receptors R1 and R2. Ambient noise levels at R1 and R2 are 65.4 dBA Leq and 64.9 dBA Leq, respectively. During the time periods that trucks maneuver into the loading area, ambient noise level would be temporarily increased due to the contribution from trucks maneuvering, but the increase would be less than 3 dBA. In addition, loading truck activity is intermittent and would not result in permanent increase in ambient noise levels at nearby sensitive receptors. As such, impacts would be less than significant, and no mitigation measures are required.

Operational Outdoor Open Space Noise

As discussed in Chapter 2, *Project Description*, and as shown in Figure 2-3, the Project would provide a total of approximately 28,800 square feet of publicly accessible open space areas on the ground level. Machado Park would consist of 13,800 square feet, located at the southeast corner of Sepulveda Boulevard and Machado Road, approximately 80 feet from receptors R2 and R3. The Paseo Courtyard would consist of 13,000 square feet located at the northern corner of Jefferson Boulevard and Sepulveda Boulevard, approximately 150 feet from receptor R7. The Entry Courtyard would consist of 2,000 square feet located at the retail entry of the Project on Sepulveda Boulevard, approximately 180 feet from receptor R7.

The third floor of the building would include residential-only amenities in the form of a 24,000-square foot amenity courtyard and a 2,500-square foot amenity room. The entire space would be enclosed by the Project building and screened from off-site receptors. The nearest sensitive receptors to this space, receptors R1, R2, and R7, are located approximately 175 feet from the amenity space. The amenity room and courtyard would include: a fitness center, BBQ area, conference room/business center, pool, and sun deck which would be set back from Sepulveda and screened by the residential building. As stated under Subsection 4.8.4, *Environmental Impacts*, under Methodology, the maximum occupant load of each of the four open spaces would not exceed 200 people. It is conservatively assumed for purposes of the noise analysis that all spaces, except for Machado Park, could include permanent sound systems for regular use, primarily to provide background music. Permanent sound systems for routine use would not be located within Machado Park. **Table 4.8-13, Open Space Noise Levels (Leq),** summarizes estimated open space noise levels for each open space area and for total combined open space noise. As shown, open space noise levels (individual spaces and total combined), including use of permanent sound systems, would not result in a significant increase in ambient noise levels at nearby sensitive receptors. Therefore, impacts would be less than significant, and no mitigation measures are required.
TABLE 4.8-13
OPEN SPACE NOISE LEVELS (L_{eq})

<table>
<thead>
<tr>
<th>Open Space (primary noise source)</th>
<th>Sensitive Receiver</th>
<th>Estimated Open Space Related Noise Levels, (L_{eq})</th>
<th>Existing Ambient Noise Levels, dBA (L_{eq})</th>
<th>Ambient + Project Noise Levels, dBA (L_{eq})</th>
<th>Significance Threshold, dBA (L_{eq})</th>
<th>Exceed Significance Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machado Park</td>
<td>R1</td>
<td>42.1</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>50.9</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>50.9</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>46.6</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>43.8</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>48.9</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>25.4</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>27.1</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>33.4</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Paseo Courtyard</td>
<td>R1</td>
<td>40.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>39.1</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>36.9</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>35.0</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>34.8</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>42.8</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>59.5</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>45.0</td>
<td>55.8</td>
<td>60.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>34.0</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Entry Courtyard</td>
<td>R1</td>
<td>25.4</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>28.0</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>26.1</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>23.4</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>28.2</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>38.3</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>41.9</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>37.4</td>
<td>55.9</td>
<td>60.8</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>21.2</td>
<td>49.9</td>
<td>54.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Residential Amenities</td>
<td>R1</td>
<td>48.2</td>
<td>65.4</td>
<td>70.4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>48.2</td>
<td>64.9</td>
<td>69.9</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>42.7</td>
<td>64.3</td>
<td>69.3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>39.4</td>
<td>69.6</td>
<td>74.6</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>39.1</td>
<td>65.1</td>
<td>70.1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>43.8</td>
<td>65.2</td>
<td>70.2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>48.2</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Pursuant to Section 9.07.055 of the CCMC, the operation of amplifying equipment for use on an on-going basis shall not be audible at the Project property line. As discussed above, it is assumed that the Paseo Courtyard, Entry Courtyard, and third floor residential amenity space could include permanent sound systems for the amplification of background music, or other messaging, on a regular basis. According to PDF-NOISE-5, all permanent sound systems within outdoor open spaces areas would be designed and installed so as to not result in a greater than 3 dBA increase in ambient conditions, which would be considered an audible increase, at the Project property line. The third floor residential amenity space would be located in the center of the Project Site and shielded by the Project building. The Paseo Courtyard and Entry Courtyard are located adjacent to the Project boundary along Sepulveda Boulevard. Assuming that speakers are placed 25 feet from the Project property line and a speaker volume of 75 dBA at 25 feet (pursuant to PDF-NOISE-5), amplified sound at the Paseo Courtyard and Entry Courtyard would increase ambient conditions (75.8 dBA L_{eq}) to 78.4 dBA L_{eq}. This increase would not be considered an audible increase (3 L_{eq} dBA) in ambient conditions along Sepulveda Boulevard. Therefore, the use of a permanent amplified sound would not result in an audible increase at the Project property line, the Project would be compliant with CCMC Section 9.07.055, and associated noise impacts would be less than significant with no mitigation measures required.

As discussed above, Machado Park would not include a permanent sound system that would be operated on a regular basis. However, there is the potential for activities at Machado Park to occasionally involve use of a temporary amplified sound system. Table 4.8-14, Noise Levels at Machado Park with Occasional Use of Amplified Sound System (L_{eq}), summarizes estimated noise levels based on a maximum of 200 people at the park, as stated under the Methodology subsection above, with amplified speakers locate at the property line at a volume of 75 dBA at 25 feet. As shown, this potential for occasional use of amplified sound at Machado Park would not result in a
significant increase in ambient noise levels at nearby sensitive receptors. Therefore, temporary noise impacts associated with potential for occasional use of amplified sound at Machado Park would be less than significant, and no mitigation measures are required.

Table 4.8-14
Noise Levels at Machado Park with Occasional Use of Amplified Sound System (L\text{eq})

<table>
<thead>
<tr>
<th>Sensitive Receptor</th>
<th>Estimated Noise Levels, (L\text{eq})</th>
<th>Existing Ambient Noise Levels, dBA (L\text{eq})</th>
<th>Ambient + Project Noise Levels, dBA (L\text{eq})</th>
<th>Significance Threshold, dBA (L\text{eq})</th>
<th>Exceed Significance Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>56.3</td>
<td>65.4</td>
<td>65.9</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td>R2</td>
<td>65.1</td>
<td>64.9</td>
<td>68.0</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td>R3</td>
<td>65.1</td>
<td>64.3</td>
<td>67.7</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td>R4</td>
<td>60.8</td>
<td>69.6</td>
<td>70.1</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td>R5</td>
<td>58.0</td>
<td>65.1</td>
<td>65.9</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td>R6</td>
<td>63.1</td>
<td>65.2</td>
<td>67.3</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td>R7</td>
<td>39.6</td>
<td>74.8</td>
<td>74.8</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td>R8</td>
<td>41.3</td>
<td>55.8</td>
<td>56.0</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td>R9</td>
<td>47.6</td>
<td>49.9</td>
<td>51.9</td>
<td>54.9</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: ESA, 2020.

Composite Noise Level Impacts from Project Operations

An evaluation of the combined noise levels from the Project’s various operational noise sources (i.e., composite noise level) was conducted to conservatively ascertain the potential maximum Project-related noise level increase that may occur at the nearest noise-sensitive receptors. Noise sources associated with the Project include the incremental increase in traffic noise, noise related to the parking structure, and open space noise. As discussed above, it is anticipated that all mechanical equipment (including an emergency generator) would be completely enclosed on a subterranean parking level. Therefore, mechanical equipment would not contribute to the overall composite increase in operational noise levels, and no mitigation measures are required.

As shown in **Table 4.8-15**, *Composite Operational Noise Levels (L\text{eq})*, increases in ambient conditions due to overall Project operations would not exceed the threshold of a 5 dBA L\text{eq} increase in noise levels. As such, the composite noise level impact on the nearest sensitive receptors due to the Project’s future operations would be less than significant, and no mitigation measures are required.
Table 4.8-15
COMPOSITE OPERATIONAL NOISE LEVELS (L\text{eq})

<table>
<thead>
<tr>
<th>Sensitive Receptor</th>
<th>Existing Ambient Noise Levels, dBA (L\text{eq})</th>
<th>Total Outdoor Space Noise Levels, dBA (L\text{eq})</th>
<th>Total Parking Noise Levels, dBA (L\text{eq})</th>
<th>Project-Only Traffic Noise Levels, dBA (L\text{eq})</th>
<th>Total Project Composite Noise Levels, dBA (L\text{eq})</th>
<th>Total Project + Ambient Noise Levels, dBA (L\text{eq})</th>
<th>Significance Threshold, dBA (L\text{eq})</th>
<th>Exceed Significance Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>65.4</td>
<td>50.3</td>
<td>43.9</td>
<td>50.5</td>
<td>53</td>
<td>65.7</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td>R2</td>
<td>64.9</td>
<td>53.5</td>
<td>42.7</td>
<td>50.5</td>
<td>55.5</td>
<td>65.4</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td>R3</td>
<td>64.3</td>
<td>52.1</td>
<td>42.4</td>
<td>50.5</td>
<td>54.7</td>
<td>64.7</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td>R4</td>
<td>69.6</td>
<td>48.3</td>
<td>34.2</td>
<td>55.5</td>
<td>56.3</td>
<td>69.8</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td>R5</td>
<td>65.1</td>
<td>47.9</td>
<td>33.5</td>
<td>55.5</td>
<td>56.2</td>
<td>65.6</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td>R6</td>
<td>65.2</td>
<td>56.0</td>
<td>35.8</td>
<td>55.5</td>
<td>58.8</td>
<td>66.1</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td>R7</td>
<td>74.8</td>
<td>62.0</td>
<td>41.4</td>
<td>58.3</td>
<td>63.6</td>
<td>75.1</td>
<td>79.8</td>
<td>No</td>
</tr>
<tr>
<td>R8</td>
<td>55.8</td>
<td>54.3</td>
<td>35.9</td>
<td>43.2</td>
<td>54.7</td>
<td>58.3</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td>R9</td>
<td>49.9</td>
<td>42.1</td>
<td>28.3</td>
<td>50.5</td>
<td>51.1</td>
<td>53.6</td>
<td>54.9</td>
<td>No</td>
</tr>
</tbody>
</table>

General Plan Consistency

The City’s General Plan noise standards includes an exterior noise standard of 65 dBA CNEL for residential and commercial land uses. As shown in Table 4.8-1, ambient noise levels in the Project vicinity are generally within the allowable level. Therefore, noise levels in the Project vicinity would be compatible with the addition of residential and commercial uses at the Project Site.

The General Plan requires the establishment of noise regulation criteria including noise reduction features during site planning to mitigate anticipated noise impacts on affected noise sensitive land uses and noise abatement and acoustical design criteria for construction and operation of new development. As discussed herein, the Project would not result in significant permanent increases in ambient noise levels. Through the implementation of PDF-NOISE-2, PDF-NOISE-4, and PDF-NOISE-5, the Project would be designed pursuant to established design criteria to ensure consistency with the General Plan goals and policies.

Threshold NOISE-2: The Project would have a potentially significant impact on noise if it would result in the generation of excessive groundborne vibration or groundborne noise levels.

Impact Statement NOISE-2: Construction and operational activities would not exceed the vibration significance thresholds. Thus, vibration impacts would be less than significant.

Construction Vibration

Construction activities at the Project Site have the potential to generate low levels of groundborne vibration as the operation of heavy equipment (i.e., backhoe, dozer, excavators, grader, loader, and
haul trucks, etc.) generates vibrations that propagate through the ground and diminish in intensity with distance from the source. No high-impact activities, such as pile driving or blasting, would be used during Project construction. Since evaluation of potential building damages considers the building itself, not the property line, the distance from the vibration sources would be calculated at the building edge. Also, human effect of the vibration impacts is evaluated within the building, not at the property line, because people in an outdoor environment are not subject to vibration impact. Therefore, the distance to the vibration sources is also calculated at the building edge. The nearest off-site vibration-sensitive buildings to the Project Site are residential and school buildings approximately 100 feet from the Project Site including single-family residential located to the north of Machado Road and the Temple Akiba building. In addition, the Circle K Motel is located approximately 105 feet from the Project Site. Groundborne vibrations from construction activities very rarely reach the levels that can damage structures, but they may be perceived in buildings very close to a construction site.

The PPV vibration velocities for several types of construction equipment that can generate perceptible vibration levels are identified in Table 4.8-16, Vibration Source Levels for Construction Equipment. Based on the information presented in Table 4.8-16, vibration velocities could range from 0.0004 to 0.011 in/sec PPV at 100 feet from the source of activity which would be below the structural damage significance threshold of 0.2 in/sec PPV. Therefore, impacts would be less than significant with respect to structural damage, and no mitigation measures are required.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Approximate PPV (in/sec)</th>
<th>Approximate RMS (VdB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Bulldozer</td>
<td>0.089 0.031 0.024 0.017 0.011</td>
<td>87 78 76 73 69</td>
</tr>
<tr>
<td>Hoe Ram</td>
<td>0.089 0.031 0.024 0.017 0.011</td>
<td>87 78 76 73 69</td>
</tr>
<tr>
<td>Caisson Drilling</td>
<td>0.089 0.031 0.024 0.017 0.011</td>
<td>87 78 76 73 69</td>
</tr>
<tr>
<td>Loaded Trucks</td>
<td>0.076 0.027 0.020 0.015 0.010</td>
<td>86 77 75 72 68</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035 0.012 0.009 0.007 0.004</td>
<td>79 70 68 65 61</td>
</tr>
<tr>
<td>Small Bulldozer</td>
<td>0.003 0.001 0.0008 0.0006 0.0004</td>
<td>58 49 47 44 40</td>
</tr>
</tbody>
</table>

With respect to human annoyance, the nearest vibration-sensitive residential and school uses (at 100 feet) to the Project Site would be exposed to vibration levels from 40 VdB to 69 VdB, which would not exceed a threshold of 80 VdB. Therefore, impacts would be less than significant with respect to human annoyance, and no mitigation measures are required.

Operational Vibration

The Project’s operations would include typical commercial-grade stationary mechanical and electrical equipment, such as air handling units, condenser units, and exhaust fans, which would
produce vibration. In addition, the primary sources of transient vibration would be passenger vehicle circulation within the proposed parking area. Groundborne vibration generated by each of the above-mentioned activities would generate approximately up to 50 VdB adjacent to the Project Site. The potential vibration levels from all Project operational sources at the closest existing sensitive receptor locations would be less than the significance threshold of 80 VdB for perceptibility. As such, vibration impacts associated with operation of the Project would be below the significance threshold and impacts would be less than significant, and no mitigation measures are required.

Cumulative Impacts

The geographic context for the analysis of cumulative noise impacts depends on the impact being analyzed. Noise is by definition a localized phenomenon, and significantly reduces in magnitude as the distance from the source increases. Noise would normally affect the areas immediately adjacent to the source, specifically areas that are less than 500 feet. Cumulative noise impacts could occur at receptor locations that are within 500 feet from two different sources. Therefore, based on a 500-foot screening distance, the cumulative noise impacts analysis is limited to related projects within 1,000 feet of the Project Site. The 1,000-foot distance is based on an assumption that a noise-sensitive receptor would be located halfway between the Project Site and the related project. However, the cumulative impacts on roadway noise would be affected by traffic from all cumulative projects throughout a larger vicinity.

As discussed in Subsection 3.B, Related Projects, in Chapter 3, *Environmental Setting*, of this Draft EIR, there are 27 related projects identified in the vicinity of the Project. The nearest related project, situated approximately 2,300 feet to the northeast, is Related Project No. 19 (West LA Community College Master Plan). The potential for noise impacts to occur are specific to the location of each Related Project as well as cumulative traffic on the surrounding roadway network.

Construction

All 27 related projects are located outside of the 1,000-foot screening distance for projects that would contribute to cumulative noise impacts. Therefore, construction of any of the related projects would not combine to cumulatively impact any of the sensitive receptors adjacent to the Project Site. With regard to off-site construction noise, construction traffic from all related projects would contribute to noise levels on major thoroughfares throughout the region, although the related projects are located in different areas and to some extent would have varied haul routes and traffic patterns associated with their construction.

Operations

Cumulative noise impacts would occur primarily as a result of increased traffic on local roadways due to operation of the Project and related projects, as traffic is the greatest source of operational noise in the Project area. Cumulative traffic-generated noise impacts were assessed based on a comparison of the future cumulative base traffic volumes with the Project to the existing base traffic volumes without the Project. The noise levels associated with existing base traffic volumes without the Project, and cumulative base traffic volumes with the Project are provided in Table 4.8-17, Off-

20 FTA, Transit Noise and Vibration Impact Assessment, Section 7.2.1, May. 2006.
Environmental Impacts Analysis

4.8 Noise

Site Traffic Noise Impacts – Future 2024 Cumulative Increment and Table 4.8-18. Off-Site Traffic Noise Impacts – Future 2045 Cumulative Increment. Table 4.8-17 shows the Project’s contribution to the cumulative noise levels during year 2024. The maximum cumulative noise increase from the Project plus cumulative project traffic would be 0.5 dBA CNEL, which would occur along Jefferson Boulevard between Slauson Avenue and Sepulveda Boulevard adjacent to commercial uses, along the Project Driveway/Janisann Avenue west of Sepulveda Boulevard adjacent to residential uses, and along Sepulveda Boulevard between the Project Driveway/Janisann Avenue and Jefferson Boulevard (N) adjacent to commercial uses. This increase in sound level would be below 5 dBA increase, and the increase in sound level would be lower at the remaining roadway segments analyzed. The Project-related noise increases would be less than significant, and no mitigation measures would be required.

Table 4.8-18 shows the Project’s contribution to the cumulative noise levels during year 2045. The maximum cumulative noise increase from the Project plus cumulative project traffic would be 0.9 dBA CNEL, CNEL, which would occur along Jefferson Boulevard between Slauson Avenue and Sepulveda Boulevard adjacent to commercial uses, along the Project Driveway/Janisann Avenue west of Sepulveda Boulevard adjacent to residential uses, and along Sepulveda Boulevard between the Project Driveway/Janisann Avenue and Jefferson Boulevard (N) adjacent to commercial uses. This increase in sound level would be below 5 dBA increase, and the increase in sound level would be lower at the remaining roadway segments analyzed. The Project-related noise increases would be less than significant, and no mitigation measures would be required.

The CCMC-required provisions that limit stationary-source noise from items such as roof-top mechanical equipment would ensure noise levels would be less than significant at the property line for each related project. In addition, all of the related projects are located greater than 1,000 feet from the Project Site and on-site noise generated by each related projects would not result in an additive increase to Project-related noise levels. Further, noise from other stationary sources, including parking structures, open space activity and loading docks would be limited to areas in the immediate vicinity of each related project. Although each related project could potentially impact an adjacent sensitive use, that potential impact would be localized to that specific area and would not contribute to cumulative noise conditions at or adjacent to the proposed Project Site. As the Project’s composite stationary-source impacts would be less than significant, the Project’s cumulative stationary-source noise impacts would be less than significant.
TABLE 4.8-17

OFF-SITE TRAFFIC NOISE IMPACTS – FUTURE 2024 CUMULATIVE INCREMENT

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Existing (A)</th>
<th>Future 2024 with Project (B)</th>
<th>Project Increment (B-A)</th>
<th>Threshold</th>
<th>Exceed Threshold ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>72.7</td>
<td>73.1</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.5</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.4</td>
<td>68.9</td>
<td>0.5</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.5</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/ Educational</td>
<td>66.9</td>
<td>67.2</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.6</td>
<td>72.8</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.9</td>
<td>73.2</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>54.8</td>
<td>55.3</td>
<td>0.5</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>65.9</td>
<td>66.1</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>67.1</td>
<td>67.5</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.7</td>
<td>73.1</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.0</td>
<td>75.4</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>71.9</td>
<td>72.2</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>74.2</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.6</td>
<td>72.1</td>
<td>0.5</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>74.8</td>
<td>75.2</td>
<td>0.4</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>72.5</td>
<td>72.8</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>74.1</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>67.5</td>
<td>67.8</td>
<td>0.3</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>63.8</td>
<td>64.0</td>
<td>0.2</td>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.
TABLE 4.8-18
OFF-SITE TRAFFIC NOISE IMPACTS – FUTURE 2045 CUMULATIVE INCREMENT
Calculated Traffic Noise Levels along adjacent Land Uses (dBA CNEL)

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Land Uses Located along Roadway Segment</th>
<th>Existing (A)</th>
<th>Future 2045 with Project (B)</th>
<th>Project Increment (B-A)</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson Boulevard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Machado Rd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>72.7</td>
<td>73.5</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Overland Ave and Machado Rd</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.9</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Slauson Ave and Sepulveda Blvd</td>
<td>Commercial</td>
<td>68.4</td>
<td>69.3</td>
<td>0.9</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Overland Ave</td>
<td>Residential/Commercial</td>
<td>73.1</td>
<td>73.9</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Machado Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Sepulveda Blvd and Jefferson Blvd</td>
<td>Residential/Commercial/Educational</td>
<td>66.9</td>
<td>67.6</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Overland Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.6</td>
<td>73.2</td>
<td>0.6</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>72.9</td>
<td>73.6</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Project Driveway/Janisann Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential</td>
<td>54.8</td>
<td>55.7</td>
<td>0.9</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sawtelle Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>65.9</td>
<td>66.5</td>
<td>0.6</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>West of Sepulveda Blvd</td>
<td>Residential/Commercial</td>
<td>67.1</td>
<td>67.9</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Sepulveda Blvd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Culver Blvd and Machado Rd</td>
<td>Residential/Commercial</td>
<td>72.7</td>
<td>73.4</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Jefferson Blvd (N) and Sawtelle Blvd</td>
<td>Commercial</td>
<td>75.0</td>
<td>75.8</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Machado Rd and Project Driveway/Janisann Ave</td>
<td>Commercial/Place of Worship</td>
<td>71.9</td>
<td>72.6</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Playa St/Jefferson Blvd (S) and Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>74.5</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Project Driveway/Janisann Ave and Jefferson Blvd (N)</td>
<td>Commercial</td>
<td>71.6</td>
<td>72.5</td>
<td>0.9</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Between Sawtelle Blvd and Playa St/Jefferson Blvd (S)</td>
<td>Commercial</td>
<td>74.8</td>
<td>75.6</td>
<td>0.8</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Culver Blvd</td>
<td>Commercial</td>
<td>72.5</td>
<td>73.2</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>South of Slauson Ave</td>
<td>Commercial</td>
<td>73.8</td>
<td>74.5</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Slauson Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Jefferson Blvd and Sepulveda Blvd</td>
<td>Commercial</td>
<td>67.5</td>
<td>68.2</td>
<td>0.7</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>North of Jefferson Blvd</td>
<td>Residential/Commercial</td>
<td>63.8</td>
<td>64.4</td>
<td>0.6</td>
<td>5</td>
<td>No</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2020.
4.8 Noise

4.8.4 Groundborne Vibration

Due to the rapid attenuation characteristics of groundborne vibration and distance from each of the related projects to the Project Site, there is no potential for cumulative construction- or operational-period impacts with respect to groundborne vibration. Therefore, cumulative impacts would be less than significant.

4.8.5 Mitigation Measures

Construction Noise

NOISE-1: Prior to the commencement of demolition, the Project shall provide a temporary 15-foot-tall construction fence equipped with noise blankets rated to achieve sound level reductions of at least 12 dBA along the northern and western boundaries of the Project Site, between the Project Site and the surrounding residences to the north (Heritage Park Neighborhood) and west (Studio Village Town Homes), Temple Akiba, and Circle K Motel. Temporary noise barriers shall be used to block the line-of-sight between the construction equipment and the noise-sensitive receptors to the north and west of the Project Site during the duration of construction activities. Standard construction protective fencing with green screen or pedestrian barricades for protective walkways shall be installed along property lines facing streets or commercial buildings. All temporary barriers, fences, and walls shall have gate access as needed for construction activities, deliveries, and site access by construction personnel.

NOISE-2: Contractors shall ensure that all construction equipment, fixed or mobile, are equipped with properly operating and maintained noise shielding and muffling devices, consistent with manufacturers’ standards. The construction contractor shall keep documentation onsite demonstrating that the equipment has been maintained in accordance with the manufacturers’ specifications. Most of the noise from construction equipment originates from the intake and exhaust portions of the engine cycle. According to FHWA, use of adequate mufflers systems can achieve reductions in noise levels of up to 10 dBA. The contractor shall use muffler systems that provide a minimum reduction of 8 dBA compared to the same equipment without an installed muffler system, reducing maximum construction noise levels. The contractor shall also keep documentation on-site prepared by a noise consultant verifying compliance with this measure.

4.8.6 Level of Significance After Mitigation

Construction Noise

Mitigation Measure NOISE-1 would provide at least a 12 dBA noise reduction at sensitive receptors R1 through R9. Implementation of Mitigation Measure NOISE-2 requires that construction equipment be equipped with noise mufflers. Absorptive mufflers are generally

considered commercially available, state-of-the-art noise reduction for heavy duty equipment.\(^\text{22}\) Mitigation Measure NOISE-2 requires that muffler systems provide a minimum reduction of 8 dBA compared to the same equipment without an installed muffler system.\(^\text{23}\) Mitigation Measures NOISE-1 and NOISE-2 would provide at least 20 dBA noise reduction at the noise sensitive receptor locations R1 through R9. As shown in Table 4.8-19, Mitigated Construction Noise Impacts, construction noise impacts would be reduced by a level that is technically feasible as set forth in Mitigation Measures NOISE-1 and NOISE-2 and consistent with Policy 2.A of the City General Plan Noise Element. With implementation of mitigation measures maximum construction noise levels would not increase ambient noise levels at any of the noise-sensitive receptor locations above thresholds of significance. Accordingly, construction noise impacts after implementation of Mitigation Measure NOISE-1 and NOISE-2 would be less than significant.

<table>
<thead>
<tr>
<th>Off-site Sensitive Land Uses</th>
<th>Ambient Noise Levels</th>
<th>Estimated Maximum Construction Noise Levels – Mitigated (dBA L(_{eq}))</th>
<th>Threshold</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>65.4</td>
<td>66</td>
<td>70.4</td>
<td>No</td>
</tr>
<tr>
<td>R2</td>
<td>64.9</td>
<td>66</td>
<td>69.9</td>
<td>No</td>
</tr>
<tr>
<td>R3</td>
<td>64.3</td>
<td>66</td>
<td>69.3</td>
<td>No</td>
</tr>
<tr>
<td>R4</td>
<td>69.6</td>
<td>62</td>
<td>74.6</td>
<td>No</td>
</tr>
<tr>
<td>R5</td>
<td>65.1</td>
<td>59</td>
<td>70.1</td>
<td>No</td>
</tr>
<tr>
<td>R6</td>
<td>65.2</td>
<td>64</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td>R7</td>
<td>65.2</td>
<td>64</td>
<td>70.2</td>
<td>No</td>
</tr>
<tr>
<td>R8</td>
<td>55.8</td>
<td>56</td>
<td>60.8</td>
<td>No</td>
</tr>
<tr>
<td>R9</td>
<td>49.9</td>
<td>50</td>
<td>54.9</td>
<td>No</td>
</tr>
</tbody>
</table>

In addition, with implementation of design features, including City requirements for Construction Management Plans, and mitigation measures, cumulative construction noise impacts would be less than significant at the nearby noise sensitive receptor locations.

This page intentionally left blank
4.9 Population and Housing

4.9.1 Introduction

This section addresses potential impacts on population and housing that could occur due to construction and operation of the Project. The analysis focuses on potential effects of the Project’s contribution to population and housing growth within the geographical boundaries of the City of Culver City (City) by taking into account population and housing projections established in the Southern California Association of Governments (SCAG) Connect SoCal (2020–2045 Regional Transportation Plan and Sustainable Communities Strategy [2020 RTP/SCS]) and SCAG’s 6th Cycle Regional Housing Needs Assessment (RHNA), as well as policies established in the City’s Comprehensive General Plan (General Plan). This section analyzes the Project’s effects on population, housing, and employment as compared to adopted growth forecasts; and relevant policies and programs regarding planning for future development. Potential growth-inducing impacts of the Project are further addressed in Chapter 6, Other CEQA Considerations.

4.9.2 Environmental Setting

The Project Site is currently developed with three single story commercial buildings, surface parking, a parking lot that serves the proximate Exceptional Children’s Foundation (ECF), and landscaping. The Project Site’s current land use designation is General Corridor, with the majority zoned Commercial General (CG) while the northernmost parcel adjacent to Machado Road is split-zoned CG and Single Family (R-1).

SCAG’s 2020 RTP/SCS, which was approved in September 2020, includes the most updated and available information on demographic projections for the City. Current and future projected population, housing, and employment estimates for the City are based on data included in the SCAG’s 2020 RTP/SCS.\(^1\) The 2020 RTP/SCS is based on growth projections for population, housing, and employment prepared for regional, county, and local jurisdictional areas. The 2020 RTP/SCS reports demographic data for 2016, and projections for 2045.\(^2\) The 2020 RTP/SCS forecasts represent the likely growth scenario for the Southern California region in the future, taking into account recent and past trends, reasonable key technical assumptions, and local or regional growth policies.\(^3\) An estimate of the 2020 baseline population and growth projections for the SCAG 2045 Horizon Year, are shown in Table 4.9-1, Projected Population, Housing, and Employment Estimates for Culver City, and discussed below.

4. Environmental Impacts Analysis
4.9 Population and Housing

<table>
<thead>
<tr>
<th></th>
<th>SCAG 2045 Horizon Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2020 Baseline</td>
<td>2045 Projection</td>
</tr>
<tr>
<td>Population</td>
<td>40,307</td>
<td>41,600</td>
</tr>
<tr>
<td>Housing</td>
<td>17,138</td>
<td>18,000</td>
</tr>
<tr>
<td>Employment</td>
<td>59,963</td>
<td>64,100</td>
</tr>
</tbody>
</table>

In addition to the 2020 RTP/SCS, the City’s current Housing Element, which addresses long-term housing needs for the City from 2013 to 2021, is based on SCAG’s 5th Cycle RHNA, which addresses the housing needs for the City from January 2014 to October 2021. As noted in both the current Housing Element and the 5th Cycle RHNA, the City is expected to provide a total of 185 households in the period running from January 2014 to October 2021. The 6th Cycle RHNA final allocations were provided on March 4, 2021 and show that the City is expected to provide a total of 3,341 households in the period running from October 2021 to October 2029. As further described below under Subsection 4.9.3, Regulatory Framework, the City’s Housing Element will soon be updated in compliance with State law and to conform with the 6th Cycle RHNA final allocations.

4.9.3 Regulatory Framework

State Level

Housing Element Law: California Government Code Section 65583 and 65584(a)(1)

Section 65583 of the California Government Code requires cities and counties to prepare a housing element, as one of the state-mandated elements of the General Plan, with specific direction on its content. Pursuant to Section 65584(a)(1), the California Department of Housing and Community Development (HCD) is responsible for determining the regional housing needs assessment (segmented by income levels) for each region’s planning body known as a “council of governments” (COG), the SCAG being the COG serving the Southern California area. HCD prepares an initial housing needs assessment and then coordinates with each COG in order to arrive at the final regional housing needs assessment. To date, there have been four previous housing element update “cycles.” California is now in its fifth “housing-element update cycle.” The SCAG RHNA and the City’s General Plan Housing Element are discussed further below.

Housing Crisis Act of 2019 – (Senate Bill 330, Skinner)

On October 9, 2019, the Governor signed into law the Housing Crisis Act of 2019 (Senate Bill [SB] 330). SB 330 seeks to speed up housing production in the next half decade by eliminating some of the most common entitlement impediments to the creation of new housing, including delays in the local permitting process and cities enacting new requirements after an application is complete and undergoing local review—both of which can exacerbate the cost and uncertainty that sponsors of housing projects face. In addition to speeding up the timeline to obtain building permits, the bill prohibits local governments from reducing the number of homes that can be built through down-planning or down-zoning or the introduction of new discretionary design guidelines. The bill is in effect as of January 1, 2020, but is temporary in nature as the bill’s provisions expire on January 1, 2025.

Regional Level

Southern California Association of Governments

The Project Site is located within the jurisdiction of SCAG, a Joint Powers Agency established under California Government Code Section 6502 et seq. Pursuant to federal and state law, SCAG serves as a Council of Governments, a Regional Transportation Planning Agency, and the Metropolitan Planning Organization (MPO) for Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial Counties. SCAG’s mandated responsibilities include developing plans and policies with respect to the region’s population growth, transportation programs, air quality, housing, and economic development. Specifically, SCAG is responsible for preparing the Regional Comprehensive Plan (RCP), RTP/SCS, and RHNA, in coordination with other state and local agencies. These documents include population, employment, and housing projections for the region and its 15 subregions. Subregions play an important role as a conduit between SCAG and cities and counties of the region by participating and providing input on SCAG’s planning activities, which helps the Regional Council and its committees make better-informed decisions. The Project Site is located within the Los Angeles Subregion.

SCAG is tasked with providing demographic projections for use by local agencies and public service and utility agencies in determining future service demands. Projections in the SCAG 2020 RTP/SCS serve as the bases for demographic estimates in this analysis of Project consistency with growth projections. The findings regarding growth in the region are consistent with the methodologies prescribed by SCAG and reflect SCAG goals and procedures. Based on 2019 statistics for the City, SCAG has determined that the City has an average housing unit size of 2.3 persons per housing unit.\(^5\)

SCAG data is periodically updated to reflect changes in development activity and provisions of local jurisdictions (e.g. zoning changes). Through these updates, public agencies have advance information regarding changes in growth that must be addressed in planning for their provision of services. Changes in the growth rates are reflected in the new projections for service and utilities planning through the long-term time horizon.

The 2020 RTP/SCS, known as Connect SoCal, was developed through a four-year planning process that involved rigorous technical analysis, extensive stakeholder engagement and robust policy discussions with local elected leaders, who make up SCAG’s policy committees and Regional Council. The 2020 RTP/SCS charts a path toward a more mobile, sustainable and prosperous region by making key connections: between transportation networks, between planning strategies and between the people whose collaboration can make plans a reality. The 2020 RTP/SCS was completed in May 2020, approved and adopted by the Regional Council on September 3, 2020, and is scheduled for approval of the California Air Resources Board by November 2020.

The 2020 RTP/SCS embodies a collective vision for the region’s future, through the horizon year of 2045. It is developed with input from a wide range of constituents and stakeholders within the Counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura, including public agencies, community organizations, elected officials, tribal governments, the business community and the general public. The 2020 RTP/SCS is an important planning document for the region, allowing public agencies who implement transportation projects to do so in a coordinated manner, while qualifying for federal and state funding. The plan includes robust financial analysis that considers operations and maintenance costs to ensure the existing transportation system’s reliability, longevity, resilience and cost effectiveness. In addition, the 2020 RTP/SCS is supported by a combination of transportation and land use strategies that outline how the region can achieve California’s greenhouse gas emission reduction goals and federal Clean Air Act requirements. The plan also strives to achieve broader regional objectives, such as the preservation of natural lands, improvement of public health, increased roadway safety, support for the region’s vital goods movement industries and more efficient use of resources.

In addition, the 2020 RTP/SCS establishes policies pertaining to regional growth and efficient development patterns to reduce development impacts on traffic congestion and related increases in air quality emissions. These policies are discussed in detail in Section 4.7, Land Use and Planning.

Regional Housing Needs Assessment

The RHNA is mandated by State Housing Law as part of the periodic process of updating local housing elements of the General Plan. The RHNA quantifies the need for housing within each jurisdiction during specified planning periods, or cycles. In prior cycles, factors such as household growth and household income distribution were the primary factors considered in determining a jurisdiction’s RHNA allocation. SCAG’s 6th Cycle RHNA quantifies the regional need for housing and then allocates the regional need to each jurisdiction for a planning period between October 2021 and October 2029. The 6th Cycle RHNA is focused on existing need (current housing shortages and overcrowding) plus projected growth, which takes into account factors beyond what was used to determine the 2020 RTP/SCS’s projected growth. Therefore, the 6th Cycle RHNA allocation for the City results in a higher allocation of housing than what is represented in the 2020 RTP/SCS, which is focused solely on projected or future growth. For the 6th RHNA Cycle, SCAG

considers other factors in addition to household growth. These factors include transit accessibility, job accessibility, and indicators that influence a community’s environmental, educational, and economic resource accessibility.

On October 15, 2019, SCAG received the Final Regional Determination from HCD. On November 7, 2019, SCAG Regional Council approved a Draft RHNA Allocation Methodology for HCD’s review. The Regional Council approved the Final RHNA Methodology on March 5, 2020 and released the Draft RHNA Allocation by jurisdictions.\(^8\) The RHNA underwent Appeals Board Hearings throughout January 2021. In February 2021, the RHNA Appeals Board concluded its determination of appeals and issued the proposed final RHNA Allocation Plan and recommended the Plan for approval by SCAG’s Community, Economic & Human Development (CEHD) Committee and Regional Council.\(^9\) The final 6\(^{th}\) Cycle RHNA methodology and allocations were adopted by the Regional Council on March 4, 2021 and is currently pending HCD approval. As part of the RHNA draft allocations, the City’s allocation of housing between October 2021 and October 2029 is 3,341 units.\(^10\)

Consistent with the state housing law, the primary objectives the 6\(^{th}\) Cycle RHNA allocation plan are:

- Increase the housing supply and mix of housing types, tenure and affordability within each region in an equitable manner
- Promote infill development and socioeconomic equity, the projection of environmental and agricultural resources, and the encouragement of efficient development patterns
- Promote an improved interregional relationship between jobs and housing
- Allocating a lower proportion of housing need in income categories in jurisdictions that have disproportionately high share in comparison to the county distribution
- Affirmatively furthering fair housing

Local jurisdictions are required to plan and zone to accommodate their respective RHNA allocation (housing units) by income categories through the process of updating the Housing Elements of their General Plans. Communities use the RHNA in land use planning, prioritizing local resource allocation, and in deciding how to address identified existing and future housing needs resulting from population, employment and housing unit growth. The RHNA does not necessarily encourage or promote growth, but rather allows communities to anticipate growth, so that collectively the region and sub region can grow in ways that enhance quality of life, improve access to jobs, promotes transportation mobility, addresses social equity, and fair share housing needs.

\(^10\) SCAG, SCAG 6\(^{th}\) Cycle Final RHNA Allocation Plan.
Local Level

City of Culver City General Plan

The City’s adopted General Plan has a goal to provide for the physical, social and economic needs of the City and its people by protecting and building on the City’s strengths. The General Plan includes nine elements that have been updated at various points between 1968 and 2014. The elements focus on: Land Use, Circulation, Housing, Open Space, Noise, Conservation, Seismic Safety, Public Safety, and Recreation.

The General Plan established the following goals in order to achieve a balance of quality of life with the economic support necessary to sustain that quality:

- Residential neighborhoods that offer residents the qualities of a peaceful, small-town environment.
- Economic vitality that serves the community and protects the quality of life.
- An urban design, urban forest, open space network that links neighborhoods and businesses, and instills civic pride.
- A community that provides recreational, historical, and cultural opportunities.
- Clear and consistent guidance for balanced growth.
- Ample and efficient City services and infrastructure.
- Integrated local and regional transportation systems that serve residential and business needs.
- A peaceful community that minimizes noise disturbance.
- Clean air that provides a healthy environment.
- A safe community.
- A community that minimizes waste and protects its natural resources (Culver City, 1995).

The following policies and goals that pertain to population and housing and are applicable to the Project are as presented below.

Land Use Chapter

The Land Use Chapter places an emphasis on quality of life issues in order to improve and enhance the development of the City. The following goals, objectives and policies are applicable to the Project and population and housing:

Goal: Residential neighborhoods that offer residents the qualities of a peaceful, small-town environment.

Objective 2.A Housing Supply: Encourage the retention and creation of housing throughout the City.

Objective 3.A Affordable Housing: Encourage the provision of housing opportunities for all members of the community.

Objective 4 Neighborhood Conditions: Establish and maintain quality living environments throughout the City.

- **Policy 1.A:** Support residential planning efforts by neighborhoods. The City’s neighborhoods shall include features, design components, themes and programs (such as parks, community gathering places, streetscape amenities, signage/graphic systems, and community beautification and celebration programs) that reflect and focus the area’s identity.

- **Policy 2.B:** Continue to allow and encourage multiple family housing opportunities in areas designated for such development.

- **Policy 3.B:** Provide housing assistance programs for moderate-, low- and very low-income groups.

- **Policy 4.A:** Balance opportunities for additional housing with potential effects on adjacent lower density neighborhoods.

Housing Plan Chapter

The Housing Plan chapter is found within the City of Culver City’s Housing Element, discussed below. The Housing Plan is an assessment of the community’s housing needs identified through the City’s demographic, socioeconomic, and housing characteristics and the nature and extent of housing needs.

- **Goal 1:** A city with residential neighborhoods that offer residents the qualities of a peaceful, small-town environment.

- **Goal 2:** A city with a variety of housing opportunities that complement and enhance the city's goals for continued economic vitality and prosperity.

- **Goal 3:** Promote access to affordable housing for all income levels and address the housing needs of the homeless and special needs populations.

Objective 1. Housing Maintenance: Encourage a high level of housing maintenance to promote the availability of decent housing and to protect the quality of neighborhood environments.

- **Policy 1.B:** Maintain quality neighborhood living environments throughout the entire city.

- **Policy 1.C:** Provide assistance to low- and moderate-income households to encourage the rehabilitation and adequate maintenance of existing housing units. Currently, this policy is defunded due to State legislative action eliminating the city’s Redevelopment Agency. This policy will remain as funding from State/Federal sources may become available in the future and the city may be eligible for such funding sources.

- **Policy 1.G:** Promote energy conservation measures to reduce future operating costs.
Objective 2. Housing Supply: Maintain opportunities for developing a variety of housing types while protecting the character and stability of existing Culver City neighborhoods.

Policy 2.A: Provide for a residential lifestyle that is environmentally sound and aesthetically pleasing and that places a high priority on quality development.

Policy 2.C: Preserve the character, scale, and quality of established residential neighborhoods.

Policy 2.D: Allow mixed use residential development in areas that allow mixed use per the Zoning Code. Such developments must be sensitive to adjacent residential uses and reinforce the commercial use of the area.

Policy 2.F: Promote programs that seek to provide housing opportunities to meet the needs of people who work in the city so that they do not have to commute long distances, thereby addressing the regional issue of achieving an adequate jobs/housing balance for the western portion of Los Angeles County, while still supporting an increase in employment opportunities within the city.

Objective 3. Housing Affordability: Provide rental and home ownership housing opportunities that are compatible with the range of income levels of Culver City residents

Policy 3.A: Encourage the inclusion of affordable housing units in new housing developments by granting incentives as called for by the Zoning Code and the state density bonus law.

Policy 3.B: Actively support affordable housing development by private and non-profit housing developers.

Policy 3.C: Encourage a balanced geographical distribution of lower-income housing in order to eliminate the potential of creating areas of high concentrations of any one type of household.

Objective 4. Housing Access: Improve access to quality housing for all members of the community by eliminating discrimination, reducing physical constraints, increasing the number of affordable housing units, and supporting access to emergency shelters.

Policy 4.A: Promote efforts aimed at the development of housing available to all income and age levels.

Policy 4.B: Promote housing opportunities for families of all income levels to help maintain the family-oriented character of the city into the future.

City of Culver City General Plan Update

The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The current General Plan update is the first time all of the elements are to be updated at one time. The process
was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022.\footnote{City of Culver City, General Plan 2045, Frequently Asked Questions, https://www.pictureculvercity.com/faq. Accessed November 9, 2020.}

City of Culver City 2013-2021 Housing Element

The Housing Element was created to provide an assessment of current and future housing needs, and the constraints in and resources for meeting those needs. It also identifies and prioritizes the housing needs of the City and outlines the goals, policies, and programs to address those needs while balancing community character, objectives, and resources. State law requires Housing Elements to be updated at least every six years to reflect a community’s changing housing needs. The most recent update was published in January 2014 and covers an eight-year period, extending from October 1, 2013 through October 1, 2021. The primary issues addressed in the Housing Element include: 1) preservation and improvement of the existing housing stock, 2) housing availability for special needs populations, 3) planning for a sufficient supply of new housing to meet the city’s fair share of regional need, and 4) fair housing. The 2013-2021 Housing Element indicated that the total housing growth need for the City during the 2013-2021 planning period is 185 units, which is broken into 24 Extremely Low, 24 Very Low, 29 Low, 31 Moderate, and 77 Above Moderate households.

4.9.4 Environmental Impacts

Methodology

The analysis of population and housing impacts evaluates whether the Project’s contribution to population, housing, and employment growth are consistent with the future growth projections and related policies outlined above in order to assess the potential for impacts on the physical environment. Pursuant to the CEQA Guidelines and the thresholds used by the City to determine the significance of impacts to population and housing, as described further below, the focus of the analysis is on whether the Project would induce substantial unplanned population growth in an area either directly or indirectly, which would result in physical impacts on the environment due to the need for construction of unplanned homes, businesses, or infrastructure.

The 2020 RTP/SCS is the most recently adopted regional plan that provides population, housing, and employment projections for the City for the period between 2016 and 2045. Therefore, for the purpose of the Project’s analysis, population, housing, and employment projections based on the 2020 RTP/SCS for the City are analyzed with the Project growth to determine impacts. As the 2020 RTP/SCS provides data and projections for 2016 and 2045 only, projections for Project Baseline Year 2020 are interpolated from the 2016 and 2045 data. In addition to the 2020 RTP/SCS, the City will be expected to meet the household provision goals provided in the 6th Cycle RHNA for the period between 2021 and 2029. Therefore, the Project’s provision of households is also compared to the total allocation for the City based on the 6th Cycle RHNA.
The Project’s estimated residential population was calculated based on the Citywide Person Per Household Factor for average household size provided by the 2019 SCAG Local Profile for the City.\(^{13}\) The employment estimates for the Project are based on the employees per square foot of commercial development generation factors provided in Table 14 of the 2020 Developer Fee Justification Study for the Los Angeles Unified School District.\(^{14}\) The Project’s estimated contribution to population, housing, and employment are compared to projections from SCAG’s 2020 RTP/SCS and to the goals of the 6\(^{th}\) Cycle RHNA for the City of Culver City.

Thresholds of Significance

The following thresholds of significance are based on the Environmental Checklist contained in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to Population and Housing if it would:

- **POP/H-1** Induce substantial unplanned population growth in an area, either directly (for example by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure); or
- **POP/H-2** Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere.

The City determined in the Initial Study that the following environmental issue areas would result in no impacts or less-than-significant impacts and, therefore, are scoped out of this Draft EIR. Please refer to Appendix A-2 of this Draft EIR for a copy of the Initial Study and additional information regarding the following issue area:

- **POP/H-2** Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere.

As detailed in the Initial Study, the Project Site is currently developed with three commercial buildings and has no residential uses. As such, Project implementation would not displace existing people or housing. Therefore, no impact would occur due to displacement of people or housing that would require the construction of replacement housing. No further analysis of this issue is therefore included in this Draft EIR.

Project Characteristics and Project Design Features

Project Characteristics

As previously described in Chapter 2, *Project Description*, of this Draft EIR, the Project is currently occupied by a United States Post Office (27,225 square feet [sf]), Coco’s Bakery Restaurant (6,064 sf), Valvoline Instant Oil Change (1,722 sf) and 216 existing vehicle parking spaces. The Project would demolish and replace the existing commercial buildings and improvements on the Project Site with 230 residential units (244,609 sf) and 66,500 sf of commercial uses, including a market,

gym/studio fitness center, retail/restaurant uses and office uses. As discussed below, the Project would generate an estimated net increase of approximately 529 residents and 112 employees at the Project Site during Project operation.

Project Design Features

No specific Project Design Features are proposed with regard to population, housing, and employment.

Analysis of Project Impacts

Induce Substantial Unplanned Population Growth

Threshold Pop/H-1: The Project would have a potentially significant impact if it would induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure).

Impact Statement Pop/H-1: The Project would induce population growth through the direct development of proposed residential units and indirectly through the proposed mixed-use development. However, the Project would not induce substantial unplanned direct or indirect population growth and impacts would be less than significant.

The Project would involve demolition of the existing commercial buildings on the Project Site to support a mixed-use development with residential and commercial uses. As shown in Table 4.9.2, Projected Increases in Population, Housing, And Employment, the Project would increase the residential population of Culver City by introducing 230 residential units that would generate an estimated population of 529 residents at the Project Site.\(^{15}\) In addition, the Project would include approximately 66,500 sf of commercial uses, which would generate an estimated increase of approximately 206 employees on the Project Site.\(^{16}\) When taking into account the demolition of 35,011 sf of existing commercial uses on the Project Site and associated estimated employment, the Project would result in a net increase of 112 employees.

\(^{15}\) As described in Table 4.9-2, the total population is estimated based on the number of units multiplied by the average household size for Culver City based on SCAG’s 2019 Local Profile.

\(^{16}\) As described in Table 4.9-2, the number of employees is based on the square footages by land use multiplied by employment generation factors provided by LAUSD’s Developer Fee Justification Study.
Table 4.9-2
PROJECTED INCREASES IN POPULATION, HOUSING, AND EMPLOYMENT

<table>
<thead>
<tr>
<th>Housing Units and Population</th>
<th>Use</th>
<th>Amount</th>
<th>Average Household Size<sup>a</sup></th>
<th>Total Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residential</td>
<td>230 units</td>
<td>2.3</td>
<td>529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing Employees</th>
<th>Use</th>
<th>Amount</th>
<th>Employment Generation Factor (per 1,000 square feet)<sup>b</sup></th>
<th>Existing Number of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USPS<sup>c</sup></td>
<td>27,225 square feet</td>
<td>2.69</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Restaurant</td>
<td>6,064 square feet</td>
<td>2.71</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Valvoline</td>
<td>1,722 square feet</td>
<td>1.35</td>
<td>3</td>
</tr>
<tr>
<td>Total Existing Employees</td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projected Employees</th>
<th>Use</th>
<th>Amount</th>
<th>Employment Generation Factor (per 1,000 square feet)<sup>b</sup></th>
<th>Number of Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Market</td>
<td>38,600 square feet</td>
<td>2.71</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Restaurant +Café</td>
<td>10,600 square feet</td>
<td>2.71</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>3,900 square feet</td>
<td>2.71</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Gym/Studio Fitness Center</td>
<td>1,950 square feet</td>
<td>2.71</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Office</td>
<td>11,450 square feet</td>
<td>4.79</td>
<td>55</td>
</tr>
<tr>
<td>Total Projected Employees</td>
<td></td>
<td></td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>Net Employees</td>
<td></td>
<td></td>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>

^c During a site visit to the USPS building, the Post Master stated that approximately 70 employees worked at the building.

As shown in Table 4.9-3, Projected Population, Housing, and Employment Increases for the City, and based on SCAG 2020 RTP/SCS projections, the City’s population, household, and employment growth is expected to increase by 1,293 persons, 862 households, and 4,137 jobs between 2020 and 2045, respectively. The Project’s estimated 529 person increase in population would fall within SCAG’s growth forecast for the City for the period running from 2020 to 2045.

Table 4.9-3
PROJECTED POPULATION, HOUSING, AND EMPLOYMENT INCREASES FOR THE CITY

<table>
<thead>
<tr>
<th></th>
<th>SCAG Forecasted Growth Between 2020 and 2045<sup>a</sup></th>
<th>Project's Percentage of Forecasted Growth<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Project Increase<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>2020 - 2045 Projection Horizon</td>
<td>529</td>
<td>1,293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing Units</td>
<td>Project Increase<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>2020 - 2045 Projection Horizon</td>
<td>230</td>
<td>862</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>Project Increase<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>2020 - 2045 Projection Horizon</td>
<td>112</td>
<td>4,137</td>
</tr>
</tbody>
</table>

^a From Table 4.9-2, Projected Increases in Population, Housing, And Employment.

^b From Table 4.9-1, Projected Population, Housing, and Employment Estimates for Culver City.

^c Percentages are rounded.

As shown in Table 4.9-3, the Project’s residents would comprise 41 percent of SCAG’s projected population increase for the City in 2045. The Project’s 230 units would comprise approximately 27 percent of SCAG’s RTP/SCS projected housing increase for the City in 2045. The Project’s 112 net employees would comprise approximately 3 percent of SCAG’s projected employment increase for the City in 2045. As the Project’s increases in population, housing, and employment would be within SCAG’s RTP/SCS 2045 projections for the City, the Project would not induce unplanned substantial population growth in the area directly through the development of new housing and employment opportunities.

The Project would support and not conflict with relevant the goals, objectives and policies in the City’s General Plan. Most notably, the Project would provide high-quality infill housing through the provision of 230 residential units with a diverse mix of dwelling types, containing both market-rate and 19 units affordable to very low income households, with a range of household sizes. These characteristics of the Project would support Land Use and Housing objectives and policies for increasing housing supply and affordable housing in the City and promoting access to affordable housing through the use of State and local incentives. The Project’s residential and commercial uses would promote the General Plan’s policy for mixed-use development that would be sensitive to adjacent residential uses and reinforce the commercial use of the area.

Additionally, the Culver City October 2013-2021 Housing Element, which is based on the 5th Cycle RHNA allocations, indicates the total housing growth need for the City during this planning period is 185 units, which is broken into 24 Extremely Low, 24 Very Low, 29 Low, 31 Moderate, and 77 Above Moderate households.17 The 185 units represents the City’s share of the RHNA approved by SCAG as a response to State-mandated housing planning. While the City has already met the 2013-2021 Housing Element goal of providing 185 households during this planning period, the City did not achieve the goals for affordable housing provisions within the 185 households. The Project’s provision of 230 multi-family residential units, 19 of which would be for the Very Low income category, would assist the City in meeting the affordable household goals provided in the 2013-2021 Housing Element.

In addition to the 2013-2021 Housing Element and the 2020 RTP/SCS, the City is currently in the process of updating its Housing Element to comply with State law, and support consistency with the housing needs for the City established in the 6th Cycle RHNA allocations. These allocations, which are pending HCD approval, show the City’s allocation of housing between October 2021 and October 2029 to be 3,341 units. Accordingly, the Project’s proposed housing would constitute 6.9 percent of the 6th Cycle RHNA allocations between 2021 and 2029. Therefore, the Project would promote fulfillment of the City’s future updated Housing Element goals and the 6th Cycle RHNA allocation.

As further detailed in Section 4.7, Land Use and Planning, of the Draft EIR, SCAG established goals for development that reduces reliance on individual automobiles, with related lessening of impacts on the environment. The Project would support these goals by providing a mixed-use

development with residential and commercial uses within a SCAG-designated High Quality Transit Area (HQTA), located in proximity to existing public transit, including proximity to the Culver City Transit Center (approximately 0.8 miles south) and a municipal rapid bus line along Sepulveda Boulevard, which would serve to reduce vehicle miles traveled (VMT). The Project would further support the 2020 RTP/SCS’s goal of improving mobility, accessibility, reliability, and travel safety for people and goods based on the Project Site’s proximity to a transit center, multiple regional and local bus line and the provision of bicycle facilities to maximize mobility and accessibility. In addition to the provision of commercial uses on the Project Site, residents would be located within a reasonable walking distance to surrounding retail and office uses. The Project would create a pedestrian-friendly environment with direct access to the Studio Village Shopping Center and clear linkages to regional and local transportation systems. Within walking distance of several bus stops, the Project would promote alternate modes of transit and promote the use of bicycles through the provision of a centralized, secure bike storage location as well as a bicycle share program. The Project would encourage development of diverse housing types in areas that are supported by multiple transportation options. Thus, the Project, which is infill development, would contribute to a growth pattern that is encouraged in SCAG policies for development that reduces reliance on individual automobiles, with associated environmental benefits.

The Project would link with and tie into existing infrastructure in the Project area. As described in the Initial Study, new infrastructure for public service and utility systems that would be required, such as service connections to local water and sewer network and electricity and natural gas utilities would be sized to serve only the Project’s needs. Project operation would modify access from streets that surround the Project Site as described in Chapter 2, Project Description, and in Section 4.11, Transportation, of the Draft EIR. However, these modifications represent improvements that would not induce substantial population growth indirectly through the extension of roads or other infrastructure into undeveloped areas. The Project would not have indirect effects on growth through such mechanisms as the extension of roads and infrastructure, since the Project would represent infill development and would utilize the existing transportation and utility infrastructure to serve the Project. As such, the Project would not induce substantial population growth in the area, either directly or indirectly that cannot be reasonably accommodated, and impacts would be less than significant.

Cumulative Impacts

Chapter 3, Environmental Setting, of this Draft EIR provides a list of 27 related projects that are planned or are under construction within an approximately 1.5-mile radius of the Project Site. Of these 27 related projects, 21 are located within the City of Culver City and 6 are located within the City of Los Angeles. These projects are summarized in Table 3-1, Related Projects List, and shown on Figure 3-1, Related Projects Map, in Chapter 3.

The calculation of the cumulative number of housing units, population, and employees attributable to the related projects is provided in Table 4.9-4, Total Cumulative Development. SCAG projections for the 2045 horizon year incorporate regional policies and are based on long-term demographic trends that average out short-term variations (e.g., foreign and domestic migration).
4. Environmental Impacts Analysis
4.9 Population and Housing

Table 4.9-4
TOTAL CUMULATIVE DEVELOPMENT

<table>
<thead>
<tr>
<th>Development</th>
<th>Population</th>
<th>Housing Units</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Culver City Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related Projects</td>
<td>555</td>
<td>239</td>
<td>1,908</td>
</tr>
<tr>
<td>Project Buildout</td>
<td>529</td>
<td>230</td>
<td>112</td>
</tr>
<tr>
<td>Related Projects + Project Totals</td>
<td>1,084</td>
<td>469</td>
<td>2,020</td>
</tr>
<tr>
<td>All Related Projects (Cities of Culver City and Los Angeles)</td>
<td>2,545</td>
<td>972</td>
<td>4,044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development</th>
<th>Population</th>
<th>Housing Units</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Related Projects</td>
<td>2,016</td>
<td>742</td>
<td>3,932</td>
</tr>
<tr>
<td>Project Buildout</td>
<td>529</td>
<td>230</td>
<td>112</td>
</tr>
<tr>
<td>Related Projects + Project Totals</td>
<td>2,545</td>
<td>972</td>
<td>4,044</td>
</tr>
</tbody>
</table>

a A list of the 27 related projects is provided in Table 3-1 of Chapter 3 of this Draft EIR. 21 projects are located within the City of Culver City, and 6 projects are located within the City of Los Angeles.
b The City of Culver City average household size is based on SCAG's 2019 Profile of the City of Culver City: https://www.scag.ca.gov/Documents/CulverCity.pdf. The City of Los Angeles average household size is based on SCAG's 2019 Profile of the City of Los Angeles: https://www.scag.ca.gov/Documents/LosAngeles.pdf.
d The estimates here account for all of the related projects, including the ones located within the City of Los Angeles.

As shown above, the related projects within the City, along with the Project, would generate 1,084 residents, 469 housing units, and 2,020 employees. When accounting for related projects within the City of Los Angeles, a total of 2,545 residents, 972 housing units, and 4,044 employees would be generated.

Table 4.9-5, Cumulative Population, Housing, and Employment Impacts, compares projected cumulative growth, inclusive of the Project, to the 2020 RTP/SCS’s 2045 horizon year projections for the City of Culver City. As shown below, related projects that are outside of the boundaries of the City of Culver City (e.g., the projects within the City of Los Angeles) are not included as the table below presents a comparison to SCAG projected growth for the City of Culver City.

Table 4.9-5
CUMULATIVE POPULATION, HOUSING AND EMPLOYMENT GROWTH FOR CITY

<table>
<thead>
<tr>
<th>Project</th>
<th>Cumulative Increase, including Proposed Project</th>
<th>SCAG Projected Growth in City from 2020 to 2045</th>
<th>Cumulative Percentage of Growth in City (SCAG)</th>
<th>RHNA Projected Growth in City from 2021 to 2029</th>
<th>Cumulative Percentage of Growth in City (RHNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1,084</td>
<td>1,293</td>
<td>84%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Households</td>
<td>469</td>
<td>862</td>
<td>54%</td>
<td>3,341</td>
<td>14%</td>
</tr>
<tr>
<td>Employment</td>
<td>2,020</td>
<td>4,137</td>
<td>49%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

a From Table 4.9-4.
b From Table 4.9-1.
As shown above, the projected population, household, and employment growth for the related projects within the City of Culver City and the Project would be within the 2045 SCAG projections identified in the 2020 RTP/SCS for the City. The increases in population (approximately 84 percent) and households (approximately 54 percent) show that the City is actively increasing the housing stock within the City to meet the housing growth need based on the Housing Element and the 6th Cycle RHNA allocations. The 469 cumulative households would constitute 14 percent of the City’s allocation of housing between October 2021 and October 2029 of 3,341 units. The increase in housing stock in the City provides opportunities to reduce the demand for development in lower-density areas and achieving greater efficiency in the provision and use of existing services and infrastructure.

The additional employment opportunities would increase the number of jobs adjacent to residential areas and public transit, which would support City and regional policies intended to reduce VMT. The new jobs would bolster the local economy and bring new jobs to an area that is prime for employment growth. As such, the Project and related projects would not induce substantial unplanned population growth in an area, and cumulative impacts from related projects are considered less than significant.

4.9.5 Mitigation Measures

No mitigation measures are required as impacts would be less than significant.

4.9.6 Level of Significance After Mitigation

Not applicable. Project-specific and cumulative impacts related to population and housing would be less than significant.
4.10.1 Public Services – Fire Protection

4.10.1.1 Introduction

This section analyzes the Project’s potential effects on fire protection and emergency medical services provided by the Culver City Fire Department (CCFD). The analysis addresses fire protection facilities and services, response times, emergency access, and fire flow. The analysis is based, in part, on information provided by the CCFD through written correspondence and consultation as part of the City Public Review Committee (PRC) process. The CCFD written correspondence is included in Appendix I-1 of this Draft EIR.

4.10.1.2 Environmental Setting

Existing Conditions

Fire Protection Facilities and Services

Fire protection and emergency medical services for the Project Site are provided by the Culver City Fire Department (CCFD), which is supported, when needed, through mutual aid agreements with fire departments in the City of Los Angeles and the Los Angeles County, with further assistance from the cities of Beverly Hills, Santa Monica, and West Hollywood. The CCFD provides fire protection to an existing population of approximately 40,000 persons and is made up of a total of 79 employees who are housed at three fire stations and three support stations. Each fire station is equipped with unique equipment and personnel needed to serve the community, with at least 18 sworn personnel on duty at all times. The CCFD utilizes a three-shift schedule, staffing each shift for a 24-hour period, seven days a week, and 365 days a year. Other facilities that serve the CCFD include the Community Risk Reduction and Fire Administration offices in City Hall, as well as a 4,965-square-foot Fire Drill Training Facility used for teaching firefighting techniques. The City is divided into three fire districts, two rescue/emergency medical services (EMS) districts, and 15 metropolitan fire management zones (FMZs), with the fire and rescue/EMS districts evenly distributed by population and centerline miles of roads served, and the FMZs defined by occupancies within a given geographical area that share common fire risk.

As shown in Figure 4.10.1-1, CCFD Fire Stations in the Project Vicinity, the Project Site is located within Fire District 3, FMZ 7, with first-in service to the Project Site provided by Fire Station 3, with Fire Stations 1 and 2 providing backup service.

1 Culver City Fire Department (CCFD), Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
3 City of Culver City, General Plan Update Parks, Public Facilities, and Public Services Existing Conditions Report, July 2020, page 22.
5 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.

Figure 4.10.1-1
CCFD Fire Stations in the Project Vicinity
FMZ 7, which covers approximately 0.59 square miles (approximately 378 acres), contains approximately 84 percent residential uses, 9 percent commercial uses, and 7 percent open space. From 2014 to 2018, FMZ 7 had 24 fire incidents, 1,900 EMS incidents, 13 technical rescue incidents, 16 hazardous materials incidents, 533 other incidents, and 1 wildland incident.

Table 4.10.1-1, *CCFD Fire Stations*, provides information on the location, type of equipment/staffing, and the approximate distance/direction from the Project Site.

<table>
<thead>
<tr>
<th>Fire Station</th>
<th>Address</th>
<th>Distance to Project Site</th>
<th>Apparatus</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Station 1 (Headquarters)</td>
<td>9600 Culver Boulevard</td>
<td>1.66 miles north of Project Site</td>
<td>Engine Company</td>
<td>Captain, engineer, firefighter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paramedic Resources</td>
<td>2 firefighter/ paramedics with ALS certification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Battalion Chief Command Vehicle</td>
<td>Battalion chief</td>
</tr>
<tr>
<td>Fire Station 2</td>
<td>11252 Washington Boulevard</td>
<td>1.06 miles northwest of Project Site</td>
<td>Engine Company</td>
<td>Captain, engineer, firefighter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ambulance</td>
<td>2 EMTs</td>
</tr>
<tr>
<td>Fire Station 3</td>
<td>6030 Bristol Parkway</td>
<td>0.86 miles southeast of Project Site</td>
<td>Engine Company</td>
<td>Captain, engineer, firefighter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paramedic Resources</td>
<td>2 firefighter/ paramedics with ALS certification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Truck Company</td>
<td>Captain, engineer, 2 firefighters</td>
</tr>
</tbody>
</table>

* Approximate distance/direction from Project Site in miles is a straight line distance, not a drive distance.

Fire Station 3 has a service population of 12,588 people, and with 9 on-duty personnel, Fire District 3 would have an existing on-duty firefighter to population ratio of 1:1,399. Based on the above, the existing on-duty firefighter to population ratios for the entire City is 1:2,000.

7 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
8 With 9 on-duty personnel and a service population of 12,588 people, Fire District 3 would have 9 personnel:12,588 people, which is approximately 1 personnel:1,399 people.
9 With 20 on-duty personnel based on Table 4.10.1-1 for all three fire stations and a total City population of 40,000 people, the City would have 20 personnel:40,000 people, which is 1 personnel:2,000 people.
According to the CCFD, no new fire stations are planned at this time. However, as stated in the CCFD Strategic Plan and the 2019 Community Risk Assessment & Standards of Cover (CRA), improvements have been planned to increase CCFD performance regarding deployment, response time, data collection, and mutual aid. The CCFD plans to add a third rescue ambulance (2 staff) at Fire Station 2 and to augment employees by 7 additional staff. The CCFD will continue to monitor response time and these improvement efforts, as well as improve data collection methods to improve CCFD’s performance.

The Project Site is not located in an area of moderate or very high fire hazard. The nearest very high fire hazard severity zone (VHFHSZ) is located approximately 0.5 miles east of the Project Site. In addition, the Project Site is surrounded by urban development and is not adjacent to any wildlands or high fire hazard zones.

Emergency Response Times

In 2018, the CCFD responded to a total of 6,791 incidents, including fire, rescue, hazardous materials, and others. Based on these statistics, the CCFD had a 2018 Citywide fire/EMS incident to population ratio of 6,791 incidents per 40,000 persons, or approximately 170 incidents per 1,000 persons. The CCPD’s response time standards differentiate between the type of an emergency response call (e.g., fire suppression, EMS, technical rescue, hazardous materials emergency response) and then by the type of risk (e.g., high, moderate, and low risk). The CCFD reports their response times based on the first due-in staff and the Effective Response Force (ERF). The first due-in staff is the first unit to arrive at the incident and has the responsibility of establishing command at the scene, evaluating the need for additional resources, and providing initial emergency response services. The ERF includes the total number of personnel necessary to address an emergency and/or terminate an incident.

Table 4.10.1-2, *CCFD Response Times*, shows the response time goals, for 90 percent of the time, and the five-year aggregate response times from 2014 to 2018.

10 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
Table 4.10.1-2
CCFD Response Times

<table>
<thead>
<tr>
<th>Incident Type</th>
<th>CCFD Goal</th>
<th>Aggregate 2014-2018 Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Risk Fire Incident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Due-In Unit</td>
<td>7:00</td>
<td>10:16</td>
</tr>
<tr>
<td>ERF</td>
<td>14:00</td>
<td>n/a</td>
</tr>
<tr>
<td>Moderate Risk EMS Incident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Due-In Unit</td>
<td>6:20</td>
<td>8:10</td>
</tr>
<tr>
<td>ERF</td>
<td>9:50</td>
<td>10:26</td>
</tr>
<tr>
<td>Moderate Risk Technical Rescue Incidents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Due-In Unit</td>
<td>7:30</td>
<td>9:40</td>
</tr>
<tr>
<td>ERF</td>
<td>12:00</td>
<td>N/A</td>
</tr>
<tr>
<td>Moderate Risk Hazardous Materials Incident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Due-In Unit</td>
<td>8:00</td>
<td>10:02</td>
</tr>
<tr>
<td>ERF</td>
<td>9:00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
b CCFD, Community Risk Assessment: Standards of Cover 2019, pages 88 to 97.

While the 2014 to 2018 five-year aggregates did not completely meet CCFD’s response time goals, the total response time for first due-in units for all calls in FMZ 7, where the Project Site is located, is below the baseline but above the benchmark used by CCFD to determine response time goals.¹⁵

Emergency Access

The Project Site is located within an urbanized area that has a fully developed roadway system. Emergency access to the Project vicinity is provided by several arterials including Sepulveda and Jefferson Boulevards. Direct emergency access to the Project Site is provided by each of the three streets bordering the Project Site, including Sepulveda Boulevard, Jefferson Boulevard, and Machado Road.

Multiple direct routes are available from CCFD Fire Station 3, located at 6030 Bristol Parkway approximately 0.86 miles southeast of the Project Site, to the Project Site via Hannum Avenue to Playa Street to Sepulveda Boulevard/Jefferson Boulevard or via Bristol Parkway to Green Valley Circle to Sepulveda Boulevard.

Water Infrastructure/Fire Flow for Firefighting Purposes

Fire flow to the Project Site is currently provided by 12-inch water mains in Sepulveda Boulevard and Machado Road. The connection to the City’s water system, provided by Golden State Water Company (GSW), occurs at the northeast and southeast corners of the Project Site where laterals go from 12-inch water mains in Sepulveda Boulevard and Machado Road to existing water facilities within Jefferson Boulevard. Existing fire hydrants are also present around the Project boundary.

¹⁵ CCFD, Community Risk Assessment: Standards of Cover 2019, Figure 51, page 114.
two public fire hydrants are along the Project boundary – one at the Sepulveda Boulevard and Jefferson Boulevard intersection and one at the Sepulveda Boulevard and Machado Road intersection. Both existing fire hydrants are along Sepulveda Boulevard. GSW provided a will-serve letter and fire flow test results confirming that water service would be available for the Project.\(^{16}\)

In general, fire flow pressure requirements are closely related to land use as the quantity of water necessary for fire protection varies with the type of development, life hazard, type of occupancy, and degree of fire hazard. The City ensures that adequate fire flow is available to serve proposed development during the development review and Building Permit processes.

4.10.1.3 Regulatory Setting

This section provides a summary of State and local fire protection regulations and policies applicable to the Project.

State

California Code of Regulations (CCR)

The California Code of Regulations (CCR) Title 24 2019 California Building Code (CBC)) is a compilation of building standards, including fire safety standards for residential and commercial buildings. CBC standards are based on building standards that have been adopted by State agencies without change from a national model code; building standards based on a national model code that have been changed to address particular California conditions; and building standards authorized by the California legislature, not covered by the national model code. The 2019 California Fire Code (CFC) is part of the CBC. Typical fire safety requirements of the CFC related to construction and demolition are found in Chapter 33 and include: the installation of sprinklers; the establishment of fire resistance standards for fire doors, building materials, and particular types of construction; and, the clearance of debris and vegetation within a prescribed distance from occupied structures in wildfire hazard areas. The CFC applies to all occupancies in California, except where more stringent standards have been adopted by local agencies. Specific CFC regulations have been incorporated by reference with amendments, in the Culver City Municipal Code (CCMC).

California Mutual Aid System & Plan

The CCFD participates in the California Fire Service and Rescue Emergency Mutual Aid System through which the California Emergency Management Agency, Fire and Rescue Division is responsible for the development, implementation and coordination of the California Fire Service and Rescue Emergency Mutual Aid Plan (Mutual Aid Plan), as managed by the Governor’s Office of Emergency Services (OES).\(^{17}\) The Mutual Aid Plan outlines procedures for establishing mutual aid agreements at the local, operational, regional, and State levels, and divides the State into six mutual aid regions to facilitate the coordination of mutual aid. Culver City is located in Region I.

\(^{17}\) California Emergency Management Agency, Fire and Rescue Division, California Fire and Rescue Emergency Mutual Aid System, Mutual Aid Plan, revised April 2019.
Through the Mutual Aid Plan, the OES is informed of conditions in each geographic and organizational area of the state, and the occurrence or imminent threat of disaster. All OES Mutual Aid participants monitor a dedicated radio frequency for fire events that are beyond the capabilities of the responding fire department and provide aid in accordance with the management direction of the OES.

As previously stated, the CCFD is supported, when needed, through mutual aid agreements with fire departments in the City of Los Angeles and Los Angeles County. Under this automatic aid agreement, CCFD apparatus and personnel are deployed to portions of Los Angeles County west of the City and to the City of Los Angeles south of the City, as well as to the City’s immediate borders. As the City is within mutual aid Region 1 of the Emergency Mutual Aid Region established by OES, mutual aid assistance is also provided by the fire departments in the cities of Beverly Hills, Santa Monica, and West Hollywood. The mutual aid agreements ensure that the CCFD and the neighboring assisting agencies have shared standard operating procedures and regularly participate in joint training programs. In the event of major emergencies or community disasters, the City of Los Angeles and Los Angeles County fire departments would provide immediate aid to the City, with the other cities of Beverly Hills, Santa Monica, and West Hollywood following, as needed.

California Constitution Article XIII, Section 35

Section 35 of Article XIII of the California Constitution at subdivision (a)(2) provides: “The protection of public safety is the first responsibility of local government and local officials have an obligation to give priority to the provision of adequate public safety services.” Section 35 of Article XIII of the California Constitution was adopted by the voters in 1993 under Proposition 172. Proposition 172 directed the proceeds of a 0.50-percent sales tax to be expended exclusively on local public safety services. California Government Code Sections 30051-30056 provide rules to implement Proposition 172. Public safety services include fire protection. Section 30056 mandates that cities are not allowed to spend less of their own financial resources on their combined public safety services in any given year compared to the 1992-93 fiscal year. Therefore, an agency is required to use Proposition 172 to supplement its local funds used on fire protection services, as well as other public safety services. In *City of Hayward v. Board of Trustees of California State University* (2015) 242 Cal.App.4th 833, the court found that Section 35 of Article XIII of the California Constitution requires local agencies to provide public safety services, including fire protection, and that it is reasonable to conclude that the city will comply with that provision to ensure that public safety services are provided. The *Hayward* ruling also concluded that “assuming the city continues to perform its obligations, there is no basis to conclude that the project will cause a substantial adverse effect on human beings” and the “need for additional fire protection services is not an environmental impact that CEQA requires a project proponent to mitigate.”

California Vehicle Code

Section 21806 of the California Vehicle Code (CVC) pertains to emergency vehicles responding to Code 3 incident/calls. This section of the CVC states the following:

Upon the immediate approach of an authorized emergency vehicle which is sounding a siren and which has at least one lighted lamp exhibiting red light that is visible, under normal atmospheric conditions, from a distance of 1,000 feet to the front of the vehicle, the surrounding traffic shall, except as otherwise directed by a traffic officer, do the following:
(a)(1) Except as required under paragraph (2), the driver of every other vehicle shall yield the right-of-way and shall immediately drive to the right-hand edge or curb of the highway, clear any intersection, and thereupon shall stop and remain stopped until the authorized emergency vehicle has passed. (2) A person driving a vehicle in an exclusive or preferential use lane shall exit that lane immediately upon determining that the exit can be accomplished with reasonable safety...(c) All pedestrian upon the highway shall proceed to the nearest curb or place of safety and remain there until the authorized emergency vehicle has passed.

Local

City of Culver City General Plan

The 1975 Public Safety Element of the Culver City General Plan contains the following fire protection policies applicable to the proposed Project:

- Reduce fire hazards associated with older buildings.
- Encourage improved fire protection for multi-story structures and high-hazard industrial facilities.
- Require all new development and selected existing development to comply with established fire safety standards.

City of Culver City General Plan Update

The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The current General Plan update is the first time all of the elements are to be updated at one time. The process was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022.

CCFD 2019 Community Risk Assessment & Standards of Cover

CCFD’s 2019 CRA serves as the CCFD’s Integrated Risk Management Plan. The CRA defines the process, known as “deployment analysis,” as a written procedure which determines the distribution and concentration of fixed and mobile resources of an organization. The purpose for completing

such a document is to assist the agency in ensuring a safe and effective response force for fire suppression, emergency medical services, and specialty response situations. The CRA serves as: (1) the basis for continually measuring service level performance; (2) a predictive tool for helping to determine workload and ideal unit utilization; (3) a management tool for determining apparatus type and staffing levels; (4) a descriptive tool for validating service levels; and (5) a baseline tool for defining service level objectives. Performance measures set forth in the CRA applicable to the Project include, but are not limited to, the following:23

Response Time Goals: Response time goals for fire suppression, technical rescue and HazMat are 7:00 minutes for the first due-in unit and 8:00 minutes for the ERF, 90 percent of the time. Response time goals for EMS are 6:20 minutes for the first due-in unit and 9:50 minutes for the ERF, 90 percent of the time. It is noted that the above are goals, not standards.

Fire Flow Requirements: Fire flow requirements range from 2,000 gallons per minute (gpm) in low-density residential areas up to 12,000 gpm in commercial and industrial areas.

High/Special Risk Fire Response: High and Special Fire Risk incidents in the City represent unique critical tasking situations where there is very little historical response information to base tasking upon. These types of incidents are addressed with the region’s mutual aid agreements to help augment City resources. For example, the minimum mutual aid request to meet the demands of a high/special risk fire is an “A Assignment,” (i.e., one truck company (5), three engine companies (12), two rescue ambulances (4), two battalion chiefs (4), and one EMS Supervisor (1), requiring 26 personnel to assist with the incident).

City of Culver City Municipal Code

Sections of the City’s Municipal Code applicable to fire protection and EMS services at the Project Site include, but are not limited to, the following:

Section 9.02 (Fire Prevention):

- **Section 9.02.005 (Adoption of the 2019 CFC)**: Adopts the 2019 CFC with amendments as the City of Culver City Fire Code (Fire Code).

- **Section 9.02.035 (Locks for CCFD Access)**: All noted gates and exterior doors shall be provided with locks for CCFD access - keys shall be provided in NXOX boxes.

- **Section 9.02.040 (Automatic Fire Sprinkler Systems)**: An automatic fire-extinguishing (sprinkler) system shall be installed in every new building in the City, hereinafter constructed or moved into the City, regardless of area separation or type of construction.

- **Section 9.02.065 (Fire Hydrant Spacing)**: Fire hydrant spacing in commercial/industrial areas shall be not more than 300 feet apart. The maximum distance of a fire hydrant to a Fire Department Connection (FDC) shall not exceed 100 feet.

4.10.1.4 Environmental Impacts

Methodology

Fire protection needs relate to the size of the population and geographic area served, the number and types of calls for service, and the characteristics of the community and the Project. Changes in these factors resulting from the Project may increase the demand for services. The analysis of impacts on fire protection evaluates the Project’s effects on the demand for fire prevention and protection services, including review of the Project’s emergency features, to determine if the Project would require additional equipment, personnel, new facilities, or alterations to existing facilities. Beyond the standards included in the Fire Code and other applicable regulations and plans, consideration is given to the size of the Project, uses proposed, fire flow necessary to accommodate the Project, the increase in demand for service created by the Project, and impacts to emergency response times. Based on these factors, a determination is made as to whether the CCFD would require the addition of a new or physically altered facility to maintain acceptable service levels, the construction of which could result in a potentially significant environmental impact.

Thresholds of Significance

The significance threshold below is derived from the Environmental Checklist question in Appendix G of the CEQA Guidelines. Accordingly, a significant impact associated with fire protection would occur if the Project were to:

- **FIRE-1** Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for police protection.

Project Characteristics and Project Design Features

Project Characteristics

The Project would include a net increase in developed square footage at the Project Site of 276,098 square feet (sf) of floor area.\(^{24}\) This would generate an estimated net increase of approximately 529 residents and 112 employees at the Project Site during Project operation.\(^{25}\)

Proposed Fire Access

As indicated previously, there is currently fire access provided on all frontages and driveways along the Project Site. Buildout of the Project would maintain CCFD access from the surrounding street frontages, though reduced down to three driveways. The surface parking lot for retail uses by Machado Road would be used as turnaround area for the CCFD and trucks, as necessary.

\(^{24}\) Net increase was calculated by taking the existing 35,011 sf building area and subtracting from the proposed 311,109 sf building area.

\(^{25}\) See Section 4.9, *Population and Housing*, of this Draft EIR, for the calculations used to generate the Project’s employee estimate.
Proposed Fire Flow Infrastructure

The Project would include a fire sprinkler suppression system. All fire hydrant requirements and fire sprinkler designs are subject to the CCFD review and approval during the Project’s design and permitting phase. As indicated by the CCFD, the fire flow requirements for the Project would be 4,000 gpm at 20 pounds per square inch (psi) for 4 hours.26 Also, any required new on- and/or off-site fire hydrants would be provided.

Project Design Features

In addition to the Project regulatory requirements and proposed fire access and fire flow infrastructure described above, the Applicant would implement the following Project Design Features (PDFs) to reduce the impacts of the Project on fire protection and EMS services:

PDF-FIRE-1 (Fire Protection Devices): The Project would be equipped with fire alarms, fire sprinklers, and an emergency radio response system.

PDF-FIRE-2 (Submittal of Plans to CCFD for Review/Approval): Plans for the proposed new building, fire lanes and associated turnarounds, fire hydrant locations, and associated fire prevention/suppression equipment, will be submitted to the CCFD for review and approval.

PDF-TRAF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant's proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

26 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:
 1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.
 2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.
 3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.
 4. Procedures for the training and certification of flag persons.
 5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.
6. The location of temporary power, portable toilet and trash and materials storage locations.

7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.

8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.

Analysis of Project Impacts

Threshold FIRE-1: The Project would have a significant impact on fire protection if it were to result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for fire protection.

Construction

Impact Statement FIRE-1a: Project construction would not require new or expanded fire protection facilities to maintain service due to compliance with City’s Fire Code requirements and proposed Project Design Features that address fire safety, emergency access, emergency response times, and fire flow. Therefore, construction impacts would be less than significant.

Fire Protection Facilities and Services

Project construction activities would include demolition, site preparation including trenching for utilities, and construction of new building and street improvements during the approximately 26-month construction period. While Project construction could result in a temporary increase in demand for fire protection and EMS, the demand during construction would be reduced compared to the demand needed to service the existing uses on the Project Site. Furthermore, Project construction activities would occur in accordance with the Culver City Fire Code requirements (including Chapter 33 of the 2019 CFC, Fire Safety During Construction and Demolition) which have been formulated to avoid substantial fire risk during construction activities. These requirements include, but are not limited to: provision of fire suppression equipment specific to construction at the construction sites; training of construction managers and personnel in fire prevention and emergency response; storing flammable and combustible liquids in fire proof containers; proper maintenance of construction equipment; the handling of flammable materials in accordance with strict requirements and manufacturer instructions; and the clean-up of any spills of flammable materials accordance with applicable requirements. Furthermore, construction activities would occur in the midst of the existing fire hydrants in the area. Based on the above, Project construction would not impact fire protection facilities and services, and Project...
construction would not require new or expanded fire protection facilities to maintain adequate fire protection services. Therefore, impacts would be less than significant.

Emergency Access and Response Times

Regarding emergency access and response times during construction, per PDF-TRAF-1, construction staging and construction worker parking associated with the Project would be accommodated on the Project Site, limiting potential conflicts with traffic on local streets. In addition, as required by the CCFD and PDF-TRAF-1, emergency vehicle access to the Project Site and neighboring land uses would be maintained, and worker and construction equipment delivery would be scheduled to avoid peak traffic hours. Additionally, PDF-TRAF-1 requires construction management meetings with City Staff and other representatives of surrounding developments if concurrent construction occurs to ensure that concurrent construction projects are managed in collaboration with one another. Furthermore, while the Project would generate construction traffic and potentially require off-site utility and roadway improvements and associated temporary lane closures along one or more of the three streets bordering the Project Site: (1) as discussed in Section 4.11, *Transportation*, construction traffic impacts would be less than significant with the implementation of the Construction Management Plan required by PDF-TRAF-1; and (2) per PDF-TRAF-1, Project construction contractors would coordinate with the CCFD concerning any planned temporary lane closures and other construction activities that could affect emergency access and emergency response times, and arrange for traffic control devices and detours to minimize any potential impacts to traffic. Additionally, pursuant to CVC Section 21806, emergency vehicles would have priority to roadways and access to emergencies. Lastly, the Project Site is located approximately 0.86 miles from CCFD Fire Station 3, such that even if Project construction activities were to temporarily slow traffic in the area, it is anticipated that emergency response times to the Project Site and adjacent area would continue to remain well below existing City average response times and close to or below City response time goals. Additionally, as previously stated, the response time for first due-in units for calls in FMZ 7, where the Project Site is located, is below the baseline but above the benchmark used by CCFD to determine response time goals.\(^{27}\) As previously stated under Subsection 4.10.1.2, *Environmental Setting*, under Existing Conditions, the CCFD has planned improvements to increase CCFD performance regarding deployment, response time, data collection, and mutual aid. The CCFD plans to add a third rescue ambulance (2 staff) at Fire Station 2 and to augment employees by 7 additional staff.\(^{28}\) Also, the CCFD is further looking to reduce response times via: alarm handling improvements with its new dispatch center; use of turnout timers in stations to better monitor turnout times; and use of HAAS alerting systems in new engines that send messages to drivers and connected vehicles that are predicted to be in the most probable path of the emergency vehicles as they are preparing to approach or arrive on-scene.\(^{29}\)

\(^{27}\) CCFD, Community Risk Assessment: Standards of Cover 2019, Figure 51, page 114.

\(^{28}\) Culver City, General Plan Update Parks, Public Facilities, and Public Services Existing Conditions Report, July 2020, page 29.

\(^{29}\) CCFD, Community Risk Assessment: Standards of Cover 2019, page 121.
Based on the above, Project construction would not impact emergency access and response times, and Project construction would not require new or expanded fire protection facilities to maintain adequate fire protection services. Therefore, impacts would be less than significant.

Operation

Impact Statement FIRE-1b: Project operation would not require new or expanded fire protection facilities to maintain service due to compliance with City Fire Code requirements and proposed Project Design Features that address fire safety, emergency access, emergency response times, and fire flow. Therefore, operational impacts would be less than significant.

Fire Protection Facilities and Services

As indicated previously, the Project would include a net increase in developed square footage at the Project Site of 276,098 sf of floor area and would generate an estimated net increase of approximately 529 residents and 112 employees.\(^{30,31}\) Based on the 2018 Citywide fire/EMS incident to population ratio of 170 incidents per 1,000 persons, and the existing firefighter to population ratio within CCFD Fire District 3 of 1:1,399, the Project’s anticipated increase of 529 residents and 112 employees (or a total net increase of 641 people) would generate the potential for an estimated 109 additional fire/EMS incidents per year requiring CCFD response, and a potential increase in demand for services that could translate to the need for approximately 0.5 additional CCFD firefighters (based purely on a mathematical analysis). However, the potential for an increase in the number of service calls and firefighter demand associated with the Project would represent very small proportions (approximately 2 and 1 percent, respectively) of the total number of Citywide service calls and CCFD firefighters.

As also stated in the CCFD Correspondence, CCFD has plans to add a third rescue, which would consist of two staff, housed at Fire Station 2. Additionally, the CCFD routinely assesses changes in demand for fire protection services and the potential need for additional staff and equipment, or new or expanded facilities, to maintain adequate levels of service. In conformance with the California Constitution Article XIII, Section 35(a)(2) and the City of Hayward v. Board of Trustees of California State University (2015) 242 Cal.App.4th 833 ruling, the City has and will continue to meet its legal obligations to provide adequate public safety services, including fire protection. Because of these factors and as stated in the CCFD Correspondence, Fire Station 3 would be able to accommodate the additional demand associated with the Project without the need for expansion or development of a new fire station.\(^{32}\) Furthermore, the above estimates are conservative because they do not account for the reductions in fire/EMS incidents and service demand that would occur under the Project associated with: replacing existing older buildings at the Project Site with new buildings constructed to the latest Building and Fire Codes and, per PDF-FIRE-1, would be equipped with fire protection devices. The estimates also do not take into account the provision of additional fire hydrants as may be required to meet spacing requirements under CCMC Section 9.02.065. Lastly, as required by PDF-FIRE-2, plans for the proposed building, improved fire lane,

\(^{30}\) Net increase was calculated by taking the existing 35,011 sf building area and subtracting from the proposed 311,109 sf building area.

\(^{31}\) See Section 4.9, *Population and Housing*, of this Draft EIR, for the calculations used to generate the Project’s employee estimate.

\(^{32}\) CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
fire hydrant locations, and associated fire prevention/suppression equipment would be submitted to the CCFD for review and approval at the building permit and plan check phases of the Project which would ensure compliance with applicable Fire Code requirements, thereby minimizing the risk of increased operational fire safety hazards.

Based on the above, Project operation would not require new or expanded fire protection facilities to maintain existing service ratios. Therefore, Project operational fire protection impacts would be less than significant.

Response Times
As discussed previously, CCFD emergency response times within FMZ 7, where the Project Site is located, are below the baseline but above the benchmark used by CCFD to determine response time goals. The CCFD has also estimated that the rough estimate response time for the first due-in unit to the Project Site would be 9:55 minutes with an effective response force arriving within 10:16 minutes 90 percent of the time. While precise response times cannot be predicted, this information suggests that the first due-in unit response goal of 7 minutes might not be achieved, but that the goal for arrival of the total number of personnel necessary to address an emergency and/or terminate an incident would be well under the 14 minute goal for the effective response force.

Project operation would increase traffic in the area, as discussed in Section 4.11, Transportation, of this Draft EIR, which could adversely affect CCFD emergency response times. However, the Project Site is located in an area that is well served by the surrounding roadway network, and multiple alternative routes exist for emergency vehicle access to the Project Site. Furthermore, pursuant to CVC Section 21806, emergency response is routinely facilitated, particularly for high priority calls, through use of sirens to clear a path of travel, driving in the lanes of opposing traffic, use of alternate routes, and multiple station response such that adequate CCFD emergency response would be maintained with implementation of the Project. And, as previously stated above, CCFD is looking to reduce response times via: alarm handling improvements with its new dispatch center; use of turnout timers in stations to better monitor turnout times; and use of HAAS alerting systems in new engines that send messages to drivers and connected vehicles predicted to be in the path of the emergency vehicles preparing to approach or arrive on-scene. For all the reasons stated above, Project operational effects on emergency response times would not require new or expanded fire protection facilities, and the impact would be less than significant.

Emergency Access
As discussed previously, the Project Site is located within an urbanized area with a fully developed roadway system. Direct emergency access to the Project Site is provided by each of the three streets bordering the Project Site, including Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Within the Project Site itself, emergency access would be provided from all three street frontages surrounding the Project Site. Implementation of PDF-FIRE-2 would ensure that the

33 CCFD, Community Risk Assessment: Standards of Cover 2019, Figure 51, page 114.
34 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
CCFD would review and approve plans for the building, fire lanes and associated turnarounds, fire hydrant locations, and associated equipment, to ensure adequate access to and within the Project Site for emergency vehicles. Accordingly, emergency access would be maintained during operation of the Project. As such, emergency access to the Project Site would be maintained at all times.

Based on the above, Project operation would not result in impacts to emergency access that would require new or expanded fire protection facilities, and the impact would be less than significant.

Water Infrastructures/Fire Flow for Firefighting Purposes

Fire flow requirements are based on building size and construction type. The Project Site is served by a loop system that connects to a 12-inch lateral in Jefferson Boulevard. Existing fire hydrants are present around the Project boundary. Although fire service lines are provided to the Project Site, additional hydrants may be required depending on the Fire Department’s review of development plans. In addition, current fire regulations require that all buildings be equipped with sprinkler systems, which may also increase fire flow demand. PDF-FIRE-2 requires that building plans would be submitted to the CCFD to review and approve any fire hydrant locations. All fire hydrant requirements and fire sprinkler designs are subject to the CCFD review and approval during the Project’s design and permitting phase. Any required new on- and/or off-site fire hydrants would be provided. Therefore, operational impacts to the City’s domestic and fire water service facilities and infrastructure would be less than significant.

Cumulative Impacts

Chapter 3, *Environmental Setting*, of this Draft EIR provides a list of 27 related projects that are planned or are under construction within an approximately 1.5-mile radius of the Project Site. These projects are summarized in Table 3-1, *Related Projects List*, and shown on Figure 3-1, *Related Projects Map*, in Chapter 3 of this Draft EIR. These related Projects occur in two separate jurisdictions, the City of Culver City and the City of Los Angeles. Of the 27 related projects, 21 occur within Culver City and, like the proposed Project, would create a demand for fire protection service from the CCFD. Most of the related projects are located in CCFD Fire District 2, and only two related projects are located within Fire District 3 where the Project Site is located.

The total amount of development and associated daytime population from the related projects located in Culver City are identified in Table 4.10.1-3, *Related Projects for Fire Protection*. As indicated therein, the related projects in the City would generate an estimated daytime population of approximately 2,457 persons which, when combined with the net increase of 641 residents and employees associated with the proposed Project, would generate a cumulative daytime population of 3,098 persons requiring fire protection service from the CCFD. Applying the existing firefighter to population ratio for the entire City of 1:2,000, this cumulative population would create a demand for approximately 1.5 additional CCFD firefighters.
Table 4.10.1-3

RELATED PROJECTS FOR FIRE PROTECTION

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Quantity</th>
<th>Generation Factor(^a)</th>
<th>Daytime Population(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>50 du</td>
<td>2.3/du(^c)</td>
<td>115</td>
</tr>
<tr>
<td>Assisted Living (Residents)</td>
<td>189 du</td>
<td>2.3/du(^c)</td>
<td>435</td>
</tr>
<tr>
<td>Assisted Living (Employees)</td>
<td>189 du</td>
<td>1.13/ksf</td>
<td>108</td>
</tr>
<tr>
<td>Office</td>
<td>347.78 ksf</td>
<td>4.79/ksf</td>
<td>1,666</td>
</tr>
<tr>
<td>Medical Office</td>
<td>4.52 ksf</td>
<td>4.27/ksf</td>
<td>20</td>
</tr>
<tr>
<td>Retail</td>
<td>2.97 ksf</td>
<td>2.71/ksf</td>
<td>9</td>
</tr>
<tr>
<td>Hotel</td>
<td>183 rooms(^d)</td>
<td>1.13/ksf</td>
<td>104</td>
</tr>
<tr>
<td>Subtotal</td>
<td>--</td>
<td>--</td>
<td>2,457</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>--</td>
<td>--</td>
<td>641</td>
</tr>
<tr>
<td>Total</td>
<td>--</td>
<td>--</td>
<td>3,098</td>
</tr>
</tbody>
</table>

\(^a\) The employment generation factors are based on the Los Angeles Unified School District, 2020 Developer Fee Justification Study, March 2020, page 19.

\(^b\) Totals are rounded up.

\(^c\) The City of Culver City average household size is based on SCAG’s 2019 Profile of the City of Culver City: https://www.scag.ca.gov/Documents/CulverCity.pdf.

\(^d\) Hotel rooms are assumed to be 500 square feet per room.

Although a cumulative demand for CCFD fire protection and EMS could occur, this demand would be reduced through regulatory compliance, similar to the Project. All the related projects in Culver City would be subject to review by the CCFD for compliance with applicable fire and building code requirements related to fire safety, emergency response times, emergency access, and fire flow which have been formulated to avoid significant fire protection and EMS impacts. Additionally, PDF-TRAF-1 requires construction management meetings with City Staff and other representatives of surrounding developments if concurrent construction occurs to ensure that concurrent construction projects are managed in collaboration with one another.

In addition, the CCFD’s operating budget includes funds generated by property tax revenues which are supplemented by tax-base expansion. Tax-base revenue from Project development, together with revenues from past, present, and reasonably foreseeable future projects, would generate funding for fire protection services. This funding would support any needed increases in fire stations, staffing, and equipment to keep response times within acceptable limits.

Lastly, the 1.5 additional firefighters required by the cumulative development throughout the City would represent only approximately 17 percent of the 9 on-duty personnel at Fire Station 3 and 30 percent of the existing 5 on-duty personnel at Fire Station 2 where the majority of the related projects are located. Therefore, it is anticipated that the additional firefighters would be accommodated at any of the three CCFD fire stations. As Fire Station 2 is anticipating adding additional staff at Fire Station 2 and augmenting employees by 7 additional staff, the additional firefighters required would then represent 12.5 percent of the future 12 staff at Fire Station 2.
Additionally, the CCFD routinely assesses the internal needs and external opportunities for improvement and growth. If the number of incidents in a given area increases, it is the CCFD’s responsibility to assign new staff and equipment, and potentially build new or expanded facilities, as necessary, to maintain adequate levels of service. In conformance with the California Constitution Article XIII, Section 35(a)(2) and the City of Hayward v. Board of Trustees of California State University (2015) 242 Cal.App.4th 833 ruling, the City has and will continue to meet its legal obligations to provide adequate public safety services, including fire protection. While the construction of any such station could potentially result in substantial adverse physical impacts (for example, air emissions and noise during construction, traffic during operation), construction activities would be guided by CCMC requirements and potentially through mitigation measures required through a CEQA process. According to the CCFD, no new fire stations are planned at this time. Therefore, it is speculative to predict the environmental effects resulting from any such improvements, and per CEQA Guidelines Section 15145 regarding speculation, no further analysis is required.

Based on the above, the Project would not substantially contribute to cumulatively considerable impacts regarding fire protection. Therefore, cumulative impacts would be less than significant.

4.10.1.5 Mitigation Measures

No mitigation measures are required, as impacts would be less than significant.

4.10.1.6 Level of Significance after Mitigation

Not applicable. Project-specific and cumulative impacts related to fire protection would be less than significant.

36 CCFD, Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.
4.10.2 Public Services – Police Protection

4.10.2.1 Introduction

This section addresses potential impacts on police services that could occur due to construction and operation of the Project. The analysis focuses on the Culver City Police Department (CCPD) facilities that currently serve the Project Site and the ability of the CCPD to provide police protection services to the Project. The analysis is based on information provided in a September 23, 2020 correspondence from the CCPD (CCPD Correspondence), included in Appendix I-2 of this Draft EIR. This analysis is also based on information provided on the CCPD’s website and from other published sources.

4.10.2.2 Environmental Setting

Existing Conditions

Police protection for the Project Site is provided by the CCPD. The CCPD is responsible for providing visible patrol, preliminary criminal investigations, follow-up investigations, traffic accident investigations, and specialized investigations of crimes such as identify theft, vice offenses, and similar crimes. The CCPD promotes community safety through deterrence and prevention of crime, apprehension of offenders, and education of the public in self-protective measures to minimize victimization. Additionally, the CCPD collaborates with regional partners and the Los Angeles County Sheriff’s Department (LASD), when needed, for large scale police-related emergencies, and along with several other local cities, contracts with the South Bay Regional Public Communications Authority for dispatch services.1

The CCPD is staffed with two full time K-9 units, an Emergency Response Team (ERT), a Crisis Response Team (CRT), a Mental Health Evaluation Team (MET), and a Partnership in Policing Team (PIP). In addition, the CCPD provides neighborhood and business watch programs to prevent criminal activities, which involve the PIP team. Crime patterns are routinely analyzed and dispersed to patrol officers and special crime suppression units. Monthly reports are prepared and made public that identify monthly statistics and information related to crime and arrests, staffing, parking and traffic citations and traffic collisions.2

The CCPD has 113 sworn officers3 and 45 professional staff that serve an area of approximately five square miles with a residential (nighttime) population of approximately 40,000, and a daytime

1 Culver City Police Department (CCPD), Correspondence from Assistant Chief of Police Jason Sims, September 23, 2020. Provided in Appendix I-2 of this Draft EIR.
3 It should be noted that the CCPD Correspondence dated September 23, 2020 states that the CPPD has 110 sworn officers and 40 professional staff. Staffing numbers here have been updated absed on the latest CCPD Monthly Report from February 2021, https://www.culvercitypd.org/files/assets/police/documents/monthly-reports/feb-2021.pdf. Accessed March 19, 2021.
The City has a officer to daytime population ratio of approximately 1:3,540 and a nighttime officer to population ratio of approximately 1:354.7

The CCPD is divided into five patrol districts. The most current average response time documented in the CCPD February 2021 monthly report was 5 minutes and 2 seconds for emergency calls and 9 minutes and 18 seconds for non-emergency calls.8

As indicated in Figure 4.10.2-1, Police Stations, the CCPD is located at 4040 Duquesne Avenue, approximately 1.6 miles northeast of the Project Site. The closest LASD station located at 1310 West Imperial Highway in Los Angeles, approximately 7 miles southeast of the Project Site. Additionally, the Project Site is located within Patrol District 2, which covers the portion of the City northeast of Sepulveda Boulevard and southwest of Duquesne Avenue.9

Table 4.10.2-1, Culver City 2019 Part I Crime Statistics, identifies Part I crimes reported in the City in 2019 (the latest annual crime statistics). Part I crimes are defined by the Federal Bureau of Investigation (FBI) by eight crimes, or Part I offenses: murder and nonnegligent homicide, rape, robbery, aggravated assault, burglary, motor vehicle theft, larceny-theft, and arson. They are called “Part I” crimes in the FBI’s crime reporting system because they are serious crimes, they occur with regularity in all areas of the country, and they are likely to be reported to police.10 The CCPD considers both violent crime (homicide, rape, robbery, and assault) and property crime (burglary, theft, motor vehicle theft, and arson) as part of their Part I crimes.11

4 Daytime population is the number of people in a city during the day, including commuters and tourists. Nighttime population is the number of people who live in a city, typically residents.
5 CCPD, Correspondence from Assistant Chief of Police Jason Sims, September 23, 2020. Provided in Appendix I-2 of this Draft EIR.
7 The daytime ratio was calculated by taking the 400,000 daytime population and dividing by 113 sworn officers. The nighttime ratio was calculated by taking the 40,000 nighttime population and dividing by 113 sworn officers.
Figure 4.10.2-1
Police Stations

- **Culver City Police Station**
 - 4040 Duquesne Avenue
 - Culver City, CA 90232

- **Los Angeles County Sheriff Station**
 - 1310 West Imperial Highway
 - Los Angeles, CA 90044

Culver City Police Car Districts
- Car District 1
- Car District 2
- Car District 3
- Car District 4
- Car District 5

SOURCE: ESR; Culver City, 2017.

11111 Jefferson Boulevard Mixed-Use Project
<table>
<thead>
<tr>
<th>Crime Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assault</td>
<td>131</td>
</tr>
<tr>
<td>Arson</td>
<td>9</td>
</tr>
<tr>
<td>Burglary</td>
<td>314</td>
</tr>
<tr>
<td>Homicide</td>
<td>0</td>
</tr>
<tr>
<td>Robbery</td>
<td>68</td>
</tr>
<tr>
<td>Rape</td>
<td>5</td>
</tr>
<tr>
<td>Theft</td>
<td>1,059</td>
</tr>
<tr>
<td>Motor Vehicle Theft</td>
<td>160</td>
</tr>
<tr>
<td>Total</td>
<td>1,746</td>
</tr>
</tbody>
</table>

Table 4.10.2-1

CULVER CITY 2020 PART I CRIME STATISTICS

As indicated in Table 4.10.2-1, a total of 1,746 Part I crimes were reported in the City in 2020, including 131 assaults, 314 burglaries, 68 robberies, 5 rapes, 1,059 cases of theft, and 9 acts of arson. No homicides were reported in the City in 2020. It should be noted that in 2020, 1,542 (or approximately 88 percent) of the reported Part I Crimes were Property Crimes (burglary, theft, motor vehicle theft, and arson), compared to the 204 (or approximately 12 percent) reported Violent Crimes (homicide, rape, robbery, and assault). Based on these numbers and the City’s daytime population of 400,000 people, the City has an existing annual crime rate of approximately 4.4 Part I Crimes per 1,000 population.

The Project Site is currently developed with three single-story commercial buildings, surface parking, a parking lot that serves the proximate Exceptional Children’s Foundation (ECF), and landscaping. The three single-story commercial buildings include a United States Post Office, a Coco’s Bakery Restaurant, and Valvoline Instant Oil Change. The Project Site includes security fencing surrounding the United States Post Office, lighting throughout the existing parking lots, closed-circuit television (CCTV) surveillance, and security lighting.

4.10.2.3 Regulatory Framework

This section provides a summary of State, regional, and local police protection regulations and policies applicable to the Project Site.

State

California Constitution Article XIII, Section 35

Section 35 of Article XIII of the California Constitution at subdivision (a)(2) provides: “The protection of public safety is the first responsibility of local government and local officials have an obligation to give priority to the provision of adequate public safety services.” Section 35 of Article XIII of the California Constitution was adopted by the voters in 1993 under Proposition 172.
Proposition 172 directed the proceeds of a 0.50-percent sales tax to be expended exclusively on local public safety services. California Government Code Sections 30051-30056 provide rules to implement Proposition 172. Section 30056 mandates that cities are not allowed to spend less of their own financial resources on their combined public safety services in any given year compared to the 1992-93 fiscal year. Therefore, an agency is required to use Proposition 172 to supplement its local funds used on police protection services, as well as other public safety services. In *City of Hayward v. Board of Trustee of California State University* (2015) 242 Cal. App. 4th 833, the court found that Section 35 of Article XIII of the California Constitution requires local agencies to provide public safety services, including police protection services, and that it is reasonable to conclude that the City will comply with that provision to ensure that public safety services are provided.\(^\text{12}\)

California Vehicle Code

Section 21806 of the California Vehicle Code (CVC) pertains to emergency vehicles responding to Code 3 incident/calls. This section of the CVC states the following:

> Upon the immediate approach of an authorized emergency vehicle which is sounding a siren and which has at least one lighted lamp exhibiting red light that is visible, under normal atmospheric conditions, from a distance of 1,000 feet to the front of the vehicle, the surrounding traffic shall, except as otherwise directed by a traffic officer, do the following:
> (a)(1) Except as required under paragraph (2), the driver of every other vehicle shall yield the right-of-way and shall immediately drive to the right-hand edge or curb of the highway, clear any intersection, and thereupon shall stop and remain stopped until the authorized emergency vehicle has passed. (2) A person driving a vehicle in an exclusive or preferential use lane shall exit that lane immediately upon determining that the exit can be accomplished with reasonable safety... (c) All pedestrian upon the highway shall proceed to the nearest curb or place of safety and remain there until the authorized emergency vehicle has passed.

Regional

County of Los Angeles

The Office of Emergency Management (OEM), established by Chapter 2.68 of the County Code, is responsible for organizing and directing emergency preparedness efforts, as well as the day-to-day coordination efforts, for the County’s Emergency Management Organization. The OEM’s broad responsibilities include, among others, planning and coordination of emergency services on a County-wide basis.

The County of Los Angeles organizes a formal mutual aid agreement between all police departments within its jurisdiction to provide police personnel and resources to assist other member agencies during emergency and/or conditions of extreme peril. Formal mutual aid requests between police departments can be made under the purview of the LASD; however, additional informal agreements may be made directly between the police agencies. The Mutual Aid Operations Plan

provides a structure of response should an emergency arise which requires immediate response by more law enforcement personnel than would be available to CCPD using all other available resources.

Local

City of Culver City General Plan

The City’s General Plan does not identify any goals, objectives, policies, standards or guidelines specifically applicable to police protection for the Project.

City of Culver City Municipal Code

The Culver City Municipal Code (CCMC) contains the City’s regulations and ordinances, which include general and traffic regulations enforced by the appropriate City departments, including, but not limited to, the CCPD, the Community Development Department (Enforcement Services and Building Divisions) and the Public Works Department (Environmental Programs and Operations Division).

Sections of the CCMC applicable to police protection services at the Project Site include, but are not limited to, the following:

Section 9.08.385 (Authority to Close Streets): This section requires coordination with the Public Works Department to notify the Police and Fire Department prior to street closure for construction or repair work.

Section 17.540 (Site Plan Review): This section provides procedures and standards for the comprehensive review of proposed development projects to: ensure compliance with the required standards, design guidelines, and ordinances of the City; minimize potential adverse effects on surrounding properties and the environment; and protect the integrity and character of the residential, commercial and public areas of the City. As such, this section may require new projects to be reviewed by the CCPD to ensure that public safety and site security measures are incorporated.

Section 17.560 (Comprehensive Plans): This section provides procedures and standards for Comprehensive Plans, including required findings to ensure that the proposed development is capable of creating an environment of sustained desirability and stability and will not be substantially detrimental to present and potential surrounding uses. As part of the Comprehensive Plan process, the Planning Department circulates project plans to other City departments for review and comment, including to the CCPD.

Section 17.300.040 (Outdoor Lighting): This section requires that security lighting be provided at all building entrances and exits.

Section 11.04.030 (Suspension or Revocation of an Alarm Permit): This section allows the City to access services charges to property owners for each false alarm that results in a CCPD response in excess of three false alarms in a 12-month period.

Section 11.04.065 (Police Chief Discretion): This section states that the Chief of Police shall have discretion to enforce rules, regulations, policies, procedures and directives necessary to implement the provisions of Chapter 11.04, Alarm Systems. Such powers shall include, but are not limited to, the power to promulgate, execute and enforce a policy regarding dispatch of police to alarm signals, as well as the discretion to discontinue police response to alarm signals due to the user's failure to comply with the provisions of Chapter 11.04, or to properly repair alarm systems deemed to constitute runaway alarms.
4.10.2.4 Environmental Impacts

Methodology

The analysis of impacts on police protection addresses the Project’s effects on the ability of police personnel to adequately serve existing and future population in the Project vicinity, taking into consideration the Project’s security and/or design features intended to reduce the demand for police protection services and potential need for new or expanded police facilities. The analysis is based on correspondence with the CCPD, which is provided in Appendix I-2 of this Draft EIR. Additionally, the analysis below presents statistical data for the City, including the ratio of crimes to population and the ratio of sworn police officers to population. For the analysis provided below related to ratios of police officers to population served, the analysis conservatively assumes that the Project Site will be fully occupied at one time, by both the daytime employees and nighttime residents. Based on information provided by CCPD and the associated analyses provided in this section of the Draft EIR, the findings regarding police services focus on whether the CCPD would require the addition of a new or physically altered facility to maintain acceptable service levels, the construction of which could result in a potentially significant environmental impact.

Thresholds of Significance

The significance threshold below is derived from the Environmental Checklist question in Appendix G of the CEQA Guidelines. Accordingly, a significant impact associated with police protection would occur if the Project were to:

- **POL-1** Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for police protection.

Project Characteristics and Project Design Features

Project Characteristics

The Project would include a net increase in developed square footage at the Project Site of 276,098 sf of floor area. This would generate an estimated net increase of approximately 529 residents and 112 employees at the Project Site during Project operation. The Project Site, upon buildout, would be strictly controlled and would include expanded and upgraded security features, including on-site security personnel, lighting for safety and security, controlled access to residential and office space, and closed circuit television surveillance (CCTV) for the parking structure and other areas.

Project Design Features

There are certain practices and features of the Project that would serve to reduce or avoid environmental impacts. The following Project Design Features (PDFs) would serve to reduce or

13 Net increase was calculated by taking the existing 35,011 sf building area and subtracting from the proposed 311,109 sf building area.

14 See Section 4.9, Population and Housing, of this Draft EIR, for the calculations used to generate the Project’s employee estimate.
avoid potential impacts associated with police protection and have been accounted for in the impact analysis:

PDF-POL-1 (Project Site Security and Access During Construction): During construction of the Project the Project Site will be enclosed with security fencing, lit with security lighting, and patrolled periodically by security personnel.

PDF-POL-2 (Project Site Security and Access During Operation): During operation, the Project will incorporate a 24-hour/seven-day security program to ensure the safety of its residents, employees, and visitors. The Project’s security will include, but not be limited to, the following design features:

 a) Installing and utilizing a 24-hour/seven-day security program to ensure the safety of its residents and site visitors.
 b) Full-time security personnel. Duties of the security personnel will include, but would not be limited to, assisting residents and visitors with site access; monitoring entrances and exits of buildings, including parking; managing and monitoring fire/life/safety systems; and patrolling the property. The site security would regularly interface and collaborate with CCPD, as necessary.
 c) Staff training and building access/design to assist in crime prevention efforts and to reduce the demand for police protection services.
 d) Controlled access to all residential units, lobby areas, and residential common open space areas through the use of key cards, site security and/or other means, as appropriate.
 e) CCTV surveillance within the parking garage, ground floor levels, and open space areas.
 f) Lighting of entry-ways, publicly accessible areas, parking areas, and common building and open space residential areas.

PDF-TRAF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant’s proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer, and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The
FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City’s Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e. identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:

1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.

2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.

3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.

4. Procedures for the training and certification of flag persons.
5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.

6. The location of temporary power, portable toilet and trash and materials storage locations.

7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.

8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.

Analysis of Project Impacts

Threshold POL-1: The Project would have a significant impact on police protection if it were to result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for police protection.

Construction

Impact Statement POL-1a: Impacts on police protection services, access and emergency response times during Project construction would be temporary and less than significant. While Project construction would temporarily add on-site employees and off-site traffic, security features would be incorporated, and emergency access would be maintained.

Police Protection Services

During Project construction, construction vehicles, equipment, and building materials could be temporarily stored on the Project Site. Construction sites can be subject to potential trespassing, theft, vandalism, and graffiti, which create demand for police services. However, the Project Site is located in an area with high vehicular activity from Sepulveda Boulevard and Jefferson Boulevard, and therefore, the Project Site would be highly visible from adjacent roadways and surrounding properties. Additionally, per PDF-POL-1, the Project Site would be enclosed with security fencing, be lit with security lighting, and be patrolled periodically by security personnel. The Project Site would be fenced along the perimeter, with the height and fence materials subject to review approval by the Culver City Engineer and Planning Manager, as required by the City’s standard conditions of approval. These security measures are expected to discourage construction site crime at the Project.
Site. When such precautions are taken, there is less of a need for local law enforcement at the construction site.

Police Access and Response Times

Construction staging and construction worker parking associated with the Project would be accommodated on the Project Site, limiting potential conflicts with traffic on local streets. As there would be private security personnel during Project construction, any demand for CCPD services during construction is expected to be limited and addressed if needed through existing officers that patrol the area. Additionally, the implementation of PDF-POL-1 would include security fencing, lighting, and personnel during construction of the Project, which would reduce the potential for incidents that would require police responses.

Construction of the Project has the potential to disrupt traffic, with Jefferson Boulevard and Sepulveda Boulevard being highly traveled major thoroughfares through Culver City. The configuration of the intersections surrounding the Project Site with Jefferson and Sepulveda merging, and Sawtelle Boulevard just to the south, also contributes to congested conditions in the area. Accordingly, if closure of any traffic lanes is required during construction it could add to disruption of traffic flow and effect police response to calls for service.

While the Project would generate construction traffic and potentially require temporary lane closures along one or more of the streets bordering the Project Site, as discussed in Section 4.11, *Transportation*, with implementation of PDF-TRAF-1, requiring implementation of a City-approved FCMP, disruptions to traffic flow would be minimized, emergency vehicle access to the Project Site and neighboring land uses would be maintained, and worker and construction equipment delivery would be scheduled to avoid peak traffic hours. Furthermore, pursuant to the FCMP, the CCPD would be informed in advance of any required temporary lane closures and/or alternative access routes during the construction period, which would be subject to CCPD review and approval.

Therefore, in light of the temporary nature of construction, and implementation of PDF-POL-1 and PDF-TRAF-1, Project construction activities would not create the need for new or physically altered police protection facilities, construction of which could cause significant environmental impacts, and impacts during construction would be less than significant.

Operation

Impact Statement POL-1b: Impacts on police protection services related to access and emergency response times during Project operation would be less than significant. While Project operation would add residents, on-site employees and off-site traffic, it would upgrade to strict security provisions at the Project Site and improve circulation and access in proximity to the Project Site. Overall, Project effects on police services would not require new or expanded police facilities.

Police Protection Services

Operational activities associated with the Project would increase demand for police protection services. As discussed in Section 4.9, *Population and Housing*, the Project’s 230 residential units and 66,500 sf of commercial uses would result in an increase of 529 residents and 112 employees.
The overall net increase of 641 people would represent an approximately 0.2 percent increase15 in the existing daytime population, and approximately 1.6 percent increase16 in the existing nighttime population (400,000 and 40,000, respectively) of the City.

Based on the City’s existing annual crime rate of 4.4 Part I crimes per 1,000 population, Project operation could result in an estimated three additional Part I crimes annually, an increase of 0.2 percent, without accounting for Project Design Features incorporated into the Project to reduce crime.17 The increase in population of 641 people would reduce the existing officer to daytime population ratio of 1:3,540 to 1:3,545,18 and would reduce the existing officer to nighttime population ratio of 1:354 to 1:360.19 If it were determined that additional officers would be needed to maintain existing service ratios, the Project contribution would, without accounting for security features, generate an increase in demand for 0.2 additional CCPD sworn officers for the daytime population, and 2 additional CCPD sworn officers for the nighttime population, an increase of 0.2 and 1.8 percent, respectively.20,21

In assessing potential increases in crime and officer demand it should be noted that the CCPD determines the need for new officers and facilities based on a variety of factors, which could be influenced by shifts in patrol boundaries, patrol frequency, ongoing staff changes, service populations, crime statistics and technological enhancements. Additionally, the estimates provided are conservative because they do not take into account the reductions in Project-related sworn officer demand and crime associated with the proposed strict on-site security measures provided by the Project under PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Furthermore, pursuant to CCMC Section 17.560, Project Site plans would be submitted to the CCPD for review and approval to ensure that the site design incorporates required security and crime reduction features. Lastly, police response is typically provided from officers in patrol cars on standard beats rather than from a centralized facility, and correspondence from CCPD indicates that while Project implementation could require

15 641 new population/existing daytime population 400,000 = 0.00160, or 0.16 percent, which is rounded up to a 0.2 percent increase in daytime population.
16 641 new population/existing nighttime population 40,000 = 0.0160, or 1.6 percent increase in nighttime population.
17 (641 new population X 4.4 crimes) / 1,000 population = 2.82, rounded up to 3 additional Part I crimes per year. (3 additional Part I crimes per year/1,768 annual Part I crimes) X 100 = 0.17 percent, rounded up to 0.2 increase in annual Part I crimes.
18 400,000 existing daytime population + 641 new population = 400,641 new population/113 existing officers = one officer per 3,545 population.
19 40,000 existing nighttime population + 641 new population = 40,641 new population. The new 40,641 population/113 existing officers = one officer per 360 population.
20 641 new population X (one officer per 3,545 population) = 0.2 additional officers. (0.2 additional officers / 113 existing officers) X 100 = 0.18 percent, which is rounded up to a 0.2 percent increase in sworn officers.
21 641 new population X (one officer per 354 population) = 2 additional officers. (2 additional officers / 113 existing officers) X 100 = 1.8 percent increase in sworn officers.
additional police officers, it would not require the physical expansion of an existing police station or construction of a new police station.

Based on the above, the demand for police protection services during Project operation due to potential increases in crime and the need for police personnel would increase, but would not require new or expanded police protection facilities to maintain acceptable service ratios, and therefore, impacts would be less than significant.

Police Access and Response Times

As described in Chapter 2, *Project Description*, vehicular access to the Project Site would be provided from three driveways: one on Sepulveda Boulevard at Janisann Avenue and two on Machado Road. It is anticipated that emergency access would be maintained during operation of the Project. Emergency vehicles would access the Project Site from surrounding roadways, including Sepulveda Boulevard, Jefferson Boulevard, Janisann Avenue and Machado Road. Operation of the Project would not include the installation of barriers (e.g., perimeter fencing, fixed bollards, etc.) that could impede emergency vehicle access to the Project Site and in the Project vicinity. As such, emergency access to the Project Site would be maintained at all times. In addition, the Project would generate additional operational traffic, which could adversely affect CCPD emergency response times, which for emergency calls are 5 minutes and 2 seconds based on the February 2021 CCPD Monthly Report. However, although the Project would add traffic to surrounding roadways, CCPD has indicated that responses to calls to the Project Site would be between 4 to 9 minutes and is expected to remain within the current range of emergency response times. It should also be noted that emergency response, particularly for high priority calls, would continue to be facilitated when necessary through use of sirens to clear a path of travel, use of alternate routes, and multiple unit response. Accordingly, potential effects on emergency response times are not expected to increase demand for police services such that new or physically altered police protection facilities would be required, construction of which could cause significant environmental impacts in order to maintain acceptable service ratios. Therefore, impacts during Project operation due to potential effects on response times would be less than significant.

Cumulative Impacts

Police Protection Services

Chapter 3, *Environmental Setting*, of this Draft EIR provides a list of 27 related projects that are planned or are under construction within an approximately 1.5-mile radius of the Project Site. These projects are summarized in Table 3-1, *Related Projects List*, and shown on Figure 3-1, *Related Projects Map*, in Chapter 3. As shown in Figure 3-1, these related Projects occur in two separate jurisdictions, the City of Culver City and the City of Los Angeles. Of these related projects, 21 occur within Culver City and, like the Project, would create a demand for police protection service from the CCPD.

The total amount of development and associated daytime population from the related projects located in Culver City are identified in Table 4.10.2-2, *Related Projects for Police Protection*. As

22 CCPD. Correspondence from Assistant Chief of Police Jason Sims, September 23, 2020. Provided in Appendix I-2 of this Draft EIR.
indicated therein, the related projects in the City would generate an estimated population of approximately 2,457 people, which, when combined with the net increase of 641 population associated with the proposed Project, would generate a cumulative population of 3,098 persons requiring police protection service from the CCPD.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Quantity</th>
<th>Generation Factor<sup>a</sup></th>
<th>Daytime Population<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>50 du</td>
<td>2.3/du<sup>c</sup></td>
<td>115</td>
</tr>
<tr>
<td>Assisted Living (Residents)</td>
<td>189 du</td>
<td>2.3/du<sup>c</sup></td>
<td>435</td>
</tr>
<tr>
<td>Assisted Living (Employees)</td>
<td>189 du</td>
<td>1.13/ksf</td>
<td>108</td>
</tr>
<tr>
<td>Office</td>
<td>347.78 ksf</td>
<td>4.79/ksf</td>
<td>1,666</td>
</tr>
<tr>
<td>Medical Office</td>
<td>4.52 ksf</td>
<td>4.27/ksf</td>
<td>20</td>
</tr>
<tr>
<td>Retail</td>
<td>2.97 ksf</td>
<td>2.71/ksf</td>
<td>9</td>
</tr>
<tr>
<td>Hotel</td>
<td>183 rooms<sup>d</sup></td>
<td>1.13/ksf</td>
<td>104</td>
</tr>
<tr>
<td>Subtotal</td>
<td>--</td>
<td>--</td>
<td>2,457</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>--</td>
<td>--</td>
<td>641</td>
</tr>
<tr>
<td>Total</td>
<td>--</td>
<td>--</td>
<td>3,098</td>
</tr>
</tbody>
</table>

^a The employment generation factors are based on the Los Angeles Unified School District, 2020 Developer Fee Justification Study, March 2020, page 19.

^b Totals are rounded up.

^c The City of Culver City average household size is based on SCAG’s 2019 Profile of the City of Culver City: https://www.scag.ca.gov/Documents/CulverCity.pdf.

^d Hotel rooms are assumed to be 500 square feet per room.

Based on the City’s existing annual crime rate of 4.4 Part I crimes per 1,000 population, Project and related project operation could result in an estimated 14 additional Part I crimes annually, an increase of 0.8 percent, respectively, without accounting for any characteristics and/or design features and personnel that are designed to reduce crime.²³ The increase in population of 3,098 people would reduce the existing officer to daytime population ratio of 1:3,540 to 1:3,567.²⁴ The increase in population of 641 people would reduce the existing officer to nighttime population ratio of 1:354 to 1:381.²⁵ Applying the existing sworn police officer to daytime population ratio in the City of 1:3,540, this cumulative population would create a demand for approximately 0.9 additional CCPD sworn officers, an increase of 0.3 percent.²⁶

²³ (3,098 new population X 4.4 crimes) / 1,000 population = 13.6, rounded up to 14 additional Part I crimes per year. (14 additional Part I crimes per year/1,768 annual Part I crimes) X 100 = 0.79 percent, rounded up to 0.8 increase in annual Part I crimes.

²⁴ 400,000 existing daytime population + 3,098 new population = 403,098 population/113 existing officers = one officer per 3,567 population.

²⁵ 40,000 nighttime existing population + 3,098 new population = 43,098 new population. The new 43,098 population/113 existing officers = one officer per 381 population.

²⁶ 3,098 new population X (one officer per 3,545 population) = 0.9 additional officers. (0.9 additional officers / 113 existing officers) X 100 = 0.27 percent, which is rounded up to a 0.3 percent increase in sworn officers.
While the proposed Project and the related projects together could potentially and hypothetically generate a demand for approximately one additional CCPD sworn officer, this would represent only an approximately 0.3 percent increase over the existing 113 CCPD sworn officers in the City, with the Project’s contribution to this demand (0.2 officer) representing only approximately 0.2 percent of the increase.

In addition, the cumulative demand for additional CCPD sworn police officers would not be expected to require new or expanded CCPD police facilities that would cause substantial adverse physical impacts. This is because: (1) it is anticipated that the potential need for an additional officer due to cumulative development could be accommodated by the CCPD’s existing police station; (2) the Project and the related projects would generate tax revenues for the City that the City could use to hire the additional officers and accommodate them; (3) even if expansion of the existing police station or development of new police station were required, such expansion/development would likely not lead to substantial adverse physical impacts because of the built out nature of the City and that any new such development would represent negligible infill development. Based on the above, cumulative impacts on police protection services would be less than significant.

Police Access and Response Times

Construction and operation of the proposed Project and the related projects could potentially block access to on-site and adjacent off-site uses, include construction activities (such as temporary lane closures) that disrupt area traffic, and generate construction traffic that results in localized traffic congestion and slows CCPD emergency response.

As indicated previously, Project construction and operation would not result in significant impacts to police access and response times because: (1) Project construction staging and parking would be accommodated on the Project Site; (2) implementation of Project Design Features PDF-POL-1 (Project Site Security and Access During Construction) and PDF-POL-2 (Project Site Security and Access During Operation) would reduce the potential for incidents during construction and operation that would require police responses; (3) the Project would be required to be designed to ensure adequate emergency access as ensured during the City site plan review process required by CCMC Section 17.540; and (4) emergency response would continue to be facilitated for high priority calls through the use of sirens, opposing traffic lanes, or alternate access routes. Furthermore, as required in PDF-TRAFF-1, the FCMP shall require the review and approval of any proposed lane closures would include coordination with CCFD and CCPD to minimize potential effects on traffic flow and emergency response.

Similarly, related projects would be subject to review by the City where the provision of required on-site emergency access would be ensured, and many projects would be required, as with the Project, to implement a FCMP. In addition, as indicated in PDF-TRAFF-1, construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City Staff, to ensure concurrent construction projects are managed in collaboration with one another. Therefore, for generally the same reasons as identified above for the Project, the related projects would not be expected to effect police access and response times such that new or physically altered police protection facilities would be required, where construction would cause
significant environmental impacts in order to maintain acceptable service ratios. Accordingly, cumulative impacts due to effects on access and response times are considered less than significant.

4.10.2.5 Mitigation Measures
No mitigation measures are required, as impacts would be less than significant.

4.10.2.6 Level of Significance after Mitigation
Not applicable. Project-specific and cumulative impacts related to police protection would be less than significant.
4.11 Transportation

4.11.1 Introduction

This section analyzes potential impacts associated with transportation that could occur during construction and operation of the Project. The analysis is based on the Transportation Impact Study for the Project prepared by Fehr & Peers, dated April 2021, included as Appendix J of this Draft EIR. The Transportation Impact Study was prepared in accordance with the City of Culver City’s (City) CEQA transportation thresholds of significance and the Transportation Study Criteria and Guidelines (TSCG) adopted in July 2020. The base assumptions and technical methodologies to be used in the Transportation Impact Study were established in a detailed Memorandum of Understanding (MOU) with the City, which was signed in October 2020 and provided in Appendix A of the Transportation Impact Study.

4.11.2 Environmental Setting

The Project Site encompasses approximately 3.43 acres at 11111 Jefferson Boulevard in Culver City and is bounded by Machado Boulevard on the north, Sepulveda Boulevard on the southwest, and Jefferson Boulevard on the east. The Project Site is located in an urban setting near existing transit with a variety of land uses and densities. The Transportation Impact Study’s study area includes the Project Site, its associated street frontages, and the surrounding vicinity.

Existing Street System

As described below, the Project Site and the transportation study area is well-served by a network of freeways and streets. The streets in the study area are under the jurisdiction of the City. Freeways are under the jurisdiction of the California Department of Transportation (Caltrans).

Freeways

Primary regional access to the Project Site is provided by the Interstate 405 (San Diego Freeway) and State Route 90 (Marina Freeway).

- **Interstate 405 (San Diego Freeway):** The San Diego Freeway runs north/south and is approximately 0.4 miles west of the Project Site. Access to the San Diego Freeway is available via interchanges at Culver Boulevard, SR 90/Slauson Avenue, and Jefferson Boulevard.

- **State Route 90 (Marina Freeway):** The Marina Freeway runs east/west and is approximately 0.6 miles south of the Project Site and links Marina Del Rey to Culver City. Access to the Marina Freeway is available via Slauson Avenue and I-405.

Primary Arterials

- **Sepulveda Boulevard:** Sepulveda Boulevard is a major north/south arterial that provides up to six travel lanes, two to three per direction, with a center left turn lane. Parking is provided

1. On July 13, 2020, the Culver City City Council adopted a resolution formally implementing the City’s updated transportation thresholds of significance for CEQA analyses and overall transportation study guidelines. The TSCG is the document providing the guidance for conducting both CEQA and non-CEQA transportation analyses.
within the study area on one side or both sides of the street. The posted speed limit is 40 miles per hour (mph) in the study area.

- **Overland Avenue:** Overland Avenue is a north/south arterial that provides two travel lanes in each direction, with a center left turn lane where space allows, and parking on both sides of the street. The posted speed limit is 35 mph in the study area, and travels north from Playa Court, providing connections to Interstate 10 about 3 miles north of the Project Site.

- **Sawtelle Boulevard:** Sawtelle Boulevard is primarily a north/south avenue that runs east/west and northwest/southeast in the vicinity of the Project, with a center left turn lane and one travel lane in each direction. Parking is provided on both sides of the street, and the posted speed limit is 35 mph.

- **Jefferson Boulevard:** Jefferson Boulevard is a major north/south arterial that provides two travel lanes in each direction. Parking is provided on some portions of the street, including on the west side next to the Project Site. The posted speed limit is 35 mph.

- **Machado Road:** Machado Road is a short east/west street that connects Sepulveda Boulevard and Jefferson Boulevard directly north of the Project Site. There are two travel lanes in each direction on Machado, no parking provided, and no posted speed limit.

- **Slauson Avenue:** Slauson Avenue is an east/west arterial that provides three travel lanes in each direction with no parking east of Sepulveda and one travel lane in each direction with parking west of Sepulveda. The posted speed limit is 40 mph east of Jefferson and 25 mph west of Jefferson.

Public Transit

The Project Site and Study Area is served by four bus lines. These bus lines are listed below and identified in Figure 4.11-1, *Existing Transit Service.*

- **Culver City Bus Line 3:** Line 3 is a local north/south route travel from Culver City Fox Hills to Century City. It runs mainly along Overland Avenue on both weekdays and weekends. Its Sunday route will service bus stops on Jefferson Boulevard. Line 3 also provide connection to Culver City Transit Center, the Culver Center, and the Palms neighborhood.

- **Culver City Bus Line 4:** Line 4 is a local east/west route traveling from Playa Vista to the West LA Transit Center on Weekdays and Saturdays. The route travels along Jefferson Boulevard and Slauson Avenue in the study area. This line provides service to West Los Angeles College, the Culver City Transit Center, the Metro E (Expo) Line light rail at La Cienega/Jefferson Station, and West Los Angeles Transit Center. The ridership of Bus Line 4 was 235,098 annual trips in Fiscal Year 2019.

- **Culver City Bus Line 6:** Line 6 is a north/south line that travels along the Sepulveda corridor from UCLA to the LA Metro C (Green) Line Aviation Station. Line 6 runs on both weekdays and weekends. This line also provides service to the Culver City Transit Center at the Westfield Culver City Mall and the Metro E (Expo) Line light rail at Expo/Sepulveda Station. The ridership of Bus Line 6 was 1,523,785 annual trips in Fiscal Year 2019.

- **Culver City Bus Rapid 6:** Rapid 6 is a north/south line that serves major intersections along Sepulveda Boulevard on weekdays only. The Rapid 6 also provides service to the Metro E

2 The bus service described pertains to conditions before the COVID-19 pandemic. Although bus service was temporarily reduced and would be expected to fluctuate as the situation evolves, it is expected that bus service would return to pre-pandemic conditions in the long-term future.
4.11 Transportation

Environmental Impacts Analysis

(Expo) Line light rail at Expo/Sepulveda Station and connect to the Culver City Transit Center. Rapid 6 doesn’t go into the Culver City Transit Center in order to achieve better travel time. The ridership of Bus Line Rapid 6 was 898,681 annual trips in Fiscal Year 2019.

The Westfield Culver City Transit Center is also located approximately 0.7 miles south of the Project Site. The Transit Center is not only serviced by Culver City Bus Lines 4, 6, and Rapid 6, but also Metro Lines 108/358 and 110.

Bicycle and Pedestrian Facilities

The Project Site is served by dedicated bicycle infrastructure within the Study Area. A Class I facility, the Ballona Creek Bike Path runs along Ballona Creek approximately 0.25 miles northwest of the Project Site and provides bike and pedestrian connections to Marina Del Rey in the west and near Downtown Culver City in the east. Class II bike lanes run along Sawtelle Boulevard west of Sepulveda Boulevard, providing connection to the Ballona Creek Bike Path, and a Class III bike route runs along Sepulveda Boulevard north of Machado Road. A map of the existing bike facilities, in addition to the proposed bike facilities per the Culver City Bicycle & Pedestrian Action Plan (Action Plan), which was adopted by City Council in June 2020, is provided in Figure 4.11-2, Existing and Planned Bicycle Facilities. According to the Action Plan, Class IV separated bikeways are recommended along Sepulveda Boulevard and Jefferson Boulevard including along the Project Site frontages.

All of the streets immediately bordering the Project Site and all other public streets in the vicinity include sidewalks on both sides of the street, facilitating pedestrian movement. Marked crosswalks are present at all signalized intersections in the Study Area. Pedestrian walk phases are either automatically provided at the intersections or are actuated by pedestrian push-buttons.

Existing Project Site Vehicular Access/Circulation

Existing vehicular access to the Project Site is currently provided from 10 driveways; five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. Pedestrian access is provided via sidewalks located along Sepulveda Boulevard, Jefferson Boulevard, and Machado Road. Bicycle access is provided by bicycle lanes on Sawtelle Boulevard west of Sepulveda Boulevard and also on Sepulveda Boulevard north of Machado Road. Additional off-street regional bicycle paths are provided by the Ballona Creek Bike Path and the Culver Boulevard Bike Path located approximately 0.3 miles and 0.8 miles from the Project Site, respectively.

Parking Facilities

The Project Site includes approximately 216 existing vehicle parking spaces, including 194 regular spaces, 12 truck loading spaces, and 10 handicap spaces, across all existing uses.
Figure 4.11-1
Existing Transit Service

- **Bus Route Ridership (2019 Total)**
 - **4 Jefferson** - 218,058 Rides
 - **6 Sepulveda** - 1,158,501 Rides
 - **6 Rapid Sepulveda** - 898,681 Rides

Culver City Bus Routes
- 4 Jefferson Blvd
- 6 Sepulveda Blvd
- 6 Rapid Sepulveda Blvd

Bus Stops

Project Site

Source: Fehr and Peers, 2020
Figure 4.11-2
Existing and Planned Bicycle Facilities
4.11.3 Regulatory Framework

This section provides a summary of State and local transportation regulations and policies applicable to the Project Site.

State

Senate Bill No. 743

California Senate Bill (SB) 743, which became effective on January 1, 2014, requires the focus of transportation analyses to shift from driver delay to the reduction of greenhouse gas (GHG) emissions, the creation of multimodal networks, and the promotion of a mix of land uses. CEQA Guidelines Section 15064.3, Determining the Significance of Transportation Impacts, indicates that “… vehicle miles traveled is the most appropriate measure of transportation impacts.” The revised guidelines require that lead agencies remove automobile delay, as described solely by level of service (LOS) or similar measures of vehicular capacity or traffic congestion, as a criterion for determining a significant impact on the environment pursuant to CEQA, except in locations specifically identified in the revised guidelines, if any. In accordance with this requirement, CEQA Guidelines Section 15064.3(a), adopted in December 2018, states “a project’s effect on automobile delay does not constitute a significant environmental impact.” These updates establish vehicle miles traveled (VMT) as the primary metric for evaluating a project’s environmental impacts on the transportation system.

In addition, CEQA Guidelines Section 15064.3(c) states that the provisions of Section 15064.3 shall apply statewide beginning on July 1, 2020. As noted above, the City adopted its TSCG in July 2020, pursuant to SB 743 and the recent changes to CEQA Guidelines Section 15064.3.

Local

City of Culver City General Plan Circulation Element

The Circulation Element, amended through 1995, includes the following traffic and parking designations, goals, objectives and policies that relate to the Project:

- **Policy 1.A**: Facilitate movement of vehicles at intersections and along roadway links by increasing capacity, improving operation, and reducing volumes as appropriate and feasible.
- **Policy 1.F**: Reduce driveways and curb cuts on arterials in favor of side street and alley access, where appropriate, considering potential impacts on the neighborhoods served by the side streets.
- **Policy 2.C**: Maintain levels of transit service that are adequate to meet and encourage ridership demand.

3 The TSCG requires that the Transportation Impact Study must study the Circulation and Land Use Elements of the General Plan. However, the Land Use Element does not include transportation-related measures, objectives, or policies in the Land Use Element.

• **Policy 2.H:** Encourage public transit links to sites of high trip-generating uses to maximize transit use by patrons and employees.

• **Policy 3.B:** Expand the bicycle system to include loops which connect the Ballona Creek Bicycle Path to activity centers in the City.

• **Policy 3.D:** Seek public and private contributions to provide support facilities for bicycle users (such as racks, secure storage, drinking fountains, etc.) where bikeways connect to turnouts, parks, and other open space areas, as appropriate.

• **Policy 3.G:** Encourage large business to include bike lockers or other secure bicycle storage and related facilities to support bicycle commuting by employees.

• **Policy 4.C:** Provide safe and attractive pedestrian walkways/sidewalks which link streets and parking areas to the entrances of major developments.

• **Policy 4.D:** Enhance the aesthetic qualities of pedestrian access routes by increasing amenities, such as trees, awnings, lighting, street furniture, and drinking fountains, etc.

• **Policy 6.B:** Reduce pressure on on-street parking through provision of private and public off-street parking facilities.

• **Policy 6.D:** Allow shared parking for adjacent uses, where appropriate.

City of Culver City General Plan Update

The City is currently in the process of comprehensively updating its General Plan to respond to changing needs and conditions in the City and region, and to reflect new state laws. The current General Plan update is the first time all of the elements are to be updated at one time. The process was initiated in 2019 and is currently expected to conclude following further community input and environmental review with adoption of the updated General Plan in Summer of 2022.

Culver City Short Range Transit Plan

The Culver CityBus Short Range Transit Plan (SRTP) is a three-year planning and policy document that outlines regulatory requirements, strategic performance goals and objectives, and a financial plan for the Culver CityBus and the Culver City Transportation Department. The SRTP provides analysis of the current fixed route service and the impact of local and regional transit projects, and evaluation of main corridors and the on-demand services offered by Culver CityBus.

Culver City Bicycle & Pedestrian Action Plan

The City updated the Bicycle & Pedestrian Master Plan with the Action Plan, which received public input throughout 2017 through 2019. The Action Plan was adopted by City Council in June 2020.

The approved Action Plan shows that both Jefferson Boulevard and Sepulveda Boulevard, immediately adjacent to the Project Site, are planned as Class IV Separated Bikeways. The Action Plan establishes the visions and values that focus on establishing walking and cycling as viable modes of travel for all trip types. The Action Plan aims to provide a safe, convenient, and accessible active transportation network. The following actions in the Action Plan are applicable to the Project:

- **Action AC-1.2**: Increase the supply of bicycle parking at neighborhood destinations like schools, medical centers, grocery stores, transit stations, and government offices.

- **Action HS-1.1**: Prioritize quick implementation of active transportation facilities on Culver City’s high-injury network to rapidly address known safety issues.

- **Action HS-3.2**: Use current design guidelines to encourage development patterns that promote active transportation and allow for short trips between destinations.

- **Action HS-4.1**: Build an active transportation network that encourages Culver City residents to use means of transportation other than driving by providing safer, more comfortable biking and walking facilities.

Complete Streets Policy

The City adopted the Complete Streets Policy in January 2020. The Complete Streets Policy lays out a plan for designing safer, more vibrant streets, that are accessible to people, no matter how they travel. The City has not yet developed its Complete Streets Design Guidelines, but anticipates development in the near future. The following policies provided in the Complete Streets Policy are applicable to the Project:

- **Policy 5a.i**: The City will plan, design, operate, and maintain a transportation system that provides a connected network of streets and facilities that accommodate all modes of travel. The City will actively seek opportunities to repurpose or enhance rights-of-way to improve connectivity for pedestrians, bicyclists, and transit users.

- **Policy 5a.ii**: The City will pursue enhancements to the bicycle and pedestrian connectivity to public transit services, as well as to schools, parks, service retail, public facilities, regional connections, and business districts.

- **Policy 5b.ii**: The City will emphasize pedestrian access along and across City streets by, for example, providing convenient and protected crossing locations, shortening crossing distances through the use of curb extensions and tight curb radii, and enhancing signage and pavement markings.

- **Policy 5d.ii**: The City will coordinate street improvements with business owners along retail and commercial corridors to develop or enhance vibrant business districts.

8 As defined by Caltrans, a Class IV separated bikeway is an on-street facility that is physically separated from other motor vehicle traffic by a vertical element or barrier, such as a curb, bollards, or vehicle parking aisle.
Culver City Municipal Code

Sections of the City’s Municipal Code (CCMC) applicable to transportation include, but are not limited to, the following:

- **Section 7.05.015 (Transportation Demand and Trip Reduction Measures):** Prior to issuance of a certificate of occupancy of any new development of 25,000 gross square feet (sf) of floor area or more, the property owner shall make lasting provisions for a bulletin board, display, case or kiosk displaying transit route, ridesharing, bicycle route, and carpool/vanpool information. Prior to the issuance of a certificate of occupancy of any new development of 50,000 gross sf of floor area or more, not less than 10 percent of the employee parking area shall be located as close as is practical to employee entrances and be reserved for potential carpool or vanpool vehicles. Additionally, preferential parking spaces reserved for employee vanpool services shall be accessible to vanpool vehicles. Furthermore, bicycle racks or other secure bicycle parking shall also be provided at a rate of four spaces for the first 50,000 sf of new development, and one space for each additional 50,000 sf. For projects of 100,000 gross sf of floor area or more, the following shall also be provided: (1) sidewalks or other designated pedestrian pathways following direct and safe routes from the external pedestrian circulation system, vehicle and bicycle parking areas and transit facilities, to each building in the development; (2) if determined necessary by the City to mitigate impacts, bus stop improvements; and (3) a safe and convenient zone in which vanpool and carpool vehicles may deliver or board their passengers.

- **Section 17.320.020 (Number of Parking Spaces Required):** This section provides the minimum number of parking spaces required by land use. See Tables 3-3A for residential requirements, 3-3B for commercial requirements, and 3-3C for recreation, education and public assembly requirements.

- **Section 17.320.030 (Accessible Parking):** Parking spaces for persons with disabilities shall be provided in compliance with the Uniform Building Code and the Federal Accessibility Guidelines. Accessible parking spaces shall count toward fulfilling the parking requirements of this Chapter.

- **Section 17.320.050.B (Loading Area Requirements):** None-residential buildings meeting specified door opening and vehicle accessibility criteria shall include on-site loading areas.

4.11.4 Environmental Impacts

Methodology

The analysis of potential transportation impacts considers potential Project effects related to: 1) potential conflicts with transportation-related plans, ordinances or policies; 2) a substantial increase in VMT; 3) increased hazards due to a geometric design feature or incompatible use; and 4) emergency access.

The scope of the analysis in the Transportation Impact Study was developed in consultation with the City. The base assumptions and VMT technical methodologies were identified and agreed to in the MOU included as Appendix A of the Transportation Impact Study. The subsections below describe the methodologies to evaluate each significance threshold.
Review for Conflicts with Plans, Programs, Ordinances, or Policies

As noted in Section 4, CEQA Transportation Analysis Requirements, of the TSCG, the TSCG requires review of whether a Project conflicts with transportation-related programs, plans, ordinances, and policies. The analysis addresses whether the Project would conflict with a program, policy, plan, or ordinance addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities. The focus is on policies or standards adopted to protect the environment and those that support multimodal transportation options and a reduction in VMT. If the Project does not implement a particular program, plan, policy, or ordinance, it would not necessarily result in a conflict as many of these programs must be implemented by the City itself over time, and over a broad area. Rather, the Project would result in a conflict if it would preclude the City from implementing adopted transportation-related programs, plans and policies. Furthermore, if a conflict is identified in association with the Project, under CEQA, it would only equate to a significant impact if precluding implementation of a given program, plan and policy would foreseeably result in a physical impact on the environment.9

Regarding cumulative impacts, each of the plans, ordinances, and policies are reviewed to assess potential conflicts that may result from the Project in combination with other development projects in the Project’s study area. The analysis considers whether there would be a significant impact to the environment to which both the Project and related projects contribute. For instance, a cumulative impact could occur if the Project, as well as other future development projects located in the same project area, were to preclude the City’s ability to serve transportation user needs.

VMT Analysis

Per the City’s procedures, household VMT per capita and office VMT per employee were estimated using the City’s VMT Calculator tool. The VMT Calculator starts with Institute of Transportation Engineers (ITE, 10th Edition) trip generation rates, and then implements the MXD (mixed-use) methodology from the United States Environmental Protection Agency (USEPA) and utilizes socioeconomic, transit, and trip length data from the Culver City citywide travel demand model (itself calibrated to Culver City conditions) to adjust the trips for internalization, transit, and walkability. The VMT Calculator was calibrated based on local count data collected in the City in 2019 prior to the COVID 19 pandemic.

The TSCG provides VMT thresholds for land use projects within the City. Per the TSCG, a project would have a potential significant impact if the project meets one or more of the following:

- For residential projects, a development project may have a potential significant impact if it generates daily household VMT per capita exceeding 15 percent below the existing average daily household VMT per capita for the City. The City’s existing average daily household VMT per capita is 8.3, meaning a residential project would have a significant impact if it generates daily household VMT per capita exceeding 7.1. This criterion was used for the multi-family residential component of the Project.

9 The rule of general plan consistency is that the project must at least be compatible with the objectives and policies of the general plan. (Sequoyah Hills Homeowners Assn. v. City of Oakland (1993) 23 Cal.App.4th 704, 717–718 [29 Cal. Rptr. 2d 182].)
• For office projects, a development project may have a potential significant impact if it generates daily work VMT per employee exceeding 15 percent below the existing average daily work VMT per employee for the City. The City’s existing average daily work VMT per employee is 10.1, meaning an office project would have a significant impact if it generates daily work VMT per employee exceeding 8.6. This criterion was used for the office component of the Project.

• Local-serving retail development tends to shorten trips and reduce VMT whereas regional-serving retail development can lead to substitution of longer trips for shorter ones and could increase VMT. Local-serving is defined as retail uses less than 50,000 sf for each individual store. This criterion was used for the restaurant, retail, gym/studio fitness center, and supermarket components of the Project.

As a mixed-use project, each component was evaluated separately and the impact criteria above for each individual land use was applied.

A TDM Program consists of strategies that are aimed at discouraging single-occupancy vehicle trips and encouraging alternative modes of transportation, such as carpooling, taking transit, walking, and biking. Strategies included in a typical TDM Program address a wide range of transportation factors, including parking, transit, commute trips, shared mobility, bicycle infrastructure, site design, education and encouragement, and management. The Project includes a proposed TDM Program (see Mitigation Measure TRAF-1) which would be conditioned as a requirement for approval of Project entitlements and the Project’s Mitigation Monitoring and Reporting Program (MMRP), required as part of the Final EIR for the Project. Beyond this TDM Program, the Applicant proposes voluntary measures, as described under the Project Characteristics subsection, that would be established through further coordination with the City. These voluntary measures have not been accounted for in the analysis, but would further reduce vehicle trips generated by the Project.

TDM reductions for the VMT Calculator were estimated based on the California Air Pollution Control Officers Association (CAPCOA) research and methodologies as described in Quantifying Greenhouse Gas Mitigation Measures. The VMT Calculator considers a variety of TDM strategies and the setting in which they may apply, estimates effectiveness for each, and applies caps when appropriate.

Geometric Design Feature or Incompatible Use Hazards

For vehicle, bicycle and pedestrian safety impacts, a review is conducted for all Project access points, internal circulation, and parking access from an operational and safety perspective (e.g., turning radii, driveway queuing, line-of-sight for turns into and out of project driveway(s)). Where Project driveways would cross pedestrian facilities or bicycle facilities (bike lanes or bike paths), the analysis considers operational and safety issues related to the potential for auto/pedestrian and auto/bicycle conflicts and the severity of consequences that could result.

10 California Air Pollution Control Officers Association (CAPCOA), Quantifying Greenhouse Gas Mitigation Measures, August 2010.
4.11 Transportation

Emergency Access

For emergency access impacts, a review is conducted for Project access points, internal circulation, and parking access to determine if adequate emergency access is provided. The analysis considers the physical conditions of the Project Site and surrounding area, such as curves, slopes, walls, landscaping or other barriers. Also, a determination is made as to whether the Project would preclude adequate emergency access within the adjacent roadway network.

Thresholds of Significance

The significance thresholds below are derived from the Environmental Checklist questions in Appendix G of the CEQA Guidelines. A project would result in significant adverse impacts related to transportation if it would:

- **TRAF-1** Conflict with a program, plan, ordinance or policy addressing the circulation system including transit, roadway, bicycle, and pedestrian facilities;
- **TRAF-2** Conflict or be inconsistent with CEQA Guidelines Section 15064.3, Subdivision (b);
- **TRAF-3** Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment); or
- **TRAF-4** Result in inadequate emergency access.

Project Characteristics and Project Design Features

Project Characteristics

As previously described in Chapter 2, *Project Description*, of this Draft EIR, the Project is currently occupied by a United States Post Office (27,225 sf), Coco’s Bakery Restaurant (6,064 sf), Valvoline Instant Oil Change (1,722 sf) and surface parking. The Project would demolish and replace the existing commercial buildings and improvements on the Project Site with 230 residential units and 66,500 sf of commercial uses, including a market, gym/studio fitness center, retail/restaurant uses and office uses. The Project would provide a total of 653 parking stalls (308 stalls for residential, 311 stalls for commercial, and 34 spaces for the Exception Children’s Foundation (ECF).

There are currently ten driveways serving the Project Site: five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. The Project would remove seven driveways (four on Sepulveda Boulevard and three on Jefferson Boulevard), resulting in three remaining driveways to serve the Project Site. Vehicular access to the Project Site would be provided from one driveway on Sepulveda Boulevard at Janisann Avenue and two driveways on Machado Road. The driveway on Sepulveda Boulevard and the east driveway on Machado Road (closer to Jefferson Boulevard) would serve retail, market, and office uses. The west driveway on Machado Road opposite Heritage Place would provide access for resident and resident guest parking, and for ECF parking, all located below grade. Access for trucks and deliveries would be off of Machado Road where they would access a loading dock within the Project Site via the eastern-most retail entrance. A separate loading and drop-off area for the residential and commercial retail uses is planned in front of the residential lobby entrance on Sepulveda Boulevard.
Bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market by the surface parking spaces for the retail uses. The Project includes the proposed relocation of the bus stop for the northbound Culver City Bus Line 6 on Sepulveda Boulevard at Machado Road. As currently proposed, the northbound bus stop would shift approximately 100 to 200 feet south from its current location at the intersection of Machado Road and Sepulveda Boulevard, to just north of the newly signalized intersection of Janisann Avenue and Sepulveda Boulevard, the far-side of the intersection. Additionally, the Project includes the proposed relocation of the bus stop for Culver City Bus Lines 3 and 4 on Jefferson Boulevard. As currently proposed, the southbound bus stop would shift approximately 100 to 200 feet north from its current location on Jefferson Boulevard, to just south of the signalized intersection of Machado Road and Jefferson Boulevard, the far-side of the intersection. The bus stop on Sepulveda Boulevard serves Line 6 and contains signage, seating, bus stop pad, and a trash receptacle. The stop on southbound Jefferson Boulevard serves Lines 3 & 4 and contains a bus shelter, seating, signage with scheduling, and a trash receptacle. Existing bus stop amenities would be maintained or replaced at these relocated bus stops, along with the following new bus stop amenities: bus shelters, real-time arrival information displays, bus pads, red curbs, and dedicated micromobility drop zones near the bus stops. No new near-side bus stops would be established. The Project also includes a proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard.

The Project’s site design includes implementation of pedestrian network improvements throughout and around the Project Site including sidewalk improvements on all Project frontages, internally linking all uses within the Project Site, and connecting the Project Site to the surrounding public pedestrian network. The Project would provide new 8-foot sidewalk, curb, and street trees on the southern edge of Machado Road. At the proposed residential driveway on Machado Road, the Project would remove portions of the median to allow for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. However, a channelizing island would be installed on the Heritage Park approach to prevent southbound through and left-turns from the residential neighborhood into the Project Site and to eastbound Machado Road. At the proposed commercial driveway on Machado Road, the Project would remove portions of the median to allow for a turn pocket serving westbound left-turns into the Project Site. Left-turns from the Project Site onto westbound Machado Road would be prohibited. This would result in the removal of the existing eastbound left-turn lane at the Machado Road and Jefferson Boulevard intersection. The Project would convert the left side through lane on Machado Road to an eastbound left-turn lane and the other through lane would become an eastbound shared through-right lane as the roadway approaches Jefferson Boulevard.

As previously discussed, the Applicant proposes voluntary measures as part of a TDM Program. The following voluntary TDM measures would further reduce vehicle trips generated by the Project:

- Public Bike Share Station – Working with the City and the LA Metro Bike Share program, the Project would sponsor the installation of a bicycle sharing station along the Project frontage for public use. This would encourage biking to and from the Project Site by residents, employees, and visitors.
• Amenities – The Project would install secured bicycle parking with a self-repair (“fix-it”) station as part of the required long-term bicycle parking for residents and employees.

• E-Assist Bicycles – Several electric-assisted rental bicycles would be provided for residents and employees of the Project Site to reduce short distance vehicle trips originating from the Project Site.

• Dedicated Carshare Spaces – The Project would dedicate 2-3 parking spaces within the parking structure for carsharing vehicles managed by an outside vendor. This would provide opportunities for Project Site residents to forego additional vehicle ownership by sharing vehicles with other residents.

• Subsidized Transit Passes – The Project would work with local public transit agencies to offer subsidized transit passes to encourage transit ridership. This would reduce vehicle trips to and from the Site.

• Guaranteed Ride Home Program – The Project Site would sponsor a guaranteed ride home for Project Site employees who came to work without their own car in the event of an unexpected situation or emergency when walking, biking, carpooling, or taking transit home would not be feasible.

• Bicycle Lanes – The Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City.

Project Design Features

The following Project Design Feature (PDF) is proposed to reduce the traffic impacts of the Project:

PDF-TRAF-1 (Construction Management Plan): A Final Construction Management Plan (FCMP) shall be prepared by the Project contractor in consultation with the Project's traffic and/or civil engineer. The FCMP will define the scope and scheduling of construction activities as well as the Applicant's proposed construction site management responsibilities in order to ensure that disturbance of nearby land uses or interruption of pedestrian, vehicle, bicycle and public transit are minimized to the extent feasible. The FCMP shall be subject to review and approval by Culver City's Building Official, City Traffic Engineer, Civil Engineer, and Current Planning Manager, prior to issuance of any Project demolition, grading or excavation permit. The FCMP shall also be reviewed and approved by City's Fire and Police Departments. The City Building Official, City Engineer, City Traffic Engineer and Current Planning Manager, as applicable, would reserve the right to reject any engineer at any time and to require that the FCMP be prepared by a different engineer.

Prior to commencement of construction, the contractor shall advise the Public Works Inspector and Building Inspector (Inspectors) of the construction schedule and shall meet with the Inspectors. Also, biweekly construction management meetings with City Staff and other representatives of surrounding developments if under construction at around the same time as the Project shall be required, as determined appropriate by City staff, to ensure concurrent construction projects are managed in collaboration with one another. The FCMP shall assess project construction impacts and provide effective strategies to limit the use of the public right of way (streets and sidewalks) during peak traffic periods, and shall
be subject to adjustment by City staff as deemed necessary and appropriate to preserve the general public safety and welfare.

Prior to approval of the FCMP, the applicant shall conduct one (1) Community Meeting pursuant to the notification requirements of the City's Community Meeting guidelines, to discuss and provide the following information to the surrounding community:

- Construction schedule and hours.
- Framework for construction phases.
- Identify traffic diversion plan by phase and activity. (The Traffic Control Plan will be submitted for review and approval by the City for each phase).
- Potential location of construction parking and office trailers.
- Truck hauling routes and material deliveries (i.e., identify the potential routes and restrictions. Discuss the types and number of trucks anticipated and for what construction activity). Use of Janisann Avenue to the west of the Project Site by haul trucks, material deliveries or construction worker vehicles shall be specifically prohibited.
- Emergency access plan.
- Demolition plan.
- Staging plan for the concrete pours, material loading and removal.
- Crane location(s).
- Accessible applicant and contractor contacts during construction activity and during off hours (relevant email address and phone numbers).
- Community notification procedures.
- The FCMP shall at a minimum include the following:
 1. The name and telephone number of a contact person who can be reached 24 hours a day regarding construction or construction traffic complaints or emergency situations.
 2. An up-to-date list of local police, fire, and emergency response organizations and procedures for the continuous coordination of construction activity, potential delays, and any alerts related to unanticipated road conditions or delays, with local police, fire, and emergency response agencies. Coordination shall include the assessment of any alternative access routes that might be required through the site, and maps showing access to and within the site and to adjacent properties.
 3. Construction plans and procedures to address: community and City notification of key construction activities; temporary construction fencing and maintenance of construction areas within public view; noise and vibration controls; dust management and control; and worker education on required mitigation measures and best practices to reduce disturbances to adjacent and nearby land uses.
 4. Procedures for the training and certification of flag persons.
 5. To the extent known identification of the location, times, and estimated duration of any roadway closures; procedures for traffic detours, pedestrian protection, reducing effects on public transit and alternate transportation modes; and, plans for use of protective devices, warning signs, and staging or queuing areas.
6. The location of temporary power, portable toilet and trash and materials storage locations.

7. The timing and duration of any street and/or lane closures shall be approved in advance by the City and made available in digital format for posting on the City's website and distribution via email alerts on the City's "Gov Delivery" system. The Plans shall be updated weekly during the duration of project construction, as determined necessary by the City. The FCMP shall require that review and approval of any proposed lane closures include coordination with the Fire and Police Departments to minimize potential effects on traffic flow and emergency response.

8. Provisions that staging of construction equipment and materials will be accommodated within the Project Site and that construction worker parking will be accommodated on the Project Site and at off-site locations to be determined and disclosed, potentially with shuttles to and from the Project Site.

Analysis of Project Impacts

Threshold TRAF-1: The Project would have a potentially significant impact on transportation if it would conflict with a program, plan, ordinance or policy addressing the circulation system including transit, roadway, bicycle and pedestrian facilities.

Impact Statement TRAF-1: The Project would not conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities. Therefore, impacts would be less than significant.

As previously noted under the Methodology section, the TSCG includes of a list of transportation-related programs, plans, ordinances, and policies that should be consulted to identify the potential for conflicts with the Project. Upon review of the listed plans, the following were determined relevant to the Project and are analyzed in the Transportation Impact Study and this Draft EIR: the City’s General Plan Circulation Element, the Culver City Short Range Transit Plan, the Action Plan, and the Complete Streets Policy.

The analysis below includes a consistency analysis with the plans, policies and programs determined to be applicable to the Project.

General Plan Circulation Element

The Circulation Element includes numerous policies that are applicable to the Project. **Table 4.11-1, Consistency of the Project with Applicable Policies of the Circulation Element,** provides determinations of whether the Project would conflict with any of the applicable policies in the Circulation Element. As shown therein, the Project would not conflict with any of the applicable policies.
<table>
<thead>
<tr>
<th>Policy</th>
<th>Would the Project Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A. Facilitate movement of vehicles at intersections and along roadway links by increasing capacity, improving operation, and reducing volumes as appropriate and feasible.</td>
<td>No Conflict. The Project would provide a mixed-use development, allowing residents within the Project Site and in nearby areas to access retail services in the Project Site by walking or reducing the need to drive longer distances. The Project would also provide a new curb cut pick-up/drop-off zone on northbound Sepulveda Boulevard to serve the residential use. This pick-up/drop-off zone would facilitate smoother operations on northbound Sepulveda by keeping pick-up/drop-off operations out of through and bicycle lanes and would be located south of the Machado Road intersection. In addition, the reduction of existing curb cut driveways from ten to three would improve traffic flow and operation along Sepulveda Boulevard and Jefferson Avenue, while also improving safety by reducing potential for vehicle-vehicle and vehicle-pedestrian conflicts.</td>
</tr>
<tr>
<td>1.F. Reduce driveways and curb cuts on arterials in favor of side street and alley access, where appropriate, considering potential impacts on the neighborhoods served by the side streets.</td>
<td>No Conflict. The Project would reduce the number of driveways and curb cuts on the Project Site from 10 to three. The removal of driveways would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site.</td>
</tr>
<tr>
<td>2.C. Maintain levels of transit service that are adequate to meet and encourage ridership demand.</td>
<td>No Conflict. The Project includes a mix of commercial and residential land uses adjacent to frequently running transit lines, which would encourage ridership. The proposed TDM Program, provided as Mitigation Measure TRAF-1 would also encourage ridership through a commute marketing program. The Project would also facilitate the relocation of existing bus stops closer to intersection corners and crosswalks on the far side, which would facilitate pedestrian access to public transit.</td>
</tr>
<tr>
<td>2.H. Encourage public transit links to sites of high trip-generating uses to maximize transit use by patrons and employees.</td>
<td>No Conflict. The Project includes a mix of commercial and residential land uses adjacent to frequently running transit lines, which would encourage ridership. The proposed TDM Program would also encourage ridership through a commute marketing program.</td>
</tr>
<tr>
<td>3.B. Expand the bicycle system to include loops which connect the Ballona Creek Bicycle Path to activity centers in the City.</td>
<td>No Conflict. As part of the Project’s voluntary TDM measures, the Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City.</td>
</tr>
<tr>
<td>3.D. Seek public and private contributions to provide support facilities for bicycle users (such as racks, secure storage, drinking fountains, etc.) where bikeways connect to turnouts, parks, and other open space areas, as appropriate.</td>
<td>No Conflict. The Project would provide 71 long-term secured bicycle parking spaces, 26 short-term visitor bicycle parking spaces, lockers, and a bicycle share and repair facility.</td>
</tr>
<tr>
<td>3.G. Encourage large business, commercial centers, and industrial parks to include bicycle lockers, or other secure bicycle storage and related facilities, to support bicycle commuting by employees.</td>
<td>No Conflict. The Project would provide 71 long-term secured bicycle parking spaces, 26 short-term visitor bicycle parking spaces, and a bicycle share and repair facility.</td>
</tr>
<tr>
<td>4.C. Provide safe and attractive pedestrian walkways/sidewalks which link streets and parking areas to the entrances of major developments.</td>
<td>No Conflict. The Project would provide new sidewalk and pedestrian facilities around and through the Project Site. The pedestrian facilities will be beautified by high quality architecture and ample landscaping and open space. The Project would also install a new pedestrian crossing at the proposed traffic signal at the intersection of Sepulveda Boulevard and Janisann Avenue.</td>
</tr>
</tbody>
</table>
TABLE 4.11-1
CONSISTENCY OF THE PROJECT WITH APPLICABLE POLICIES OF THE CIRCULATION ELEMENT

<table>
<thead>
<tr>
<th>Policy</th>
<th>Would the Project Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.D. Enhance the aesthetic qualities of pedestrian access routes by increasing amenities, such as trees, awnings, lighting, street furniture, and drinking fountains, etc.</td>
<td>No Conflict. The Project would enhance the Project frontage sidewalks with street trees, lighting, and aesthetic treatments on building facades. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards as well as Machado Road. In addition, the Project would provide new roadway curb and street trees on the southern edge of Machado Road along the Project Site frontage. Ground level open space would include: a publicly accessible park at the corner of Machado Road and Sepulveda Boulevard (Machado Park), a public paseo with an interior courtyard adjacent to the ground floor retail uses at the intersection of Sepulveda Boulevard and Jefferson Boulevard (Paseo Courtyard), and a courtyard at the building entrance on Sepulveda Boulevard across from Janisann Avenue (Entry Courtyard). Private open space with residential amenities would be located on the third level of the development. The provision of publicly accessible open space at the intersections would contribute to a sense of place and would provide a gathering area that would enliven the pedestrian environment. In addition, the parking structure would be screened through the use of vertical panels, including green panels, and landscaping. Landscaping would be installed in the proposed open space areas, including Machado Park, as well as in locations facing the public realm. Street trees would be planted along the street frontages in accordance with City requirements.</td>
</tr>
<tr>
<td>6.B. Reduce pressure on on-street parking through provision of private and public off-street parking facilities.</td>
<td>No Conflict. The Project would provide an adequate amount of parking according to the CCMC and California Government Code, which requires 625 off-street parking spaces. The Project would provide 653 off-street parking spaces, more than required. In addition, the Project Site would continue to provide 34 secured off-street parking spaces for ECF use.</td>
</tr>
<tr>
<td>6.D. Allow shared parking for adjacent uses, where appropriate.</td>
<td>No Conflict. The Project is mixed-use by nature, which would allow patrons to park once and access multiple types of land uses.</td>
</tr>
</tbody>
</table>

Culver City Short Range Transit Plan

The SRTP provides a service analysis of the current fixed route service and the impact of local and regional transit projects, and evaluation of main corridors and the on-demand services offered, such as Dial-A-Ride and microtransit. The SRTP focuses on public transportation services, enhancing fixed route and paratransit services, expanding micro mobility with scooters and bikes, and offering microtransit services. While the implementation of the SRTP is largely within the purview of the City rather than private developers, the Project would not preclude the implementation of the SRTP. Furthermore, the Project would support the SRTP by facilitating the relocation of bus stops to be far-side and closer to intersections and crosswalks, which would improve pedestrian access to public transit. Therefore, the Project would not conflict with the SRTP.

Culver City Bicycle & Pedestrian Action Plan

The Action Plan establishes visions and values that focus on establishing walking and cycling as viable modes of travel for all trip types. The Action Plan aims to provide a safe, convenient and accessible active transportation network, accessible by users of all ages and abilities. Table 4.11-2, Consistency of the Project with Applicable Actions of the Action Plan, provides determinations of
whether the Project would conflict with any of the applicable actions of the Action Plan. As shown therein, the Project would not conflict with any of the applicable actions.

TABLE 4.11-2
CONSISTENCY OF THE PROJECT WITH APPLICABLE ACTION OF THE ACTION PLAN

<table>
<thead>
<tr>
<th>Action</th>
<th>Would the Project Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1.2. Increase the supply of bicycle parking at neighborhood destinations like schools, medical centers, grocery stores, transit stations, and government offices</td>
<td>No Conflict. The Project would provide both short-term visitor and long-term tenant bicycle parking near the grocery store.</td>
</tr>
<tr>
<td>HS-1.1. Prioritize quick implementation of active transportation facilities on Culver City’s high-injury network to rapidly address known safety issues.</td>
<td>No Conflict. The Project would not preclude the implementation of active transportation facilities on Culver City streets. The Project would install a signalized pedestrian crossing at the intersection of Sepulveda Boulevard and Janisann Avenue, which would improve pedestrian crossing safety and access in the area.</td>
</tr>
<tr>
<td>HS-3.2. Use current design guidelines to encourage development patterns that promote active transportation and allow for short trips between destinations.</td>
<td>No Conflict. The Project would develop a mixed-use building that encourages pedestrian trips and shorter trips between destinations. It also provides local serving retail to shorten trips for other residents of the area. New sidewalks would be provided along the perimeter of the Project Site, improving conditions for those walking along Sepulveda Boulevard, Jefferson Boulevard, and Machado Road.</td>
</tr>
<tr>
<td>HS-4.1. Build an active transportation network that encourages Culver City residents to use means of transportation other than driving by providing safer, more comfortable biking and walking facilities.</td>
<td>No Conflict. The Project would establish bicycle lanes along the abutting segment of Sepulveda Boulevard between Machado Road and Jefferson Boulevard, as well as pay a pro-rata share towards the design and construction of bike lanes on Sepulveda Boulevard between Machado Road and the Ballona Creek Bike Path. This bicycle infrastructure link with Ballona Creek Bike Path would encourage bicycling trips to and from the Project Site and other areas of Culver City.</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2021.

Complete Streets Policy

The City’s adopted Complete Streets Policy includes numerous policies that are applicable to the Project. **Table 4.11-3, Consistency of the Project with Applicable Policies of the Complete Streets Policy**, provides determinations of whether the Project would conflict with any of the applicable policies in the Complete Streets Policy. As shown therein, the Project would not conflict with any of the applicable policies and programs.

TABLE 4.11-3
CONSISTENCY OF THE PROJECT WITH APPLICABLE POLICIES OF THE COMPLETE STREETS POLICY

<table>
<thead>
<tr>
<th>Policy</th>
<th>Would the Project Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a.i. The City will plan, design, operate, and maintain a transportation system that provides a connected network of streets and facilities that accommodate all modes of travel. The City will actively seek opportunities to repurpose or enhance rights-of-way to improve connectivity for pedestrians, bicyclists, and transit users.</td>
<td>No Conflict. The Project Site is oriented such that visitors and residents would be able to walk through and around the Project Site with multiple access points and community connections to the development. Bicyclists would be able to access the Project Site from all three Project frontages. Bicycle racks for visitors would be available at the corner of Machado Road and Sepulveda Boulevard, the corner of Jefferson Boulevard and Sepulveda Boulevard, and in front of the ground level market by the surface parking spaces for the retail uses. Bicycle lockers would be provided for residents in the subterranean parking level. New 8-foot wide sidewalks would be installed on Sepulveda and Jefferson Boulevards, as well as on Machado Road. The ground floor retail uses at the corner of Sepulveda Boulevard and Jefferson Boulevard, along with the market, would serve as pedestrian points of interest on the Project Site. The Paseo Courtyard, located...</td>
</tr>
</tbody>
</table>
TABLE 4.11-3
CONSISTENCY OF THE PROJECT WITH APPLICABLE POLICIES OF THE COMPLETE STREETS POLICY

<table>
<thead>
<tr>
<th>Policy</th>
<th>Would the Project Conflict?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a.ii. The City will pursue enhancements to the bicycle and pedestrian connectivity to public transit services, as well as to schools, parks, service retail, public facilities, regional connections, and business districts.</td>
<td>No Conflict. The Project Site is located within an urban environment well served by public transit. The Culver City Bus has multiple stops that travel along the Project Site frontages, including Line 4, which travels north/south along Jefferson Boulevard and provides service to the Los Angeles County Metropolitan Transportation Authority (Metro) E-Line (Expo) Light Rail at the La Cienega Station; Line 6, which travels north/south along Sepulveda Boulevard from UCLA to the Metro Green Line Station; and Rapid 6, which travels north/south along Sepulveda Boulevard and provides service to the Metro E-Line (Expo) Light Rail at Expo/Sepulveda Station. The Project would introduce new 8-foot-wide sidewalks along Project frontages, and would install a new signalized crosswalk at the intersection of Sepulveda Boulevard and Janisann Avenue. The new crossing would provide access to bus stops and retail on southbound Sepulveda Boulevard and the neighboring community.</td>
</tr>
<tr>
<td>5.b.ii. The City will emphasize pedestrian access along and across City streets by, for example, providing convenient and protected crossing locations, shortening crossing distances through the use of curb extensions and light curb radii, and enhancing signage and pavement markings.</td>
<td>No Conflict. The Project includes a proposed traffic signal and pedestrian crosswalk at the intersection of Janisann Avenue and Sepulveda Boulevard to increase pedestrian connectivity to the surrounding area. The Project would reduce the number of driveways and curb cuts on the Project Site from 10 to three. The removal of driveways would improve traffic flow and reduce vehicle conflicts and interference with pedestrian activity around the Project Site. The Project would provide a development that is conducive to walking, biking, and taking transit. The Project would enhance pedestrian rights-of-way by introducing street facing retail and commercial corridors to develop or enhance vibrant business districts.</td>
</tr>
<tr>
<td>5.d.ii. The City will coordinate street improvements with business owners along retail and commercial corridors to develop or enhance vibrant business districts.</td>
<td>No Conflict. The Project would provide a development that is conducive to walking, biking, and taking transit. The Project would enhance pedestrian rights-of-way by introducing street facing retail and commercial corridors to develop or enhance vibrant business districts. Pedestrian connectivity throughout the Project Site would be enhanced with internal walkways connecting to existing sidewalks.</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2021.
Based on the above, the Project would not conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities. Therefore, impacts would be less than significant.

Threshold TRAF-2: The Project would have a potentially significant impact on transportation if it would conflict or be inconsistent with CEQA Guidelines Section 15064.3, Subdivision (b).

Impact Statement TRAF-2: The Project would not exceed the City’s threshold for daily work VMT per employee for the office uses. Impacts associated with the Project are therefore considered potentially significant.

The Project is estimated to generate a total of 4,934 daily vehicle trips and a total daily VMT of 32,774. Additional details regarding the VMT analysis are available in Appendix B of the Transportation Impact Study, which is provided in Appendix J of this Draft EIR.

Residential VMT

The daily household VMT per capita for the Project is estimated at 5.7, which is below the threshold of 7.1 for the City. Thus, the Project would have a less than significant impact on household VMT per capita as estimated by the VMT Calculator.

Office VMT

The daily work VMT per employee for the Project is estimated at 9.2, which is above the threshold of 8.6 for the City. Thus, the Project would have a potentially significant impact on work VMT per employee as estimated by the VMT Calculator.

Retail VMT

Each of the restaurant, retail, gym/studio fitness center, and supermarket spaces proposed for the Project would be under 50,000 sf in size and therefore would be considered to be local-serving. As local-serving retail uses are screened from further VMT analysis, the retail VMT impact would be considered to be less than significant.

Project-generated VMT would be below the City’s household VMT significance threshold, but would exceed the City’s work VMT significance threshold. Therefore, the Project would result in a potentially significant VMT impact.

Threshold TRAF-3: The Project would have a potentially significant impact on transportation if it would substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

Impact Statement TRAF-3: The Project would ensure that all access would be designed to the City standards and would meet the City’s requirements to protect driver, bicyclist, and pedestrian safety. The Project would relocate bus stops, install a new traffic signal and pedestrian crosswalk, and eliminate seven existing driveway curb cuts, all of which would serve to reduce transportation hazards. Impacts would be less than significant.
Pedestrian access to the Project Site would be provided via new 8-foot-wide sidewalks around the perimeter of the Project Site and through pedestrian plazas/paseos accessible to the neighborhood. Residents, visitors, and employees arriving to the Project Site by bicycle would have the same access opportunities as pedestrians and would be able to utilize on-site bicycle parking facilities. The Project’s access locations would be designed to the City standards and would provide adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls that meet the City’s requirements to protect pedestrian safety. All three Project driveways would intersect their respective streets (Machado Road or Sepulveda Boulevard) at right angles. Street trees and other potential impediments to adequate driver and pedestrian visibility would be minimal. Pedestrian entrances separated from vehicular driveways would provide access from the adjacent streets, parking facilities, and transit stops. The streets immediately bordering the Project Site and nearly all the other streets in the vicinity would include sidewalks to facilitate pedestrian movement.

The Project would eliminate seven of the ten existing driveways. Three driveways would provide vehicular access to/from the Project Site:

- Residential-only driveway leading to the underground parking on Machado Road opposite the Heritage Place intersection. This driveway would also serve the ECF parking. Based on community consultation, a channelizing island would be installed to prevent southbound through movements from Heritage Place into the residential driveway, as well as southbound left-turn movements.

- Commercial use driveway on Machado Road, west of the Machado Road and Jefferson Boulevard intersection by approximately 100 feet. This driveway would serve commercial parking and the grocery loading dock, and outbound left-turns onto westbound Machado Road would be prohibited.

- Commercial use driveway on Sepulveda Boulevard, aligned with the intersection of Sepulveda Boulevard and Janisann Avenue. All movements would be allowed at this signalized driveway intersection.

The three Project driveways would be designed to comply with City standards. The driveway on Sepulveda Boulevard would be designed and configured to avoid or minimize potential conflicts with transit services and pedestrian traffic by relocating bus stops, installing marked crosswalks, and providing curb and sidewalk to separate pedestrian movements from vehicular movements. The Project includes the proposed relocation of the bus stop for Culver City Bus Line 6 on northbound Sepulveda Boulevard. The bus stop is proposed to shift approximately 100-200 feet to the south to the northeast corner of the newly signalized intersection of Janisann Avenue and Sepulveda Boulevard, the far-side of the intersection. Also, the Project includes the proposed relocation of the bus stop for Culver City Bus Lines 3 and 4 on southbound Jefferson Boulevard. The bus stop is proposed to shift approximately 100-200 feet to the north to the southwest corner of the intersection of Machado Road and Jefferson Boulevard, the far-side of the intersection. The other two driveways do not pose conflicts as there is no adjacent transit stop. No new near-side bus stops would be established.

In addition, the Project would install a new traffic signal at the Project driveway on Sepulveda Boulevard, where it intersects with Janisann Avenue. This would provide a safe crossing for pedestrians accessing the Project from the Sunkist Park neighborhood across Sepulveda Boulevard.
Based on the above, the Project would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site. Therefore, the Project would not have a significant impact regarding increased hazards due to geometric design features.

Threshold TRAF-4: The Project would have a potentially significant impact on transportation if it would result in inadequate emergency access.

Impact Statement TRAF-4: The Project would ensure that emergency access is maintained during construction and operation. Therefore, impacts would be less than significant.

The Project Site is located within an urbanized area with a fully developed roadway system. Direct emergency access is provided by each of the three streets bordering the Project Site, including Sepulveda Boulevard, Jefferson Boulevard, and Machado Road.

The Project would include temporary construction activities (e.g., temporary lane closures, etc.) and traffic that could potentially affect emergency access to the Project Site and surroundings. Per PDF-TRAF-1, construction staging and construction worker parking associated with the Project would be accommodated on the Project Site, limiting potential conflicts with traffic on local streets. In addition, emergency vehicle access to the Project Site and neighboring land uses would be maintained, and worker and construction equipment delivery would be scheduled to avoid peak traffic hours. Additionally, PDF-TRAF-1 requires construction management meetings with City Staff and other representatives of surrounding developments if concurrent construction occurs to ensure that concurrent construction projects are managed in collaboration with one another. Furthermore, while the Project would generate construction traffic and potentially require off-site utility and roadway improvements and associated temporary lane closures along one or more of the three streets bordering the Project Site, Project construction contractors would coordinate with the Culver City Police Department (CCPD) and Culver City Fire Department (CCFD) concerning any planned temporary lane closures and other construction activities that could affect emergency access and emergency response times, and arrange for traffic control devices and detours to minimize any potential impacts to traffic. Because of the short-term nature of the construction activities and with implementation of PDF-TRAF-1, the Project’s construction activities would not require a new, or significantly interfere with an existing risk management, emergency response, or evacuation plan. The Project would not result in inadequate emergency access during construction.

Regarding Project operation, CCMC Chapter 17.540 requires that new projects would be reviewed by the CCPD to ensure that public safety and site security measures are incorporated. Furthermore, implementation of PDF-FIRE-2 would ensure that the CCFD would review and approve plans for the building, fire lanes and associated turnarounds, fire hydrant locations, and associated equipment, to ensure adequate access to and within the Project Site for emergency vehicles. Accordingly, emergency access would be maintained during operation of the Project. Therefore, Project operation would not require a new, or significantly interfere with an existing risk management, emergency response, or evacuation plan. The Project would not result in inadequate emergency access during operation.
Cumulative Impacts

Chapter 3, Environmental Setting, of this Draft EIR provides a list of 27 related projects (21 in the City and six in the City of Los Angeles) that are planned or are under construction within an approximately 1.5-mile radius of the Project Site. These projects are summarized in Table 3-1, Related Projects List, and shown on Figure 3-1, Related Projects Map, in Chapter 3. As shown in Figure 3-1, these related Projects occur in two separate jurisdictions, the City of Culver City and the City of Los Angeles.

Each of the related projects considered in this cumulative analysis of consistency with programs, plans, policies, and ordinances would be separately reviewed and approved by the City, including a review of consistency with applicable policies. Collectively, the Project and the related projects are located within a SCAG-designated High Quality Transit Area and would add development and density in an area with transit options and high levels of pedestrian activity. Therefore, the Project in combination with the related projects would not create inconsistencies nor result in cumulative impacts with respect to the identified programs, plans, policies, and ordinances.

Similar to the Project, any related project that would be subject to environmental review would be required to evaluate VMT on a project-by-project basis. If the related project were determined to have potentially significant VMT impacts, it would be required to include appropriate mitigation measures to reduce VMT impacts to a less-than-significant level. The Project would result in a potentially significant impact on work VMT per employee as estimated by the VMT Calculator.

With implementation of Mitigation Measure TRAF-1, which would require the Project to implement a TDM Program including a Commute Marketing Program and Off-Street Parking Pricing, impacts on work VMT per employee would be reduced to less than significant. As the Project would result in a less than significant impact on VMT with implementation of Mitigation Measure TRAF-1, the Project would similarly result in a less than significant impact on VMT in cumulative conditions, and further analysis is not necessary.

With regard to design hazards, the Project would not result in a significant impact for geometric hazards. Each related project would be reviewed by the City to ensure compliance with the City’s requirements relative to the provision of safe access for vehicles, pedestrian, and bicyclists, which would incorporate standards for adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls to protect pedestrian and enhance bicycle safety. Furthermore, since modifications to access and circulation plans are largely confined to a project site and immediate surrounding area, a combination of impacts with other related projects that could potentially lead to cumulative impacts is not expected. Therefore, the Project’s contribution to cumulative impacts associated with hazardous design conditions would not be considerable.

With regard to emergency access, the Project would not result in a significant impact. The Project Site and the surrounding area are located in an established urban area that is well-served by the surrounding roadway network, and multiple routes exist in the area for emergency vehicles and evacuation. Drivers of emergency vehicles normally have a variety of options for avoiding traffic, such as using sirens to clear a path of travel or driving in the lanes of opposing traffic. Similar to the Project, related projects would implement a Construction Traffic Management Plan to ensure adequate emergency access is maintained in and around the related project sites throughout all
construction activities. Coordination of these plans will ensure construction activities of the concurrent related projects and associated hauling activities are managed in collaboration with one another and the Project. Furthermore, each of the related projects would be required to coordinate with CCFD and CCPD for site plan reviews and to ensure that emergency access is maintained at all times.

As such, cumulative impacts on transportation would be less than significant.

4.11.5 Mitigation Measures

TRAF-1: The Project shall implement a Transportation Demand Management (TDM) Program to reduce the VMT impacts from office uses. The TDM Program shall be reviewed and approved by the City’s Planning Division, Public Works Mobility and Traffic Engineering, Division and Transportation Staff for review prior to the issuance of the first building permit for the Project. The TDM Program shall include the following measures and strategies:

- Commute Marketing Program – This strategy involves the use of marketing and promotional tools to educate and inform travelers about site-specific transportation options and the effects of their travel choices. At a minimum, this strategy includes educational and promotional materials, and a TDM Coordinator from building management to oversee the TDM program, such as field questions, manage regular updates of transportation materials for the Project Site, and coordinate carpool and ridesharing options.

- Off-Street Parking Pricing – This strategy implements parking pricing for spaces within the Project Site for office employees. This would mean that employees of the office land use would need to pay for a parking spot within the Project Site garage, separate from the cost of the lease for the office space.

4.11.6 Level of Significance After Mitigation

As discussed under Threshold TRAF-2, the Project would have a potentially significant impact on daily work VMT per employee as estimated by the VMT Calculator. With implementation of Mitigation Measure TRAF-1, the Project’s daily work VMT per employee would be reduced from 9.2 to 8.4, which would be below the threshold of 8.6 for the City. Therefore, with implementation of Mitigation Measure TRAF-1, VMT impacts would be reduced to less than significant.
This page intentionally left blank
4.12 Tribal Cultural Resources

4.12.1 Introduction

This section evaluates potential impacts on tribal cultural resources. The analysis is based on a Sacred Lands File (SLF) search conducted by the California Native American Heritage Commission (NAHC), consultations between the City and Native American tribes pursuant to Assembly Bill (AB) 52, as well as the 11111 Jefferson Boulevard Mixed Use Project – Cultural Resources Assessment Report (Assessment Report) prepared by ESA,¹ that is provided in Appendix C of this Draft EIR. Native American consultation documentation is provided in Appendix K of this Draft EIR.

Tribal cultural resources are defined by the California Public Resources Code (PRC) Section 21074 as sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe that are either included or determined to be eligible for inclusion in the California Register of Historical Resources (California Register) or included in a local register of historical resources, or a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant. A cultural landscape that meets these criteria is a tribal cultural resource to the extent that the landscape is geographically defined in terms of the size and scope of the landscape. Historical resources, unique archaeological resources, or non-unique archaeological resources, which are defined in Section 4.2.2, Archaeological Resources, of this Draft EIR, may also be tribal cultural resources if they meet these criteria.

4.12.2 Regulatory Framework

Assembly Bill 52

AB 52 was approved by California State Governor Edmund Gerry “Jerry” Brown, Jr. on September 25, 2014. The act amended California PRC Section 5097.94, and added PRC Sections 21073, 21074, 21080.3.1, 21080.3.2, 21082.3, 21083.09, 21084.2, and 21084.3. AB 52 applies specifically to projects for which a Notice of Preparation (NOP) or a Notice of Intent to Adopt a Negative Declaration or Mitigated Negative Declaration (MND) will be filed on or after July 1, 2015. The primary intent of AB 52 was to include California Native American Tribes early in the environmental review process and to establish a new category of resources related to Native Americans that require consideration under CEQA, known as tribal cultural resources. PRC Section 21074(a)(1) and (2) defines tribal cultural resources as “sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American Tribe” that are either included or determined to be eligible for inclusion in the California Register or included in a local register of historical resources, or a resource that is determined to be a tribal cultural resource by a lead agency, in its discretion and supported by substantial evidence. On July 30, 2016, the California Natural Resources Agency adopted the final text for tribal cultural resources update to

¹ Environmental Science Associates, 11111 Jefferson Boulevard Mixed-Use Project, Culver City, California, Cultural Resource Assessment, prepared for Jefferson Park LLC, December 2020. Provided in Appendix C of this Draft EIR.
Appendix G of the CEQA Guidelines, which was approved by the Office of Administrative Law on September 27, 2016.

PRC Section 21080.3.1 requires that within 14 days of a lead agency determining that an application for a project is complete, or a decision by a public agency to undertake a project, the lead agency provide formal notification to the designated contact, or a tribal representative, of California Native American Tribes that are traditionally and culturally affiliated with the geographic area of the project (as defined in PRC Section 21073) and who have requested in writing to be informed by the lead agency (PRC Section 21080.3.1(b)). Tribes interested in consultation must respond in writing within 30 days from receipt of the lead agency’s formal notification and the lead agency must begin consultation within 30 days of receiving the tribe’s request for consultation (PRC Sections 21080.3.1(d) and 21080.3.1(e)).

PRC Section 21080.3.2(a) identifies the following as potential consultation discussion topics: the type of environmental review necessary; the significance of tribal cultural resources; the significance of the project’s impacts on the tribal cultural resources; project alternatives or appropriate measures for preservation; and mitigation measures. Consultation is considered concluded when either: (1) the parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or (2) a party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached (PRC Section 21080.3.2(b)).

If a California Native American tribe has requested consultation pursuant to Section 21080.3.1 and has failed to provide comments to the lead agency, or otherwise failed to engage in the consultation process, or if the lead agency has complied with Section 21080.3.1(d) and the California Native American tribe has failed to request consultation within 30 days, the lead agency may certify an EIR or adopt an MND (PRC Section 21082.3(d)(2) and (3)).

PRC Section 21082.3(c)(1) states that any information, including, but not limited to, the location, description, and use of the tribal cultural resources, that is submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public without the prior consent of the tribe that provided the information. If the lead agency publishes any information submitted by a California Native American tribe during the consultation or environmental review process, that information shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public.

Senate Bill 18

Senate Bill (SB) 18 (Statutes of 2004, Chapter 905), which went into effect January 1, 2005, requires local governments (city and county) to consult with Native American tribes before making certain planning decisions and to provide notice to tribes at certain key points in the planning process. The intent is to “provide California Native American tribes an opportunity to participate
in local land use decisions at an early planning stage, for the purpose of protecting, or mitigating impacts to, cultural places.”

The purpose of involving tribes at these early planning stages is to allow consideration of cultural places in the context of broad local land use policy, before individual site-specific, project-level, land use designations are made by a local government. The consultation requirements of SB 18 apply to general plan or specific plan processes proposed on or after March 1, 2005.

According to the Tribal Consultation Guidelines: Supplement to General Plan Guidelines, the following are the contact and notification responsibilities of local governments:

- Prior to the adoption or any amendment of a general plan or specific plan, a local government must notify the appropriate tribes (on the contact list maintained by the NAHC) of the opportunity to conduct consultations for the purpose of preserving, or mitigating impacts to, cultural places located on land within the local government’s jurisdiction that is affected by the proposed plan adoption or amendment. Tribes have 90 days from the date on which they receive notification to request consultation, unless a shorter timeframe has been agreed to by the tribe (Government Code Section 65352.3).

- Prior to the adoption or substantial amendment of a general plan or specific plan, a local government must refer the proposed action to those tribes that are on the NAHC contact list and have traditional lands located within the city or county’s jurisdiction. The referral must allow a 45-day comment period (Government Code Section 65352). Notice must be sent regardless of whether prior consultation has taken place. Such notice does not initiate a new consultation process.

- Local government must send a notice of a public hearing, at least 10 days prior to the hearing, to tribes who have filed a written request for such notice (Government Code Section 65092).

4.12.3 Environmental Setting

Ethnographic Setting

The Project Site is located in a region traditionally occupied by the Gabrielino. The term “Gabrielino” is a general term that refers to those Native Americans who were administered by the Spanish at the Mission San Gabriel Arcángel. A more detailed discussion on the Gabrielino is provided in Section 4.2.2, Archaeological Resources, of this Draft EIR. A summary of known Native American settlements is provided here.

The closest named settlements to the Project Site are Saa’anga and Waachnga. Review of a map titled *Gabrielino Communities Located on the Los Angeles-Santa Ana Plain* by William

2 Governor’s Office of Planning and Research, Tribal Consultation Guidelines: Supplement to General Plan Guidelines, 2005.

3 As noted under Subsection 4.12.3, Environmental Setting, under Native American Consultation, the City submitted a request for consultation pursuant to SB 18 on October 9, 2020. As a General Plan Amendment is not requested as part of the Project, no further consultation is required pursuant to SB 18.

4 Governor’s Office of Planning and Research, Tribal Consultation Guidelines: Supplement to General Plan Guidelines, 2005.
McCawley\(^5\) indicates that the settlement of Saa’anga was located near Ballona Creek, approximately 0.30 miles from the Project Site. A map titled *The Gabrielson Indians at the Time of the Portola Expedition* by Bernice Johnston\(^6\) depicts Saa’anga as further west within 0.5 miles from the Project Site.

The McCawley map indicates that the settlement of Waachnga (also known variously as Guasna, Guashna, Guaspet, Guachpet, and Guashpet) was located near the mouth of Ballona Creek, approximately 3.25 miles from the Project Site. Based on mission baptism records, this “village” (or “rancheria” as it was known) appears to have been occupied from about 1790 to 1820.\(^7\) At least 193 people are known to have lived at the rancheria and were baptized there. Records suggest that recruitment into the Mission system did not occur until native populations closer to Mission San Gabriel had been assimilated, and after grazing expanded into the area, bringing native inhabitants of what is now the Ballona Reserve and surrounding areas into closer contact with Spanish-era ranchers.\(^8\) Two archaeological sites with components dating to the Spanish-era (CA-LAN-62 and CA-LAN-211) are located in the Ballona Reserve area and may be the location of this village/rancheria, although this has not been confirmed in the historical record.\(^9\)

Three settlements are depicted in the vicinity of the Project Site on a map titled *Kirkman-Harriman Pictorial and Historical Map of Los Angeles County*. Gaucha (Waachnga) is depicted approximately 3.15 miles from the Project Site while an unnamed settlement is depicted approximately 2.75 miles from the Project Site. A second unnamed settlement is depicted approximately 2 miles of the Project Site, between the Baldwin Hills and Ballona Creek.\(^10\)

Sacred Lands File Search

The NAHC maintains a confidential SLF which contains sites of traditional, cultural, or religious value to the Native American community. The NAHC was contacted on March 13, 2020 to request a search of the SLF. The NAHC responded to the request in a letter dated March 23, 2020 indicating that the results were positive. The letter did not provide details on the resources identified within the Project Site, but recommended contacting the Gabrielson Tongva Indians of California Tribal Council for more information on the positive result, as well as contacting other Native American tribes (contact list provided) who may have knowledge of cultural resources in the Project Site and vicinity.

\(^10\) Kirkman, George W., *The Kirkman-Harriman Pictorial and Historical Map of Los Angeles County; 1860 A.D. -1937 A.D. Copyright 1938*. 4.12-4
Native American Consultation

Assembly Bill 52 and Senate Bill 18

The City submitted requests for AB 52 and SB 18 Native American contact lists from the NAHC on September 14, 2020, and October 2, 2020, respectively. The NAHC responded with the respective lists in letters to the City dated September 29, 2020 and October 8, 2020. Both lists included the same seven (7) Native American individuals and organizations. The City submitted notification and request to consult letters to these seven (7) individuals and organizations on September 30, 2020, pursuant to AB 52 and separate letters to the same individuals and organizations on October 9, 2020 pursuant to SB 18. In particular, AB 52 and SB 18 letters were sent via certified mail to the following California Native American tribes and individuals:

- Sandonne Goad and Samuel Dunlap, Gabrielino/Tongva Nation
- Charles Alvarez, Gabrielino-Tongva Tribe
- Andrew Salas, Gabrieleño Band of Mission Indians—Kizh Nation
- Robert Dorame, Gabrielino Tongva Indians of California Tribal Council
- Anthony Morales, Gabrielino/Tongva San Gabriel Band of Mission Indians
- Scott Cozart, Soboba Band of Luiseño Indians
- Lovina Redner, Santa Rosa Band of Cahuilla Indians

On September 30, 2020, the City received a phone call from Robert Dorame, Chairman of the Gabrielino Tongva Indians of California Tribal Council. Chairman Dorame indicated that the tribe would like to be included in future distribution of materials and stated the importance of the tribe’s ancestral lands, inclusive of the Project Site.

On January 28, 2021, the City sent a courtesy notice to Mr. Andrew Salas, Chairman of the Kizh Nation, regarding the results of the NAHC SLF. The Kizh Nation responded with a request for consultation with the City for the Project. The City consulted with the Kizh Nation on April 21, 2021 via conference call. The City provided an overview of the Project and the Kizh Nation provided their knowledge of the Project Site vicinity, including information about the natural environment and general history of the area, and known villages and trade routes/trails in the area.

While the Kizh Nation did not identify any known tribal cultural resources (as defined in PRC Section 21074) within the Project Site during consultation with the City, they have indicated that the Project Site has a high potential to encounter tribal cultural resources during construction given the identification or prehistoric artifacts during a construction project nearby, water courses, major traditional trade routes, and its location within a cultural landscape. As a result, the Kizh Nation recommended Native American monitoring during construction of the Project.

To date, no other responses from the Native American community have been received as part of the AB 52 nor SB 18 tribal consultation effort. The AB 52 and SB 18 Native American consultation documentation is provided in Appendix K of this Draft EIR.
4.12.4 Environmental Impacts

Methodology

The analysis is based on a SLF search conducted by the NAHC, consultations between the City and Native American tribes pursuant to AB 52, as well as the Assessment Report prepared by ESA. Specifically, the City submitted notification and request to consult letters to Native American individuals and organizations and conducted follow-up Native American consultation.

Thresholds of Significance

The significance thresholds below are derived from the Environmental Checklist questions in Appendix G of the CEQA Guidelines. Accordingly, a significant impact to tribal cultural resources would occur if:

- **TCR-1**: The Project would cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

 i. Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or

 ii. A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

Project Characteristics and Project Design Features

Project Characteristics

As it relates to the evaluation of potential impacts on tribal cultural resources, the Project would involve demolition of existing buildings on the Project Site to support a new mixed-use development. The Project would consist of five stories of development over one subterranean level for vehicular parking and building infrastructure. The maximum depth of ground disturbance is expected to reach depths of up to 25 feet below ground surface (bgs).

Project Design Features

There are no Project Design Features relative to tribal cultural resources.
Project Impacts

TCR-1: The Project would result in a significant tribal cultural resources impact if it would impact if it would cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

i. Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k) or

ii. A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

Impact Statement TCR-1: No known tribal cultural resources are present on the Project Site; therefore, the Project would not cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21074, and no impacts would occur.

As discussed in the Assessment Report, no known prehistoric archaeological resources were identified within or immediately adjacent to the Project Site. However, Culver City is located in an area with a rich archaeological history with approximately 26 known prehistoric archaeological sites, including several Native American settlements, within a 3-mile radius of the Project Site; two of which are within a 0.5-mile radius of the Project Site. Moreover, two prehistoric metate artifacts were recently encountered by archaeologists during construction and redevelopment of a project near Downtown Culver City. The NAHC SLF of the Project Site yielded positive results, but information regarding this result was not provided and instead the NAHC recommended contacting the Gabrieleno Tongva Indians of California Tribal Council for more information. The City submitted notification and request to consult letters to seven (7) Native American individuals and organizations on September 30, 2020, pursuant to AB 52 and separate letters to the same individuals on October 9, 2020, pursuant to SB 18. On September 30, 2020, the City received a phone call from Robert Dorame, Chairman of the Gabrieleno Tongva Indians of California Tribal Council. Chairman Dorame indicated that the tribe would like to be included in future distribution of materials and stated the importance of the tribe’s ancestral lands, inclusive of the Project Site.

On January 28, 2021, the City sent a courtesy notice to Mr. Andrew Salas, Chairman of the Kizh Nation, regarding the results of the NAHC SLF. The Kizh Nation responded with a request for consultation with the City for the Project. The City consulted with the Kizh Nation on April 21, 2021 via conference call. The City provided an overview of the Project and the Kizh Nation provided their knowledge of the Project Site vicinity, including information about the natural environment and general history of the area, and known villages and trade routes/trails in the area.

While the Kizh Nation did not identify any known tribal cultural resources (as defined in PRC Section 21074) within the Project Site during consultation with the City, they have indicated that
the Project Site has a high potential to encounter tribal cultural resources during construction given the identification or prehistoric artifacts during a construction project nearby, water courses, major traditional trade routes, and its location within a cultural landscape. As a result, the Kizh Nation recommended Native American monitoring during construction of the Project. The City has required Mitigation Measure MM-ARCH-2 in Section 4.2.2, Cultural Resources – Archaeological Resources, of this Draft EIR which includes provisions for the Applicant to retain a Native American representative to monitor construction excavations associated with implementing the Project.

The AB 52 and SB 18 Native American notification letters are provided in Appendix K of this Draft EIR. To date, no other responses from the Native American community have been received as part of the AB 52 nor SB 18 tribal consultation effort. As a result of the City’s consultation efforts and other archival research, no known tribal cultural resources or tribal cultural places have been identified within the Project Site or immediate vicinity. Therefore, the Project would result in no impacts to tribal cultural resources.

While no tribal cultural resources are anticipated to be affected by the Project, the City has prescribed Mitigation Measures ARCH-2 and ARCH-3 in Section 4.2.2, Archaeological Resources, of this Draft EIR to address any inadvertent discovery of a prehistoric archaeological resources. These measures include requirements for Native American construction monitoring and the treatment of inadvertent prehistoric archaeological discoveries. In particular, these mitigation measures require the immediate halt of construction activities in the vicinity of the discovery, coordination with appropriate Native American tribes and the City, and development and implementation of appropriate actions for treating the discovery.

Cumulative Impacts

No tribal cultural resources have been identified in the Project Site or vicinity. Further, in association with CEQA review, future AB 52 consultations with Native American tribes in order to identify tribal cultural resources would be required for projects that have the potential to cause significant impacts to tribal cultural resources. Therefore, to the extent impacts on tribal cultural resources from related projects may occur, impacts from the Project are not expected and cumulative impacts would be less than significant.

4.12.5 Mitigation Measures

No mitigation measures are required, as the Project would have no impact on tribal cultural resources.

4.12.6 Level of Significance after Mitigation

Not applicable. The Project would have no impacts on tribal cultural resources.
CHAPTER 5
Alternatives

5.1 Introduction

This chapter presents the alternatives analysis required by CEQA for the Project, which is described in Chapter 2, Project Description, and analyzed in Chapter 4, Environmental Impact Analysis, of this Draft EIR. The purpose of this chapter is to describe and analyze a reasonable range of alternatives that could feasibly attain most of the basic objectives of the Project while avoiding or substantially lessening any significant effects of the Project. This chapter describes CEQA requirements for analysis of alternatives and provides a summary of the Project and listing of Project Objectives, a description of the alternatives to be analyzed, and a discussion of alternatives considered but eliminated from further analysis. It then evaluates impacts for each alternative by environmental topic evaluated in Chapter 4, Environmental Impact Analysis, and compares the potential impacts of each alternative with those of the Project. Based on this analysis, and as required by CEQA, this chapter also identifies the environmentally superior alternative.

5.2 CEQA Requirements for Alternatives Analysis

CEQA does not prescribe fixed rules governing the type of alternatives to a project that should be analyzed in an EIR; the nature of alternatives varies depending on the context of the project being analyzed. As expressed by the California Supreme Court: “CEQA establishes no categorical legal imperative as to the scope of alternatives to be analyzed in an EIR. Each case must be evaluated on its facts, which in turn must be reviewed in light of the statutory purpose.” (Citizens of Goleta Valley v. Board of Supervisors [1990] 52 Cal.3d 553, 566).

Section 15126.6(a) of the CEQA Guidelines provides that:

[an EIR shall describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives. An EIR need not consider every conceivable alternative to a project. Rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision making and public participation. An EIR is not required to consider alternatives which are infeasible. The lead agency is responsible for selecting a range of project alternatives for examination and must publicly disclose its reasoning for selecting those alternatives. There is no ironclad rule governing the nature or scope of the alternatives to be discussed other than the rule of reason.]
Under these principles, an EIR needs to describe and evaluate only those alternatives necessary to permit a reasonable choice and “to foster meaningful public participation and informed decision making” (CEQA Guidelines Section 15126.6[f]). Consideration of alternatives focuses on those that can either eliminate significant adverse environmental impacts or substantially reduce them; alternatives considered in this context may include those that are more costly and those that could impede to some degree the attainment of the project objectives (CEQA Guidelines Section 15126.6[b]). CEQA does not require the alternatives to be evaluated at the same level of detail as the proposed project. Rather, the discussion of alternatives must include sufficient information about each alternative to allow “meaningful evaluation, analysis, and comparison with the proposed project” (CEQA Guidelines Section 15126.6[d]).

The range of alternatives required in an EIR is therefore governed by a “rule of reason” that requires an EIR to set forth only those alternatives necessary to permit a reasoned choice (CEQA Guidelines Section 15126.6[f]). An EIR need not consider every conceivable alternative to a project. Alternatives may be eliminated from detailed consideration in the EIR if they fail to meet most of the basic project objectives, are not feasible, or do not avoid or substantially lessen any significant environmental effects (CEQA Guidelines Section 15126.6[c]). Moreover, under CEQA, a lead agency may structure its alternatives analysis around a reasonable definition of a fundamental underlying purpose, and need not study alternatives that cannot achieve that basic goal (In re Bay-Delta Programmatic Environmental Impact Report Coordinated Proceedings [2008] 43 Cal. 4th 1143, 1165).

CEQA also requires that alternatives evaluated in an EIR be potentially feasible. Feasible is defined in CEQA as “capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and technological factors” (Public Resources Code [PRC] Section 21061.1). The CEQA Guidelines elaborate that factors that may be taken into account when addressing the feasibility of alternatives include site suitability, economic viability, availability of infrastructure, existing conditions, other plans or regulatory limitations, and jurisdictional boundaries and whether the proponent can reasonably acquire, control, or otherwise have access to the alternative site (CEQA Guidelines Section 15126.6[f]). Finally, alternatives should also avoid or substantially lessen one or more significant environmental impacts that would occur under the proposed project.

In addition to the requirements described above, CEQA requires evaluation of the “No Project Alternative,” which analyzes the environmental effects that would occur if the project were not to proceed (CEQA Guidelines Section 15126.6[e]). The purpose of describing and analyzing the No Project Alternative is to compare the impacts of approving the Project with the impacts of not approving the Project. An EIR is also required to identify the environmentally superior alternative. “If the environmentally superior alternative is the No Project Alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives” (CEQA Guidelines Section 15126.6[e]).
5.3 Project Summary

As described in Chapter 2, Project Description, of this Draft EIR, the Project would involve demolition of approximately 35,011 square feet (sf) of existing buildings on the Project Site to support a proposed new mixed-use development. The Project would consist of five stories of development over one subterranean level for vehicular parking and building infrastructure. The proposed five-story building would be 67 feet tall (70.5 feet including the parapet) with a total building area of 555,221 sf, including all parking areas (subterranean, ground level, and aboveground) and usable building area of 311,109 sf. The Project would have a 2.08 floor area ratio (FAR). The Project includes 244,609 sf of residential uses (including a residential lobby and amenity room) with 230 residential apartment units (including 19 units affordable to very low income households); 66,500 sf of commercial uses, including a market, retail/restaurant uses and office uses; three levels of vehicular parking (653 spaces), including one subterranean level; and public and private open space areas.

The Project includes a proposal for an approximately 13,800 sf park (Machado Park), which would be publicly accessible but privately maintained as well as an approximately 13,000 sf Paseo Courtyard at the corner of Sepulveda Boulevard and Jefferson Boulevard and between the retail spaces at the southern end of the Project Site, which would welcome pedestrian, bike, bus and other foot traffic into and through the Project Site. An additional 2,000 sf Entry Courtyard at the entrance on Sepulveda Boulevard across from Janisann Avenue would also be provided. All publicly accessible open space areas on the ground floor would be accessed from Machado Road, Sepulveda Boulevard, and Jefferson Boulevard, as well as from the interior of the Project Site from the groundfloor parking level or via escalators from the above- and below-ground parking levels.

There are currently ten driveways surrounding the Project Site: five on Sepulveda Boulevard, three on Jefferson Boulevard, and two on Machado Road. The Project would change the locations of and remove seven driveways, resulting in three remaining driveways to serve the Project Site, thereby reducing the potential for pedestrian/vehicular conflicts and interruption of traffic flows on adjacent roadways. Vehicular access to the Project Site would be provided from one driveway on Sepulveda Boulevard at Janisann Avenue and two driveways on Machado Road. Access for trucks and deliveries would be off of Machado Road where they would access a 2,856 sf loading dock within the Project Site via the eastern-most retail entrance. The Project also includes a proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard. Additionally, the Project includes proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into the Project and eastbound Machado Road, respectively.

The Project would provide three levels of vehicular parking including one subterranean level. Structured parking containing 653 vehicular parking spaces would be provided with 308 spaces for residential uses, 311 spaces for commercial uses, and 34 for the Exceptional Children’s Foundation (ECF). A total of 14 handicap accessible spaces would be provided, including 6 parking spaces in the subterranean parking level, 3 parking spaces on the ground floor, and 5 parking spaces on the second
floor. Bicycle parking would include 71 long-term and 26 short-term bicycle parking spaces provided in various locations throughout the Project Site.

The Project would require excavation to accommodate subterranean parking, building foundations, utilities and other improvements. Up to approximately 88,000 cubic yards of earthwork would be excavated and exported from the Project Site. The Project would excavate to a maximum depth of 25 feet below grade. Project construction would occur in one phase and is anticipated to commence as early as the second quarter of 2022 and be completed by the third quarter of 2024 for an anticipated duration of 26 months.

5.4 Project Objectives

CEQA Guidelines Section 15124(b) states that a project description shall contain “a statement of the objectives sought by the proposed project.” In addition, CEQA Guidelines Section 15124(b) further states that “the statement of objectives should include the underlying purpose of the project.”

As stated in Chapter 2, *Project Description*, of this Draft EIR, the underlying purpose and primary objective of the Project is to develop the Project Site with a mixed-use development that includes residential uses. More specifically, the objectives of the Project are to:

- Develop new, high-quality infill housing with a diverse mix of residential dwelling types, containing both market-rate and affordable units, to serve a range of household sizes adjacent to existing roadway improvements, service connections, and near existing transit.
- Fulfill the City’s housing goals by improving access to quality housing for all members of the community through the provision of affordable housing in proximity to open space and public transportation, while maintaining access to a wide range of services and goods.
- Provide open space amenities that will enhance existing site conditions through a publicly accessible park (Machado Park), a Paseo Courtyard, an Entry Courtyard, as well as a unified landscape design with common open space areas for Project residents.
- Provide for a mix of commercial and residential uses to promote pedestrian activity, reduce vehicle trips and vehicle miles traveled, and encourage active transportation.
- Activate the Sepulveda and Jefferson Boulevard frontages by providing street-oriented retail and restaurant uses, and a landscaping program that further enhances the pedestrian experience.
- Activate Machado Road at Sepulveda Boulevard with a publicly accessible park that is open to the sky and offers future residents and the general public both active and passive areas such as seating, landscaped paseos, and exercise areas.
- Promote vehicular, pedestrian and bicycle safety and access through the Project Site, including the elimination of seven driveways around the Project Site; a new traffic signal at Janisann and Sepulveda Boulevard, new eight foot sidewalks along Sepulveda and Jefferson Boulevards and Machado Road; bicycle racks, lockers, bicycle share facilities; provision of bicycle lanes along Sepulveda Boulevard between Machado Road and Jefferson Boulevard; contributions to design and construction of bike lanes on Sepulveda Boulevard to connect to the Ballona Creek Bike Path; and the provision of a pedestrian circulation system connecting a Paseo Courtyard, Entry Courtyard, ground level commercial uses and open space areas.
• Provide safe access to parking for ECF to replace parking currently on-site associated with that use.

• Provide an on-site grocery store where future residents and employees at the Project Site and nearby residents may purchase groceries, reducing reliance on single occupancy vehicles.

• Utilize the City’s Community Benefits and Density Bonus Programs to increase the permitted density at the Project Site in order to provide much needed housing at a variety of income levels that will assist the City in meeting its Regional Housing Needs goals.

• Provide a development that complements and improves the visual character of the area by connecting with the surrounding urban environment through a high level of architectural design, including a porous building form with vertical and horizontal breaks, generous setbacks, light materiality, landscape features, and active ground floor uses with open space amenities.

• Create a development with high quality design that supports environmental sustainability through energy efficiency, water conservation, and the reduction of greenhouse gas emissions through such features as solar photovoltaic power, electric vehicle charging stations, energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping.

5.5 Summary of Project Alternatives

This chapter considers seven alternatives to the Project: four of which were considered but not selected for further analysis, a “no project” alternative, and two “build” alternatives, as described and evaluated below.

Under the No Project Alternative, the Project would not be developed and the Project Site would remain as under current conditions. The two additional build alternatives were selected with the goal of identifying ways to reduce or avoid impacts that would result from implementation of the Project, while still meeting basic Project Objectives. In summary, the following alternatives are fully evaluated in this chapter:

1. No Project Alternative
2. Code-Compliant Alternative
3. Reduced Density Alternative

These three alternatives are analyzed and described in more detail below, under Subsection 5.7, Alternatives to the Proposed Project.

5.6 Alternatives Considered and Rejected

CEQA Guidelines Section 15126.6(c) provides that an EIR should identify alternatives that were considered for analysis but rejected and briefly explain the reasons for their rejection. According to the CEQA Guidelines, the following factors may be used to eliminate alternatives from detailed consideration: the alternative’s failure to meet most of the basic Project objectives, the alternative’s infeasibility, or the alternative’s inability to avoid or lessen significant environmental impacts.
5. Alternatives

As summarized above under Section 5.2, CEQA Requirements for Alternatives Analysis, CEQA requires that alternatives evaluated in an EIR be potentially feasible. Feasibility is defined in CEQA as “capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and technological factors” (PRC Section 21061.1). CEQA Guidelines Section 15126.6(f]) specifies factors that may be taken into account when addressing the feasibility of alternatives; these factors include site suitability, economic viability, availability of infrastructure, existing conditions, other plans or regulatory limitations, and jurisdictional boundaries and whether the proponent can reasonably acquire, control, or otherwise have access to an alternative site.

Finally, alternatives that would neither avoid nor substantially lessen any of the significant unavoidable environmental effects of the project need not be evaluated in an EIR. See, e.g., City of Maywood v. Los Angeles Unified School District (2012) 208 Cal.App.4th 362, 419. Such alternatives can therefore be considered infeasible.

With the above factors in mind, three alternatives were considered and rejected as infeasible are discussed below.

5.6.1 Alternative Off-Site Location

CEQA does not require that analysis of alternative sites always be included in an EIR. However, if all the surrounding circumstances make it reasonable to consider an alternative site, then an alternative location should be considered and analyzed in the EIR. Per CEQA Guidelines Section 15126.6(f)(2), in making the decision to include or exclude analysis of an alternative site, the “key question and first step in analysis is whether any of the significant effects of the project would be avoided or substantially lessened by putting the project in another location. Only locations that would avoid or substantially lessen any of the significant effects of the project need to be considered for inclusion in the EIR.” If no feasible alternative locations exist, the EIR must disclose the reasons for this conclusion. According to CEQA Guidelines Sections 15126.6(f)(1) and (f)(2), among the factors that may be considered when addressing the feasibility of an alternative site are general suitability, economic viability, availability of infrastructure, general plan consistency, and whether the proponent can reasonably acquire, control, or otherwise have access to the alternative site. The above is in light of the fact that, per CEQA Section 15126.6(a), “An EIR shall describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project.”

Development of the Project at an off-site location in the City is unlikely to eliminate or notably reduce its significant impacts, all of which are reduced to less than significant levels with implementation of the mitigation measures presented in this Draft EIR. The Project’s significant impacts requiring mitigation include construction related air quality and noise impacts, archaeological and paleontological resource impacts, and an operational transportation impact related to vehicle miles traveled (VMT) associated with offices uses. The City is generally developed such that alternate locations that allow mixed-use development would likely be in close proximity to existing development with sensitive uses, which would be affected by Project construction. Additionally, the construction related activities of the Project would not change at a different
location. Therefore, the potential for significant construction related air quality impacts are expected to be the same, and construction related noise impacts are expected to be similar. In regard to potential impacts on archaeological and paleontological resources, most areas of the City have potential to encounter unknown resources during excavation, like the Project Site, therefore, with the same excavation required, the potential for impacts is expected to be similar. And, the Project’s significant VMT impact associated with the office uses would be the same regardless of the Project Site location.

In addition to there being potential for similar impacts at an alternative location, it is not anticipated that the Applicant would be able to find a similarly sized building site with the same development potential to accommodate the variety of commercial and residential uses proposed under the Project. There are limited sites of similar size as the Project Site throughout the City, and none are available for sale. Therefore, the flexibility to develop a similar project on the same or similar scale in another location is not feasible.

For the reasons stated above, an off-site location alternative would not meaningfully change the impacts of the Project and a feasible alternate location for the Project has not been identified. Accordingly, an off-site alternative has not been carried forward for further analysis.

5.6.2 Commercial Use Alternative

An alternative with only commercial uses was considered for development on the Project Site. However, developing the Project Site solely with commercial uses would not meet the underlying purpose and primary objective of the Project to develop the Project Site with a mixed-use development that includes residential uses. A commercial use only alternative would not meet most of the Project’s basic objectives, including those regarding development of infill housing; fulfilling the City’s housing goals; and providing a mix of commercial and residential uses to promote pedestrian activity and reduce VMT would not be fulfilled. A commercial only alternative would, similar to the Project, still include the same construction related impacts that would occur under the Project, including impacts associated with construction air quality, noise, archaeological resources, and paleontological resources. Furthermore, development of a commercial only alternative would not eliminate, and could increase the significant VMT impact associated with the Project’s office uses. Accordingly, a commercial-only alternative has not been carried forward for further analysis.

5.6.3 Residential Use Alternative

An alternative with only residential uses was considered for development on the Project Site. However, similar to a commercial use only alternative discussed above, developing the Project Site solely with residential uses would not meet the underlying purpose and primary objective of the Project to develop the Project Site with a mixed-use development, and it would not create a neighborhood-serving commercial attraction and community gathering places. Furthermore, a residential use only alternative would not meet most of the Project’s basic objectives such as those focused on: providing a mix of commercial and residential uses to promote pedestrian activity and reduce VMT; activating Sepulveda and Jefferson Boulevard frontages by providing street-oriented retail and restaurant uses; promoting vehicular, pedestrian and bicycle safety and access through
the Project Site by providing a pedestrian circulation system connecting the Paseo Courtyard, Entry Courtyard, ground level commercial uses and open space areas; and providing an on-site grocery store where future residents and employees at the Project Site and nearby residents may purchase groceries, thus reducing reliance on single occupancy vehicles. A residential only alternative would, similar to the Project, still include construction related impacts associated with construction air quality, noise, archaeological resources, and paleontological resources. Furthermore, development of a residential-only alternative could potentially result in significant VMT impacts associated with the residential uses. Accordingly, a residential only alternative has not been carried forward for further analysis.

5.6.4 Machado Road Open Space Alternatives

Alternatives that included increased publically accessible parks or public open space along Machado Road as well as increased residential density were considered; however, these alternatives were not carried forward for further analysis in the Draft EIR. The types of changes in open space considered along Machado Road would not avoid or eliminate the Project’s construction related air quality, noise and archaeological and paleontological resource impacts, or operational impacts associated with VMT, all of which would still require mitigation to reduce significant impacts to a less than significant level. Furthermore, any increase in residential density would incrementally increase vehicle trips and associated mobile source air quality, greenhouse gas (GHG) emissions, and noise impacts, as well as demand for energy, and police and fire services.

5.7 Alternatives to the Proposed Project

In accordance with CEQA Guidelines Section 15126.6(d), three viable alternatives to the Project are evaluated in sufficient detail to determine whether the overall environmental impacts would be less than, similar to, or greater than the corresponding impacts of the Project. Furthermore, each alternative is evaluated to determine whether the Project objectives, identified in Chapter 2, Project Description, of this Draft EIR would be substantially attained by the alternative. The evaluation of each of the alternatives follows the format described below:

- A description of the alternative.
- The environmental impacts of the alternative before and after implementation of reasonable mitigation measures for each environmental issue area analyzed in the EIR are described. Where applicable, the evaluation is divided between temporary impacts that would occur during the Project’s construction phase and impacts that would occur during the Project’s operational phase.
- Environmental impacts of the alternative and the Project are compared for each environmental issue area evaluated in Chapter 3 the Draft EIR. Where the impact of the alternative would be clearly substantially less adverse than the impact of the Project, the comparative impact is said to be “less.” Where the alternative’s net impact would clearly be more adverse than the Project, the comparative impact is said to be “greater.” Where the impacts of the alternative and Project would be roughly equivalent, the comparative impact is said to be “similar.” The evaluation also documents whether compared to the Project, an impact would be entirely avoided, whether a significant impact under the Project could be reduced to a less than significant level in the alternative, or whether a significant unavoidable impact under the alternative would be feasible to be mitigated to a less than significant level.
• The comparative analysis of the impacts is followed by a general discussion of the extent to which the underlying purpose and Project Objectives would be attained by the alternative.

At the end of the section, a comparison of the alternative’s impacts and consistency with Project Objectives is provided. Pursuant to CEQA Guidelines Section 15126.6(e)(2) an Environmentally Superior Alternative is identified. The comparative impacts of the Project and the alternatives are summarized in Table 5-3, Comparison of the Impacts of the Project and Alternatives, below.

5.7.1 Alternative 1: No Project Alternative

Description of the Alternative

The No Project Alternative, as required by CEQA, consists of the circumstance under which the Project would not proceed, pursuant to Section 15126.6(e)(3)(B) of the CEQA Guidelines. The No Project Alternative assumes that no new development would occur within the Project Site. As mentioned in Chapter 2, Project Description, of this Draft EIR, the Project Site is currently developed with a post office, restaurant, and oil change facility. Therefore, the existing buildings on the Project Site would remain unchanged. The Coco’s Bakery Restaurant and the Valvoline Instant Oil Change would continue to operate under Alternative 1. However, as the United States Post Office has indicated it plans to move locations, the United States Post Office building is assumed to move at some point in the future and remain vacant until such time it is occupied by another commercial or industrial use, which may be difficult given the unique aspects of the building’s form and potential lack of suitability for another use.

Environmental Impacts

(a) Air Quality

(1) Conflict with Air Quality Management Plan

As discussed in Section 4.1, Air Quality, of this Draft EIR, Project construction would increase the frequency or severity of an existing violation for pollutant emissions, and impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1 to ensure that NOX emissions are below the SCAQMD thresholds of significance and to reduce impacts to less than significant. Project construction would also comply with SCAQMD Rule 403 requirements and the ATCM such that the Project would meet or exceed the AQMP requirements to reduce emissions from construction equipment and activities. The Project’s operational emissions would not exceed SCAQMD localized operational emissions thresholds for NOX, CO, PM10, and PM2.5, and impacts would be less than significant.

The No Project Alternative would not involve any new construction or change current activities on the Project Site. Under the No Project Alternative, the existing buildings would continue to operate on the Project Site and would remain unchanged, with the exception of the United States Post Office, which would remain vacant until it is occupied. Since new development would not occur, the No Project Alternative would not generate new emissions or cause the Air Basin’s criteria pollutant emissions to worsen so as to impede the objectives of the AQMP. Accordingly, because the No Project Alternative would not result in any new emissions generation, no air quality impacts would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant
impact after implementation of Mitigation Measure AIR-1. Thus, impacts with regard to conflicts with air quality management plans would be less under the No Project Alternative than the Project.

(2) Cumulative Increase in Criteria Pollutants/Violation of Air Quality Standards

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s construction would exceed the SCAQMD’s regional significance thresholds for NO\textsubscript{X}, however, cumulative construction impacts would be less than significant with implementation of Mitigation Measure AIR-1. The No Project Alternative would not involve construction or generate any new criteria pollutants. Accordingly, because the No Project Alternative would not result in any new emissions generation, no air quality impacts would occur. As such, the No Project Alternative would avoid the Project’s potential exceedance of daily NO\textsubscript{X} emissions above the applicable threshold during construction, which would be potentially significant and require mitigation under the Project. Thus, impacts with regard to air quality thresholds would be less under the No Project Alternative than the Project.

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s operation would not exceed the SCAQMD threshold of significance for any non-attainment pollutants (VOC, NO\textsubscript{X}, CO, SO\textsubscript{X}, PM10, and PM2.5) and impacts would be less than significant. The No Project Alternative would not result in any new emissions over existing conditions and would have no impact relative to threshold standards. As such, the No Project Alternative would avoid the Project’s less-than-significant impacts related to criteria and precursor pollutants (VOC, NO\textsubscript{X}, CO, SO\textsubscript{X}, PM10, and PM2.5) above the applicable threshold during operation. Thus, impacts with regard to air quality thresholds would be less under the No Project Alternative than the Project.

(3) Exposure of Sensitive Receptors to Pollutant Concentrations

(a) Localized Emissions

As discussed in Section 4.1, Air Quality, of this Draft EIR, given that NO\textsubscript{X}, PM10 and PM2.5 emissions exceed the SCAQMD’s localized thresholds, Project impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1. The No Project Alternative would not involve any construction or increased activity at the Project Site compared to existing conditions. Accordingly, the No Project Alternative would not generate any localized emissions and would have no impact related to localized emissions. The No Project Alternative would avoid the Project’s potential exceedance of daily NO\textsubscript{X}, PM10 and PM2.5 emissions above the SCAQMD’s localized thresholds during construction, which would be potentially significant and require mitigation under the Project. Thus, impacts with respect to localized emissions under the No Project Alternative would be less than the Project.

Project operation would not exceed the localized thresholds for NO\textsubscript{X}, CO, PM10, and PM2.5. Therefore, impacts related to localized operational emissions would be less than significant. As the No Project Alternative would not involve any changes to the existing uses on the Project Site, operation of the No Project Alternative would result in no localized operational emissions and would have no impact. Therefore, operational impacts under the No Project Alternative would be less than the Project.
(b) Carbon Monoxide Hotspots
As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project would result in less-than-significant impacts with respect to CO hotspots. The No Project Alternative would not increase traffic or other activity at the Project Site compared to existing conditions. Accordingly, the No Project Alternative would not generate any emissions that would contribute to CO hotspots and is considered to have no impact related to CO hotspots. As such, the No Project Alternative would avoid the Project’s less-than-significant CO hotspots impacts. Thus, impacts with respect to CO hotspots under the No Project Alternative would be less than the Project.

(c) Toxic Air Contaminants
As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s regional and localized emissions would exceed SCAQMD significance thresholds for regional and localized criteria pollutants during construction (as shown in Table 4.1-5 and Table 4.1-7) and would result in potentially significant impacts requiring implementation of Mitigation Measures AIR-1 and AIR-2. The No Project Alternative would not involve any construction or new development at the Project Site compared to existing conditions. Accordingly, the No Project Alternative would not generate any TAC emissions during construction and is considered to have no impact related to TAC emissions. As such, the No Project Alternative would avoid the Project’s TAC emissions impacts. Thus, impacts with regard to TAC emissions would be less under the No Project Alternative than the Project.

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s regional and localized emissions would be below SCAQMD significance thresholds during operation and impacts would be less-than-significant. The No Project Alternative would not involve any new or increased activity at the Project Site compared to existing conditions. Accordingly, the No Project Alternative would not generate any TAC emissions during operation and is considered to have no impact related to TAC emissions. As such, the No Project Alternative would avoid the Project’s less-than-significant TAC emissions impacts. Thus, impacts with regard to TAC emissions would be less under the No Project Alternative than the Project.

(b) Cultural Resources
(1) Historical Resources
As discussed in Section 4.2.1, Cultural Resources – Historical Resources, of this Draft EIR, there are no historical resources present on the Project Site. The No Project Alternative would not change conditions on the Project Site. Therefore, like the Project, the No Project Alternative would have no impact on historical resources, and impacts would be similar to the Project.

(2) Archaeological Resources
As discussed in Section 4.2.2, Cultural Resources – Archaeological Resources, of this Draft EIR, there are no known archaeological resources identified within or immediately adjacent to the Project Site and the majority of the Project Site is developed. Nonetheless, and based on the general prevalence of archaeological resources in the vicinity shown in records search results, there is a moderate to high potential that excavation activities associated with the Project could encounter previously unknown buried historic and prehistoric archaeological resources during construction. Therefore, Project impacts to previously unknown buried historic and prehistoric archaeological
resources are considered potentially significant during construction and require implementation of Mitigation Measures ARCH-1 through ARCH-4 to reduce impacts to less than significant. The No Project Alternative would not require any excavation activities or ground disturbance that would potentially encounter previously undiscovered archaeological resources. Accordingly, the No Project Alternative would avoid the Project’s less-than-significant impacts (after mitigation) related to an adverse change in the significance of an archaeological resource. Thus, impacts related to archaeological resources would be less under the No Project Alternative than the Project.

(c) Energy

(1) Efficient Energy Consumption
As discussed in Section 4.3, Energy, of this Draft EIR, construction of the Project would utilize fuel-efficient equipment consistent with State and federal regulations, such as fuel efficiency regulations in accordance with the CARB Pavley Phase II standards, the anti-idling regulation in accordance with CCR Title 13, Section 2485 and fuel requirements in accordance with CCR Title 17, Section 93115, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. Construction would utilize energy only for necessary on-site activities and to transport construction materials, excavated fill, and demolition debris to and from the Project Site, and impacts would be less than significant. Project operation would include infrastructure for EV charging stations for residential and retail uses. The Project would support Statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles due to the Project Site being an infill location close to retail, restaurant, services, educational and religious institutions, and would be in proximity to existing public transit stops. Therefore, operation of the Project would not result in the wasteful, inefficient, and unnecessary consumption of energy, and impacts would be less than significant.

The No Project Alternative would not involve any new development or increase energy use on the Project Site that would generate an increase in demand for energy compared to existing conditions. Accordingly, the No Project Alternative would have no impact regarding efficient energy consumption. As such, the No Project Alternative would avoid the Project’s less-than-significant energy consumption impacts during construction and operation. Thus, impacts with regard to energy consumption would be less under the No Project Alternative than the Project.

(2) Conflict with Plans for Renewable Energy or Energy Efficiency
As discussed in Section 4.3, Energy, of this Draft EIR, the Project would support and promote the use of renewable energy and energy efficiency and would result in less-than-significant impacts. The Project would support Statewide and regional efforts to incorporate green building design features, improve mobility and access to diverse destinations, and to improve transportation energy efficiency in order to reduce wasteful or inefficient energy consumption. Overall the Project’s features would support and promote the use of renewable energy and energy efficiency, therefore, impacts would be less than significant. The No Project Alternative would not be subject to review pursuant to plans for renewable energy and energy efficiency; therefore, no impact regarding conflict with such plans would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant impacts with respect to conflicts with plans for renewable energy or energy efficiency. Thus, impacts would be less under the No Project Alternative than the Project.
(d) Geology and Soils – Paleontological Resources
As discussed in Section 4.4, *Geology and Soils – Paleontological Resources*, of this Draft EIR, the Project would be located in an urban developed location with no unique geologic features and would result in no operational impacts. However, Project impacts on paleontological resources due to grading and excavation during construction are considered potentially significant and require implementation of Mitigation Measures GEO-1 through GEO-4 to reduce impacts to less than significant. The No Project Alternative would not involve any excavation or ground disturbance; therefore, it would have no potential to encounter previously undiscovered paleontological resources and would have no impact on paleontological resources. As such, the No Project Alternative would avoid the Project’s less-than-significant impacts (after mitigation) related to the potential to directly or indirectly destroy paleontological resources during construction. Thus, impacts related to paleontological resources would be less under the No Project Alternative than the Project.

(e) Greenhouse Gas Emissions
(1) Generation of GHG Emissions
As discussed in Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR, the Project would generate GHG emissions due to construction and operational activities, and impacts would be less than significant. The No Project Alternative would not include construction of any new buildings, higher occupancy of the Project Site, or other activity that would generate new GHG emissions. Accordingly, because the No Project Alternative would not involve new construction or a change in GHG emission-producing activity over existing conditions, it would result in no GHG emission impacts. Thus, impacts related to GHG emissions would be less under the No Project Alternative than the Project.

(2) Conflict with Applicable Plans, Policies, Regulations, or Recommendations
As discussed in Section 4.5, *Greenhouse Gas Emissions*, of this Draft EIR, the Project would be consistent with statewide, regional, and local plans, policies, regulations, and recommendations to reduce GHG emissions from development. Accordingly, because the No Project Alternative would not involve new construction or a change in GHG emission-producing activity over existing conditions, it would result in no GHG emission impacts, and no impacts regarding conflicts with applicable plans, policies, or regulations adopted for the purpose of reducing GHGs would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant impacts regarding conflicts with applicable plans, policies, or regulations adopted for the purpose of reducing GHG emissions. Thus, impacts related to GHG emissions would be less under the No Project Alternative than the Project.

(f) Hazards and Hazardous Materials
(1) Hazard to the Public or Environment Involving the Accidental Release of Hazardous Materials into the Environment
As discussed in Section 4.6, *Hazards and Hazardous Materials*, of this Draft EIR, the Project would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment, and impacts would be less than significant. The No Project Alternative would not involve
construction or alter existing activities on the Project Site; therefore, it would not change the potential for an accidental release of hazardous materials into the environment compared to existing conditions. Accordingly, because the No Project Alternative would not involve new construction, activity, or uses that would create a hazard to the public involving the accidental release of hazardous materials into the environment, it would have no impact related to this hazard. As such, the No Project Alternative would avoid the Project’s less-than-significant hazardous materials release impacts. Thus, impacts related to hazardous materials release would be less under the No Project Alternative than the Project.

(2) Hazards Resulting from Hazardous or Acutely Hazardous Materials, Substances, or Waste within One-Quarter Mile of a School

As discussed in Section 4.6, Hazards and Hazardous Materials, of this Draft EIR, the Project would be located adjacent to and south of ECF, which serves as a special education school, located across Machado Road. Additionally, El Rincon Elementary School, located at 11177 Overland Avenue, is located approximately 0.20 miles east of the Project Site. While the Project would emit small quantities of potentially hazardous materials typical of maintenance or operational uses within one-quarter mile of an existing or proposed school, all materials would be disposed of in accordance with applicable laws and regulations, and impacts would be less than significant. The No Project Alternative would not involve construction or alter existing activities on the Project Site, which could involve hazardous materials or emissions near a school. The No Project Alternative would not result in changes to existing activities or uses on the Project Site compared to existing conditions, and the No Project Alternative would avoid the Project’s less-than-significant impact related to hazardous materials or hazardous emission near a school. Thus, impacts related to the release of hazardous materials or emissions near a school would be less under the No Project Alternative than the Project.

(3) Hazards Materials Sites

As discussed in Section 4.6, Hazards and Hazardous Materials, of the Draft EIR, although the Project was identified in twelve environmental database reports, the removal of hazardous materials would be carried out in accordance with regulatory requirements and the Phase II Environmental Site Assessment (ESA) and the vapor intrusion human health risk assessment (HHRA) concluded that future building occupants would not be at risk from the former gasoline service station, hydraulic lift, and soil vapor and would result in less-than-significant impacts. The No Project Alternative would not involve construction or alter existing activities on the Project Site. Accordingly, the No Project Alternative would have no impact with regard to development occurring on a hazardous materials site. Thus, impacts related to development on a hazardous materials site would be less under the No Project Alternative than the Project.

(g) Land Use and Planning

As discussed in Section 4.7, Land Use and Planning, of the Draft EIR, the Project would support a number of City and regional plans and policies. It would support General Plan Land Use objectives and policies to encourage multi-family family housing and affordable housing; development of housing and employment in areas located by public transit; expand the economic base and revitalize the physical character/streetscape along commercial corridors; and, promote urban design through high quality architecture and site design. The Project would also support the
Open Space Element policy to provide passive recreational open space within walking distance of residential neighborhoods, and would support regional policies, such as Metro’s Active Transportation Strategic Plan strategies to increase walking, biking, and transit use. And, while the Project would allow for an increase in allowable building height on the Project Site from 56 to 67 feet pursuant to a density bonus program which would provide 19 units affordable to very low income households, with approval of the Project’s requested discretionary actions, including adoption of a Comprehensive Plan, it would not conflict with or impede implementation of applicable land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, the Project’s impact on land use and planning would be less than significant.

The No Project Alternative would not change the existing land use and occupancy of the Project Site. The existing uses, parking lots, commercial uses, and zoning designations would remain on the Project Site, with the exception of the United States Post Office which would be vacant until occupied in the future. The No Project Alternative would not conflict with any adopted plans, policies or regulations related to avoiding or reducing environmental impacts. Although the No Project Alternative would not further regional and local policies applicable to the Project Site with the City, such as encouraging multi-family family housing opportunities, providing affordable housing, developing housing and employment opportunities in areas located by public transit, increasing recreational open space, or revitalizing the physical character and economy of the City’s commercial areas, the No Project Alternative would have no impacts with respect to conflicts with plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. As such, it would avoid the Project’s less-than-significant impact with respect to conflicts with adopted land plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. Thus, impacts related to conflicts with land use plans, policies and regulations adopted for the purpose of avoiding or mitigating an environmental effect would be less under the No Project Alternative than the Project.

(h) Noise

(1) Noise Levels in Excess of Standards

As discussed in Section 4.8, Noise, of this Draft EIR, Project construction would result in temporary increases in ambient noise that would exceed thresholds of significance at studied receptors, and impacts would be potentially significant and would require implementation of Mitigation Measures NOISE-1 and NOISE-2 to reduce impacts to less-than-significant levels. The No Project Alternative would not involve any construction activities, and, therefore, no construction noise impacts would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant (with mitigation) impacts at nearby noise sensitive receptor locations during Project construction. Thus, impacts related to construction noise would be less under the No Project Alternative than the Project.

As discussed in Section 4.8, Noise, of this Draft EIR, Project-related traffic noise, fixed mechanical equipment noise, parking structure noise, loading dock noise, and outdoor open space noise would be less than significant. Under the No Project Alternative, no new operational noise impacts would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant
operational noise impacts at nearby noise sensitive receptor locations. Thus, impacts related to operational noise would be less under the No Project Alternative than the Project.

(2) Groundborne Vibration

As discussed in Section 4.8, Noise, of this Draft EIR, construction activities at the Project Site have the potential to generate low levels of groundborne vibration as the operation of heavy equipment generates vibrations that propagate through the ground and diminish in intensity with distance from the source. With respect to human annoyance, the nearest vibration-sensitive residential and school uses (at 100 feet) to the Project Site would not be exposed to vibration levels which would exceed the threshold. Therefore, Project construction vibration impacts would be less than significant with respect to human annoyance, and no mitigation measures are required. The No Project Alternative would not involve any new development or construction, and, therefore, no construction vibration impacts would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant structural vibration impacts to nearby buildings and human annoyance impacts to nearby vibration-sensitive receptor locations. Thus, impacts related to construction vibration would be less under the No Project Alternative than the Project.

As discussed in Section 4.8, Noise, of this Draft EIR, Project operations would include typical commercial-grade stationary mechanical and electrical equipment, such as air handling units, condenser units, and exhaust fans, which would produce vibration. However, vibration levels would be less than the significance threshold of 80 VdB, and impacts would be less than significant. Occupancy and activity at the Project Site would not change under the No Project Alternative, and, therefore, no vibration impacts would occur. As such, the No Project Alternative would avoid the Project’s less-than-significant operational vibration impacts to nearby vibration-sensitive receptors. Thus, impacts related to operational vibration would be less under the No Project Alternative than the Project.

(i) Population and Housing

As discussed in Section 4.9, Population and Housing, of this Draft EIR, the Project would involve demolition of the existing commercial buildings on the Project Site to support a mixed-use development with residential and commercial uses. The Project’s 230 residential units would result in an increase in 529 residents on the Project Site, and the Project’s commercial uses would result in a net increase of 112 employees. The Project’s projected growth would be within Southern California Associate of Government’s (SCAG) Regional Housing Needs Assessment (RHNA) and 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) projections for the City, and the Project would not induce unplanned substantial population growth in an area directly through the development of new housing and employment opportunities. Furthermore, Project operation would modify access from streets that surround the Project Site, however, modifications represent improvements that would not induce substantial population growth indirectly through the extension of roads or other infrastructure into undeveloped areas. As such, the Project would not induce substantial population growth in the area, either directly or indirectly that cannot be reasonably accommodated, and impacts would be less than significant.

The No Project Alternative would not generate any changes on the Project Site and, as such, would not induce unplanned population growth. Accordingly, no impacts would occur. However, because
the Project’s growth is planned and anticipated within projected growth forecasts, and because the No Project Alternative would not provide needed housing and affordable housing in support of local and regional planning objectives such as the affordable household goals and housing obligations provided in the SCAG’s RHNA projections, effects on population and housing under the No Project Alternative are considered greater than the Project.

Public Services

(1) Fire Protection

As discussed in Section 4.10.1, Public Services – Fire Protection, of this Draft EIR, Project demand for fire protection and response times during construction would be less than significant. The Project would implement Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCFD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would comply with the applicable Building and Fire Codes, which would reduce demand on Culver City Fire Department (CCFD) facilities and equipment without creating the need for new or expanded fire facilities. The Project would implement Project Design Features PDF-FIRE-1 and PDF-FIRE-2 to reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities, thereby minimizing the risk of increased operational fire safety hazards. Impacts during Project operation would be less than significant.

Accordingly, because the No Project Alternative would not result in a population gain that would increase demand, it would have no impact related to fire protection services. As such, the No Project Alternative would avoid the Project’s less-than-significant impact related to fire protection services. Thus, impacts related to fire protection services would be less under the No Project Alternative than the Project.

(2) Police Protection

As discussed in Section 4.10.2, Public Services – Police Protection, of this Draft EIR, Project construction demand for police protection during construction would be less than significant. The Project would implement Project Design Feature PDF-POL-1 to include security fencing, lighting, and personnel during construction to discourage construction site crime and reduce the need for Culver City Police Department (CCPD) services during construction. The Project would implement Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCPD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would implement Project Design Feature PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Therefore, the Project would not result in substantial adverse physical impacts associated with the provision of or need for new or altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant.
Accordingly, because the No Project Alternative would not result in a population gain that would increase demand, it would have no impact related to police protection services. As such, the No Project Alternative would avoid the Project’s less-than-significant impact related to police protection services. Thus, impacts related to police protection services would be less under the No Project Alternative than the Project.

(k) Transportation

(1) Conflict with Programs, Plans, Ordinances or Policies Addressing the Circulation System, Transit, Roadways, Bicycle and Pedestrian Facilities

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities and impacts would be less than significant. The No Project Alternative would not involve any new development and, as such, would not conflict with any programs, plans, ordinances or policies addressing the circulation system, transit, roadways, bicycle and pedestrian facilities, including those of the City’s General Plan Circulation Element, the Culver City Short Range Transit Plan, the Culver City Bicycle and Pedestrian Action Plan (Action Plan), and the Complete Streets Policy. Accordingly, the No Project Alternative would avoid the Project’s less-than-significant impact related to such potential conflicts. Thus, impacts related to potential conflicts with any such programs, plans, ordinances, or policies would be less under the No Project Alternative than the Project.

(2) Consistency with CEQA Guidelines Section 15064.3, Subdivision (b)

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project’s estimated VMT would exceed the City’s work VMT significance threshold and would result in a potentially significant VMT impact requiring mitigation. The Project would implement Mitigation Measure TRAF-1 to reduce the VMT impacts from office uses to less than significant. The No Project Alternative would not result in an increase in the intensity of on-site development and, thus, would result in no additional VMT over existing conditions. Accordingly, because the No Project Alternative would not result in any new VMT over existing conditions, it would have no impact with respect to consistency with CEQA Guidelines Section 15064.3(b). As such, the No Project Alternative would avoid the Project’s less-than-significant (with mitigation) impact related to VMT. Thus, impacts related to VMT would be less under the No Project Alternative than the Project.

(3) Design Hazards

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site, and would not have a significant impact regarding increased hazards due to geometric design features. The No Project Alternative would not involve any new development and, thus, would not include new sidewalks, driveways, or roadway improvements in and around the Project Site. Unlike the Project, the No Project Alternative would not reduce the number of driveways, thus reducing potential conflicts, and would not provide new 8-foot-wide sidewalks around the perimeter of the Project Site and through pedestrian plazas/paseos accessible to the neighborhood to help facilitate local pedestrian circulation. Furthermore, a new traffic signal at the Project driveway on Sepulveda Boulevard, where it intersects with Janisann Avenue would not be installed under the No Project Alternative to provide a safe crossing for pedestrians accessing the...
Project from the Sunkist Park neighborhood across Sepulveda Boulevard, reducing vehicle/pedestrian conflicts. As no new improved design features would occur with respect to existing pedestrian/vehicle conflicts under the No Project Alternative, there would be no changes to existing conditions. However, because the Project would reduce the potential for hazards through beneficial design improvements to the Project Site, hazards under the No Project Alternative are considered greater than the Project.

(4) Emergency Access

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not result in inadequate emergency access during construction and operation. The No Project Alternative would not change any existing conditions that would affect emergency access. Accordingly, because the No Project Alternative would not cause any changes resulting in inadequate emergency access, it would have no impact regarding emergency access. As such, the No Project Alternative would avoid the Project’s less-than-significant impact related to emergency access. Thus, impacts related to emergency access would be less under the No Project Alternative than the Project.

(I) Tribal Cultural Resources

As discussed in Section 4.12, Tribal Cultural Resources, of this Draft EIR, no tribal cultural resources are anticipated to be affected by the Project. The No Project Alternative would not require any construction activities; therefore, it would have no potential to encounter tribal cultural resources. Accordingly, because the No Project Alternative would involve no excavation or ground disturbance or change in use of the Project Site, it would have no impact related to tribal cultural resources. As such, the No Project Alternative would avoid the Project’s less-than-significant impacts related to tribal cultural resources. Thus, impacts related to tribal cultural resources would be less under the No Project Alternative than the Project.

Relationship of the Alternative to Project Objectives

As described above, the No Project Alternative assumes that no new development would occur on the Project Site. The on-site uses would continue to operate similar to existing conditions, with the exception of the United States Post Office which is assumed to move at some point in the future and remain vacant until such time it is occupied by another commercial or industrial use. As the No Project Alternative would not include a development program, the No Project Alternative would not meet any of the primary objective of the Project to develop the Project Site with a mixed-use development that includes residential uses. Therefore, as the No Project Alternative would not contribute to the growth and development of the City, it would not achieve any of the Project Objectives.

5.7.2 Alternative 2: Code-Compliant Alternative

Description of the Alternative

Under the Code-Compliant Alternative, Alternative 2, the Project Site would be developed with uses that are permitted by right under current zoning and land use designations. The 3.43-acre Project Site is majority zoned Commercial General (CG) (3.27 acres) with a small portion (0.16 acres) of the northernmost parcel adjacent to Machado Road being zoned Single-Family (R-1).
Mixed-use developments are not permitted within R-1 Zones, and a maximum of one dwelling unit is permitted per parcel. Development of a single unit on the R-1 parcel is impractical given the elongated shape of the lot combined with the setback requirements. Therefore, under Alternative 2, no uses would be developed on the northernmost parcel that is split zoned; it would remain a surface parking lot that would be used by ECF. All residential and commercial uses would be developed on the remaining 3.27 acres. Alternative 2, like the Project, would include one building centrally located on the Project Site, that would include residential and commercial uses. Access to the Project Site would be provided via the three driveways that are proposed under the Project.

As shown in Table 5-1, Comparison of Alternative 2 to the Project, Alternative 2 would include development of 114 residential units, with a residential density of 34.8 units/acre, consistent with the 35 units/acre density permitted for the Project Site. Alternative 2 would be three stories with a maximum height of 44 feet, which would be within the height limit of 56 feet. The ground floor would consist of 15,000 sf of restaurant area and a 3,000 sf residential lobby. Alternative 2 would also include 9,441 sf publicly accessible open space across the Project Site, compared to the 28,200 sf under the Project, with an additional 10,000 sf of common residential open space on the second floor. Given the reduction in open space under Alternative 2, Machado Park would not be developed. Alternative 2 would include 313 vehicle parking spaces (163 spaces for residential uses and 150 spaces for restaurant uses) in ground floor and second floor garages. In total, Alternative 2 would develop 318,720 sf on the Project Site, including 15,000 sf of restaurant uses, 166,000 sf of residential uses, and 137,720 sf of parking contained in a two-level parking structure. No subterranean parking would be provided. As no subterranean parking would be provided, parking under Alternative 2 would front several facades on the major arterials surrounding the Project Site and would not be shielded by any uses as under the Project. Alternative 2 would require excavation to accommodate building foundations, utilities and other improvements. Up to approximately 13,000 cubic yards of earthwork would be excavated under Alternative 2 compared to the 88,000 cubic yards of earthwork under the Project.

Under Alternative 2, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would be developed. Similarly, Alternative 2 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into Alternative 2 and eastbound Machado Road, respectively. Alternative 2 would result in a FAR of 2.5:1.
TABLE 5-1
COMPARISON OF ALTERNATIVE 2 TO THE PROJECT

<table>
<thead>
<tr>
<th>Use</th>
<th>Project</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studios</td>
<td>54 units</td>
<td>40 units</td>
</tr>
<tr>
<td>1-Bedrooms</td>
<td>113 units</td>
<td>34 units</td>
</tr>
<tr>
<td>2-Bedrooms</td>
<td>63 units</td>
<td>40 units</td>
</tr>
<tr>
<td>Residential Lobby</td>
<td>2,500 sf</td>
<td>3,000 sf</td>
</tr>
<tr>
<td>Residential Amenity (Third Level)</td>
<td>2,500 sf</td>
<td>10,000 sf</td>
</tr>
<tr>
<td>Subtotal Residential Units and Square Footage</td>
<td>230 units (244,609 sf)</td>
<td>114 units (176,000 sf)</td>
</tr>
<tr>
<td>Affordable Units (Included in Unit Count)</td>
<td>19 units</td>
<td>0 units</td>
</tr>
<tr>
<td>Commercial Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal Commercial Square Footage</td>
<td>66,500 sf</td>
<td>15,000 sf</td>
</tr>
<tr>
<td>Total Residential and Commercial Square Footage</td>
<td>311,109 sf</td>
<td>191,000 sf</td>
</tr>
<tr>
<td>Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Parking</td>
<td>308 spaces</td>
<td>163 spaces</td>
</tr>
<tr>
<td>Commercial Parking</td>
<td>311 spaces</td>
<td>150 spaces</td>
</tr>
<tr>
<td>ECF Parking(^a)</td>
<td>34 spaces</td>
<td>34 spaces</td>
</tr>
<tr>
<td>Total Vehicle Parking Provided</td>
<td>653 spaces</td>
<td>313 spaces</td>
</tr>
<tr>
<td>Bicycle Parking Spaces (Long / Short-Term)</td>
<td>71 / 26 spaces</td>
<td>35 / 13 spaces</td>
</tr>
<tr>
<td>Open Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publicly Accessible Open Space</td>
<td>28,800 sf</td>
<td>9,441 sf</td>
</tr>
<tr>
<td>Common Open Space (for Residents)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courtyard (Third Level)</td>
<td>24,000 sf</td>
<td>10,000 sf</td>
</tr>
<tr>
<td>Private Open Space (Balconies)(^b)</td>
<td>14,350 sf</td>
<td>7,068 sf</td>
</tr>
<tr>
<td>Total Open Space Provided</td>
<td>67,150 sf</td>
<td>26,509 sf</td>
</tr>
</tbody>
</table>

\(^a\) The 34 parking spaces for the ECF are a relocation of the existing 34 ECF parking stalls on-site.
\(^b\) Balconies with a minimum size of 52 sf for studios, 62 sf for one bedroom units, and 72 sf for two bedroom units would be provided for the residential uses.

Environmental Impacts

(a) Air Quality

(1) Conflict with Air Quality Management Plan

As discussed in Section 4.1, Air Quality, of this Draft EIR, Project construction would increase the frequency or severity of an existing violation for pollutant emissions, and impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1 to ensure that NO\(_X\) emissions are below the SCAQMD thresholds of significance and to reduce impacts to less than significant. Project construction would also comply with SCAQMD Rule 403 requirements and the ATCM such that the Project would meet or exceed the AQMP requirements.
to reduce emissions from construction equipment and activities. The Project’s operational emissions would not exceed SCAQMD localized operational emissions thresholds for NO\textsubscript{X}, CO, PM10, and PM2.5, and impacts would be less than significant.

Similar to the Project, construction activities under Alternative 2 would occur, and the Project Site would be developed with new residential and commercial uses. Alternative 2 would have reduced construction due to the decrease in development intensity and uses as compared to the Project, but would still require implementation of Mitigation Measure AIR-1 to ensure that NO\textsubscript{X} emissions are below the SCAQMD thresholds of significance and to reduce impacts to less than significant. Therefore, Alternative 2 would reduce construction emissions as compared to the Project, and impacts would be less than significant with implementation of Mitigation Measure AIR-1 and would be less than those of the Project. Additionally, operational impacts to air quality under Alternative 2 would be reduced compared to the Project, due to the reduction in development intensity and corresponding vehicle emissions. Therefore, operational impacts under Alternative 2 would be less than significant, and impacts would be less than those of the Project.

(2) Cumulative Increase in Criteria Pollutants/Violation of Air Quality Standards

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s construction would exceed the SCAQMD’s regional significance thresholds for NO\textsubscript{X}, however, cumulative construction impacts would be less than significant with implementation of Mitigation Measure AIR-1. As with the Project, Alternative 2’s construction phases have the potential to generate emissions that would exceed SCAQMD air quality standards through the use of heavy-duty construction equipment, construction traffic, fugitive dust emissions, paving operation, and the application of architectural coatings and other building materials. The maximum emissions under Alternative 2 would be similar to the Project because emission levels are based on a single day in which maximum construction activity would occur; however, Alternative 2 would have reduced construction due to the decrease in development intensity, uses, and excavation. Similar to the Project, Alternative 2 would be required to implement Mitigation Measure AIR-1 during construction to reduce the potential exceedance of daily NO\textsubscript{X} emissions to less-than-significant levels. Therefore, as with the Project, impacts would be less than significant with implementation of the mitigation measure; however, impacts would be less than those of the Project.

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s operation would not exceed the SCAQMD threshold of significance for any non-attainment pollutants (VOC, NO\textsubscript{X}, CO, SO\textsubscript{X}, PM10, and PM2.5) and impacts would be less than significant. As with the Project, during operation Alternative 2 would generate emissions associated with vehicle trips, heating, lighting, other electric and natural gas power requirements, emergency generators, and architectural coatings. Alternative 2 would develop commercial and residential uses on the Project Site, but would be reduced compared to the Project due to the reduction in development intensity and corresponding vehicle emissions. As Alternative 2 would be developed at a lower intensity and have less traffic than the Project, its operational daily emissions would similarly not exceed the SCAQMD numerical significance thresholds for VOC, CO, SO\textsubscript{X}, PM10 and PM2.5. Thus, as with the Project, impacts would be less than significant under Alternative 2 for these criteria pollutants. However, because of its reduced emissions, impacts under Alternative 2 would be less than the Project.
5. Alternatives

(3) Exposure of Sensitive Receptors to Pollutant Concentrations

(a) Localized Emissions
As discussed in Section 4.1, Air Quality, of this Draft EIR, given that NO\textsubscript{X}, PM10 and PM2.5 emissions would exceed regulatory screening levels, Project impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1. As with the Project, Alternative 2 would generate construction activity and traffic, and increase localized emission levels during construction. While the construction duration is reduced as compared to the Project, the maximum daily localized construction emissions for Alternative 2 would be similar to the Project. Similar to the Project, Alternative 2 would have significant impacts and be required to implement Mitigation Measure AIR-1 during construction to reduce NO\textsubscript{X}, PM10 and PM2.5 emissions to below regulatory thresholds. Therefore, as with the Project, impacts under Alternative 2 would be less than significant with implementation of Mitigation Measure AIR-1; however, because the duration of impacts during construction associated with localized emissions would be reduced, impacts would be less than those of the Project.

Project operation would not exceed the localized thresholds for NO\textsubscript{X}, CO, PM10, and PM2.5. Therefore, impacts related to localized operational emissions would be less than significant. Because of its smaller scale and intensity, Alternative 2’s operation would have less localized operational emissions than the Project. The reduction in building floor area and reduced occupancy of the Project Site under Alternative 2 would reduce daily operational localized emissions from less building energy demand, consumer product usage, and architectural coatings usage. Accordingly, impacts under Alternative 2 during operation with respect to localized emissions would be less than significant and would be less than under the Project.

(b) Carbon Monoxide Hotspots
As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project would result in less-than-significant impacts with respect to CO hotspots. Vehicle trips would be less under Alternative 2 than the Project. As with the Project, Alternative 2 would not cause or contribute considerably to the formation of CO hotspots, and impacts would be less than significant. However, because Alternative 2 would reduce the Project’s daily vehicle trips, impacts would be less than the Project.

(c) Toxic Air Contaminants
As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s regional and localized emissions would exceed SCAQMD significance thresholds for regional and localized criteria pollutants during construction (as shown in Table 4.1-5 and Table 4.1-7) and would result in potentially significant impacts requiring implementation of Mitigation Measures AIR-1 and AIR-2. Under Alternative 2, as with the Project, temporary TAC emissions associated with DPM emissions from heavy construction equipment would occur during construction activities. Similar to the Project, Alternative 2 would result in significant impacts and would require implementation of Mitigation Measures AIR-1 and AIR-2 to reduce cancer risk to below regulatory thresholds for both residential and school receptors. As with the Project, with implementation of the required mitigation, Alternative 2 would not expose sensitive receptors to substantial TAC concentrations, and impacts would be less than significant. However, because Alternative 2 would reduce the scale and duration of construction activities, impacts under Alternative 2 would be less than the Project.
As discussed in Section 4.1, *Air Quality*, of this Draft EIR, the Project’s regional and localized emissions would be below SCAQMD significance thresholds during operation and impacts would be less-than-significant. Operation of Alternative 2, as with the Project, would not generate a substantial number of daily truck trips, nor would it result in the emission of other TACs at a level where concern would be raised regarding health risk. The minor use of TACs onsite would be consistent with, or less than, what is currently used under the existing conditions. Additionally, Alternative 2 would utilize a similar emergency generator as under the Project, which would be required to be permitted by the SCAQMD and therefore would not be permitted to emit TAC emissions in excess of regulatory thresholds. Therefore, Alternative 2 would not warrant the need for a health risk assessment associated with on-site operational activities. Based on the uses expected on the Project Site, as with the Project, potential long-term operational impacts associated with the release of TACs under Alternative 2 would be minimal, regulated, and controlled, and would not be expected to exceed the applicable SCAQMD numerical significance thresholds. Operation of Alternative 2, as with the Project, would not expose sensitive receptors to substantial TAC concentrations, and operational impacts would be less than significant. However, because of Alternative 2’s reduced overall scale of development and reduction in use of consumer products and other sources, such as architectural coatings, impacts under Alternative 2 would be less than the Project.

(b) Cultural Resources

(1) Historical Resources

As discussed in Section 4.2.1, *Cultural Resources – Historical Resources*, of this Draft EIR, there are no historical resources present on the Project Site. Therefore, Alternative 2, similar to the Project, would not result in an impact to known historical resources during construction. Therefore, Alternative 2 would result in similar impacts to historical resources as the Project.

(2) Archaeological Resources

As discussed in Section 4.2.2, *Cultural Resources – Archaeological Resources*, of this Draft EIR, there are no known archaeological resources identified within or immediately adjacent to the Project Site and the majority of the Project Site is developed. Nonetheless, and based on the general prevalence of archaeological resources in the vicinity shown in records search results, there is a moderate to high potential that excavation activities associated with the Project could encounter previously unknown buried historic and prehistoric archaeological resources during construction. Therefore, Project impacts to previously unknown buried historic and prehistoric archaeological resources are considered potentially significant during construction and require implementation of Mitigation Measures ARCH-1 through ARCH-4 to reduce impacts to less than significant. Under Alternative 2, excavation and ground-disturbing construction activities would occur, which could potentially encounter previously undiscovered archaeological resources. While Alternative 2 would have a reduced level of excavation compared to the Project, Alternative 2 would, similar to the Project, be required to implement Mitigation Measures ARCH-1 through ARCH-4 to reduce potential impacts to archaeological resources to a less-than-significant level. However, because Alternative 2 would involve less excavation, it would have less potential to encounter and have an impact on such resources. Thus, impacts related to archaeological resources under Alternative 2 would be less than the Project.
(c) Energy

(1) Efficient Energy Consumption

As discussed in Section 4.3, Energy, of this Draft EIR, construction of the Project would utilize fuel-efficient equipment consistent with State and federal regulations, such as fuel efficiency regulations in accordance with the CARB Pavley Phase II standards, the anti-idling regulation in accordance with CCR Title 13, Section 2485 and fuel requirements in accordance with CCR Title 17, Section 93115, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. Construction would utilize energy only for necessary on-site activities and to transport construction materials, excavated fill, and demolition debris to and from the Project Site, and impacts would be less than significant. Project operation would include infrastructure for EV charging stations for residential and retail uses. The Project would support Statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles due to the Project Site being an infill location close to retail, restaurant, services, educational and religious institutions, and would be in proximity to existing public transit stops. Therefore, operation of the Project would not result in the wasteful, inefficient, and unnecessary consumption of energy, and impacts would be less than significant.

As with the Project, construction of Alternative 2 would utilize similar equipment which would be utilized in accordance with the applicable federal and State regulations. Because Alternative 2 would reduce the scale and duration of construction activities, construction impacts under Alternative 2 would be less than the Project.

As with the Project, Alternative would be located at the same Project Site and would comply with and exceed existing minimum energy efficiency requirements such as the Title 24 standards and CALGreen Code. As Alternative 2 would reduce the scale of the Project and building floor area compared to the Project, the reduction in building floor area and reduced occupancy of the Project Site under Alternative 2 would reduce impacts related to efficient energy consumption as compared to the Project. Therefore, impacts with respect to energy consumption during operation would be less than significant and would be less than the Project.

(2) Conflict with Plans for Renewable Energy or Energy Efficiency

As discussed in Section 4.3, Energy, of this Draft EIR, the Project would support and promote the use of renewable energy and energy efficiency and would result in less-than-significant impacts. The Project would support Statewide and regional efforts to incorporate green building design features, improve mobility and access to diverse destinations, and to improve transportation energy efficiency in order to reduce wasteful or inefficient energy consumption. Overall the Project’s features would support and promote the use of renewable energy and energy efficiency, therefore, impacts would be less than significant. As with the Project, Alternative 2 would comply with existing energy standards and would not conflict with adopted energy conservation plans. By exceeding the regulatory standards, similar to the Project, Alternative 2 would have a less-than-significant impact regarding the provisions of plans for renewable energy and energy efficiency. As Alternative 2 would be in compliance, impacts under Alternative 2 would be similar to the Project.
(d) Geology and Soils – Paleontological Resources

As discussed in Section 4.4, Geology and Soils – Paleontological Resources, of this Draft EIR, the Project would be located in an urban developed location with no unique geologic features and would result in no operational impacts. However, Project impacts on paleontological resources due to grading and excavation during construction are considered potentially significant and require implementation of Mitigation Measures GEO-1 through GEO-4 to reduce impacts to less than significant. Under Alternative 2, excavation and ground-disturbing construction activities would occur, which could potentially encounter previously undiscovered paleontological resources. While Alternative 2 would have a reduced level of excavation compared to the Project, Alternative 2 would, similar to the Project, be required to implement Mitigation Measures GEO-1 through GEO-4 to reduce potential impacts to paleontological resources to a less-than-significant level. However, because Alternative 2 would involve less excavation, it would have less potential to encounter and result in impacts on paleontological resources. Thus, impacts related to paleontological resources under Alternative 2 would be less than the Project.

(e) Greenhouse Gas Emissions

(1) Generation of GHG Emissions

As discussed in Section 4.5, Greenhouse Gas Emissions, of this Draft EIR, the Project would generate GHG emissions due to construction and operational activities, and impacts would be less than significant. The construction and occupancy of the Project Site under Alternative 2, as with the Project, would increase GHG emissions. Although the State and City have not established quantitative values for GHG emissions, in order to comply with policies and regulations adopted for the purpose of reducing or mitigating GHG emissions, the smaller scale and lower mobile emissions associated with Alternative 2 would generate lower GHG emissions than the Project’s maximum GHG operational emissions. Due to its lower GHG emissions, under Alternative 2 with respect to GHG emissions, impacts on the environment would be less than the Project.

(2) Conflict with Applicable Plans, Policies, Regulations, or Recommendations

As discussed in Section 4.5, Greenhouse Gas Emissions, of this Draft EIR, the Project would be consistent with statewide, regional, and local plans, policies, regulations, and recommendations to reduce GHG emissions from development. Alternative 2, as with the Project would be consistent with Executive Orders S-3-05 and B-30-15, AB 32, SCAG’s 2020-2045 RTP/SCS, and the City’s Green Building Program. As such, similar to the Project, impacts under Alternative 2 related to conflicts with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs would be less than significant under Alternative 2, and impacts would be similar to those of the Project.

(f) Hazards and Hazardous Materials

(1) Hazard to the Public or Environment Involving the Accidental Release of Hazardous Materials into the Environment

As discussed in Section 4.6, Hazards and Hazardous Materials, of this Draft EIR, the Project would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment, and impacts would be less than significant. Construction of Alternative 2, as with the Project, would
include demolition of existing uses on-site and the construction of the new building. Therefore, due to similar demolition and construction activities, impacts under Alternative 2 related to the accidental release of hazardous materials would be less than significant and similar to the Project.

(2) Hazards Resulting from Hazardous or Acutely Hazardous Materials, Substances, or Waste within One-Quarter Mile of a School

As discussed in Section 4.6, Hazards and Hazardous Materials, of this Draft EIR, the Project would be located adjacent to and south of ECF, which serves as a special education school, located across Machado Road. Additionally, El Rincon Elementary School, located at 11177 Overland Avenue, is located approximately 0.20 miles east of the Project Site. While the Project would emit small quantities of potentially hazardous materials typical of maintenance or operational uses within one-quarter mile of an existing or proposed school, all materials would be disposed of in accordance with applicable laws and regulations, and impacts would be less than significant. Accordingly, as Alternative 2 would emit similar quantities and types of hazardous materials, impacts would be less than significant and would be similar to the Project.

(3) Hazards Materials Sites

As discussed in Section 4.6, Hazards and Hazardous Materials, of the Draft EIR, although the Project was identified in twelve environmental database reports, the removal of hazardous materials would be carried out in accordance with regulatory requirements and the Phase II ESA and the vapor intrusion HHRA concluded that future building occupants would not be at risk from the former gasoline service station, hydraulic lift, and soil vapor and would result in less-than-significant impacts. As Alternative 2 would result in similar construction activities as the Project and would also require the removal of hazardous materials in accordance with regulatory requirements, impacts under Alternative 2 would be less than significant and would be similar to the Project.

(g) Land Use and Planning

As further detailed above under the Land Use and Planning discussion for Alternative 1, and as discussed in Section 4.7, Land Use and Planning, of the Draft EIR, the Project would support a number of City and regional plans and policies, and with approval of the Project’s requested discretionary actions, including adoption of a Comprehensive Plan, it would not conflict with or impede implementation of applicable land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, the Project’s impact on land use and planning would be less than significant. Alternative 2 would develop the Project Site with uses that are permitted by right under current zoning and land use designations. Alternative 2 would also not conflict with the zoning on the Project Site and would not require the Project’s requested approvals. As with the Project, Alternative 2 would not conflict with applicable General Plan, Action Plan, Zoning Code, 2020-2045 RTP/SCS, and Metro’s Active Transportation Strategic Plan. However, as Alternative 2 would develop fewer residential units as compared to the Project, Alternative 2 would not further regional and local policies to provide affordable housing or increase transit use to the same extent as under the Project. And, Alternative 2 would not include Machado Park in support of the General Plan goal to increase recreational open space. Therefore, although impacts under Alternative 2 would be less than significant, in relation to consistency with existing
plans, effects would be greater under Alternative 2 than the Project, as Alternative 2 would not fulfill the objectives and policies of these plans to the same extent as the Project.

(h) Noise

(1) Noise Levels in Excess of Standards

As discussed in Section 4.8, *Noise*, of this Draft EIR, Project construction would result in temporary increases in ambient noise that would exceed thresholds of significance at studied receptors, and impacts would be potentially significant and would require implementation of Mitigation Measures NOISE-1 and NOISE-2 to reduce impacts to less-than-significant levels. Alternative 2 would utilize similar construction activities as the Project, but would require less excavation than the Project due to the removal of the subterranean level of parking. Based on a worst-case evaluation of maximum concurrent operation of hand tools and equipment and construction phase overlap, construction noise levels would exceed the applicable noise significance thresholds at several nearby off-site noise-sensitive receptors during a peak day of construction activity at the Project Site. Therefore, as with the Project, Alternative 2 would have a significant impact and would be required to implement Mitigation Measures NOISE-1 and NOISE-2 to reduce on-site construction-related noise to a less-than-significant level. As Alternative 2 would have less excavation and reduced construction duration and intensity compared to the Project, impacts would be less than those of the Project.

Similar to the Project, construction of Alternative 2 would result in construction truck trips associated with hauling material and excavated soil from the Project Site and to deliver concrete and building materials to the Project Site. As with the Project, maximum construction traffic under Alternative 2 would not result in significant noise levels (greater than 5 dBA L_{eq} increase in ambient conditions), and impacts would be less than significant. As Alternative 2 would have less excavation and reduced construction duration and intensity compared to the Project, impacts would be less than those of the Project.

As discussed in Section 4.8, *Noise*, of this Draft EIR, Project-related increases in traffic noise would be less than significant compared to existing traffic baseline conditions, future traffic conditions in 2024, and future traffic conditions in 2045. Furthermore, Project-related fixed mechanical equipment noise, parking structure noise, loading dock noise, and outdoor open space noise would not result in significant noise levels, and impacts would be less than significant. Alternative 2, as with the Project, would increase off-site traffic and generate on-site composite noise associated with fixed equipment, vehicle activity, and outdoor open space activities. As Alternative 2 would involve a smaller scale development with fewer overall vehicle trips from a maximum of 4,934 trips under the Project to 974 trips under Alternative 2, operational mobile source noise impacts would be less under Alternative 2 than the Project.¹

With a decrease in development intensity compared to the Project, operational noise levels from mechanical equipment, on-site vehicle activity from the parking structure, and outdoor open space activities would be less under Alternative 2 than the Project. While Alternative 2 would still include

¹ The trips used in this comparison are based on gross trips generated by the development program and do not account for the removal of trips based on existing uses.
publicly accessible open space across the Project Site, given the reduction in open space under Alternative 2, Machado Park would not be developed. Alternative 2 would include 9,441 sf of publicly accessible open space across the Project Site and 10,000 sf of common residential open space on the second floor, compared to the 28,800 sf of publicly accessible open space across the Project Site and 24,000 sf of common residential open space on the third level under the Project. Therefore, the maximum occupant load in the open spaces would be less under Alternative 2 than the Project, and the amount of noise generated would be less than the Project. Overall, composite operational noise levels would be less than significant and less than the Project.

(2) Groundborne Noise and Vibration
As discussed in Section 4.8, Noise, of this Draft EIR, construction activities at the Project Site have the potential to generate low levels of groundborne vibration as the operation of heavy equipment generates vibrations that propagate through the ground and diminish in intensity with distance from the source. With respect to human annoyance, the nearest vibration-sensitive residential and school uses (at 100 feet) to the Project Site would not be exposed to vibration levels which would exceed the threshold. Therefore, Project construction impacts would be less than significant with respect to human annoyance, and no mitigation measures are required.

Alternative 2 would have less excavation and reduced construction duration and intensity compared to the Project. Therefore, while construction of Alternative 2 would involve similar construction activities and utilize similar equipment as under the Project, construction impacts under Alternative 2 would be less than significant and would be less than those of the Project due to the reduced construction duration.

As discussed in Section 4.8, Noise, of this Draft EIR, Project operations would include typical commercial-grade stationary mechanical and electrical equipment, such as air handling units, condenser units, and exhaust fans, which would produce vibration. However, Project vibration levels would be less than the significance threshold of 80 VdB, and impacts would be less than significant. Similar to the Project, Alternative 2 would include the same types of mechanical and electrical equipment which would produce vibration. As Alternative 2 would have a reduced development intensity and day-to-day activity during operation, Alternative 2 would result in less-than-significant impacts related to the generation of groundborne vibration during operation, and impacts would be less than those of the Project.

(i) Population and Housing
As discussed in Section 4.9, Population and Housing, of this Draft EIR, the Project would involve demolition of the existing commercial buildings on the Project Site to support a mixed-use development with residential and commercial uses. The Project’s 230 residential units would result in an increase in 529 residents on the Project Site, and the Project’s commercial uses would result in a net increase of 112 employees. The Project’s projected growth would be within SCAG’s 2020-2045 RTP/SCS projections for the City, and the Project would not induce unplanned substantial population growth in an area directly through the development of new housing and employment opportunities. Furthermore, Project operation would modify access from streets that surround the Project Site, however, modifications represent improvements that would not induce substantial population growth indirectly through the extension of roads or other infrastructure into undeveloped areas. As
such, the Project would not induce substantial population growth in the area, either directly or indirectly that cannot be reasonably accommodated, and impacts would be less than significant.

Alternative 2 would provide 116 fewer residential units than the Project (114 units compared to the Project’s 230 units), none of which would be affordable units. Additionally, Alternative 2 would develop less commercial square footage (15,000 sf compared to the Project’s 66,500 sf), which would result in fewer employees generated at the Project Site. Therefore, Alternative 2 would result in population, housing, and employment increases on the Project Site that would be less than the Project, and Alternative 2 would not induce unplanned substantial population growth in an area directly through the development of new housing and employment opportunities. However, because the Project’s growth is planned and anticipated within projected growth forecasts, and because Alternative 2 would not provide the level of housing and affordable housing in support of local and regional planning objectives such as the affordable household goals and housing obligations provided in the SCAG RHNA to the same extent as the Project, effects on population and housing under Alternative 2 are considered greater than the Project.

(j) **Public Services**

(1) **Fire Protection**

As discussed in Section 4.10.1, *Public Services – Fire Protection*, of this Draft EIR, Project demand for fire protection and response times during construction would be less than significant. The Project would implement Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCFD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would comply with the applicable Building and Fire Codes, which would reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities. The Project would implement Project Design Features PDF-FIRE-1 and PDF-FIRE-2 to reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities, thereby minimizing the risk of increased operational fire safety hazards. Impacts during Project operation would be less than significant.

Alternative 2, as with the Project, would involve construction activities that would increase demand on fire protection services. Alternative 2, as with the Project, would incorporate Project Design Feature PDF-TRAF-1 (Construction Management Plan) to improve vehicular access around the construction site, which would facilitate emergency access during construction. As Alternative 2 would have reduced construction duration compared to the Project, impacts would be less than those of the Project.

During operation, due to the reduction in the size of the development, Alternative 2 would have less residential population and employees on the Project Site compared to the Project. Alternative 2, as with the Project, would comply with the applicable Building and Fire Codes and would implement Project Design Features PDF-FIRE-1 and PDF-FIRE-2 to reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities. Accordingly, Alternative 2, as with the Project, would not result in substantial adverse physical impacts associated with the provision of or need for new or altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service
ratios, response times, or other performance objectives, and impacts would be less than significant. Because Alternative 2 would result in less population and employee growth that would increase demand as compared to the Project, impacts would be less than the Project.

(2) Police Protection

As discussed in Section 4.10.2, Public Services – Police Protection, of this Draft EIR, Project construction demand for police protection during construction would be less than significant. The Project would implement Project Design Feature PDF-POL-1 to include security fencing, lighting, and personnel during construction to discourage construction site crime and reduce the need for CCPD services during construction. The Project would implement Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCPD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would implement Project Design Feature PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Therefore, the Project would not result in substantial adverse physical impacts associated with the provision of or need for new or altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant.

Alternative 2, as with the Project, would result in construction and operation activities that could affect emergency access and increase demand for police protection services. As with the Project, Alternative 2’s construction phase, although of shorter duration and intensity than that of the Project, could increase potential demand for CCPD services related to potential trespassing, theft, vandalism, and graffiti. Similar to the Project, Alternative 2 would implement Project Design Feature PDF-POL-1 to include security fencing, lighting, and personnel during construction to discourage construction site crime and reduce the need for CCPD services during construction. Alternative 2, as with the Project, would incorporate Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCPD would review and approve any proposed lane closures during construction to minimize potential effects on traffic flow and emergency response. As such, similar to the Project, construction under Alternative 2 would result in less-than-significant impacts, and impacts would be similar to the Project.

During operation, Alternative 2 would result in less population and employee increase on the Project Site as compared to the Project. Alternative 2, as with the Project, would implement Project Design Feature PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Accordingly, while Alternative 2 would increase demand for police protection services, Alternative 2, as with the Project, would not result in substantial adverse physical impacts associated with the provision of or need for new or altered...
police protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant. Because Alternative 2 would result in less population and employee growth that would increase demand as compared to the Project, impacts would be less than the Project.

(k) Transportation

(1) Conflict with Programs, Plans, Ordinances or Policies Addressing the Circulation System, Transit, Roadways, Bicycle and Pedestrian Facilities

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities and impacts would be less than significant. Alternative 2, as with the Project, would develop the Project Site with a mixed-use development and would support multimodal transportation options and would support a reduction in single-occupant vehicle trips. Alternative 2, as with the Project, would not conflict with policies of the City’s General Plan Circulation Element, the Culver City Short Range Transit Plan, the Culver City BPAP, and the Complete Streets Policy, which were adopted to protect the environment and reduce reliance on single-occupant vehicle trips. Alternative 2 would implement site design that would improve the pedestrian network include sidewalk improvements on all Project Site frontages to connect the Project Site with the surrounding public pedestrian network. Similar to the Project, Alternative 2 would not conflict with programs, plans, ordinances or policies addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities and, as such, impacts relative to plans and programs would be less than significant and similar to the Project.

(2) Consistency with CEQA Guidelines Section 15064.3, Subdivision (b)

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project’s estimated daily household VMT per capita is 5.7, which is below the threshold of 7.1 for the City. The Project’s VMT would exceed the City’s work VMT significance threshold and would result in a potentially significant VMT impact. The Project would implement Mitigation Measure TRAF-1 to reduce the VMT impacts from office uses to less than significant.

As shown in Appendix L of this Draft EIR, Alternative 2 would result in an estimated daily household VMT per capita of 6.1, which is greater than the Project but still below the threshold of 7.1 for the City. As Alternative 2 would not have an office use, Alternative 2 would avoid the Project’s significant VMT impact related to the office and the associated need for implementation of Mitigation Measure TRAF-1 to reduce the impact to a less than significant level. Therefore, Alternative 2’s VMT impacts would be less than significant, and impacts related to VMT would be less than the Project.

(3) Design Hazards

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site, and would not have a significant impact regarding increased hazards due to geometric design features. Alternative 2, as with the Project, would reduce existing curb cuts and provide new sidewalks, driveways, and roadway improvements in and around the Project Site.
Under Alternative 2, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would be developed. Similarly, Alternative 2 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into Alternative 2 and eastbound Machado Road, respectively. Alternative 2, as with the Project, would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site, and would not have a significant impact regarding increased hazards due to geometric design features. Similar to the Project, Alternative 2 would contribute to overall pedestrian connectivity and walkability through enhancements to the Project Site and would not substantially increase geometric hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses. Impacts under Alternative 2 would be less than significant and similar to the Project.

4) Emergency Access

As discussed in Section 4.11, *Transportation*, of this Draft EIR, the Project would not result in inadequate emergency access during construction and operation. The Project Site is located in an established urban area served by the surrounding roadway network, and multiple routes exist in the area for emergency vehicles and evacuation. Drivers of emergency vehicles normally have a variety of options for avoiding traffic, such as using sirens to clear a path of travel or driving in the lanes of opposing traffic. Similar to the Project, Alternative 2 would implement Project Design Feature PDF-TRAF-1 to reduce potential impacts to emergency access during construction. Alternative 2 would not impair implementation of or physically interfere with adopted emergency response or emergency evacuation plans. Impacts regarding emergency access under Alternative 2 would be less than significant and similar to the Project.

I) Tribal Cultural Resources

As discussed in Section 4.12, *Tribal Cultural Resources*, of this Draft EIR, no known tribal cultural resources or tribal cultural places have been identified within the Project Site or immediate vicinity. Therefore, the Project would result in no impacts to tribal cultural resources. However, the City has prescribed Mitigation Measures ARCH-2 and ARCH-3 to address inadvertent discovery of prehistoric archaeological resources as these two mitigation measures include requirements for Native American construction monitoring and the treatment of inadvertent prehistoric archaeological discoveries.

Under Alternative 2, excavation and ground-disturbing construction activities would occur, but given that no known tribal cultural resources or tribal cultural places have been identified within the Project Site or immediate vicinity, like the Project, there would be no impacts to tribal cultural resources. Nonetheless, like the Project, Mitigation Measures ARCH-2 and ARCH-3 would be implemented in the event of inadvertent discovery of prehistoric archaeological resources. Thus, impacts related to tribal cultural resources under Alternative 2 would be similar to the Project.
5. Alternatives

Relationship of the Alternative to Project Objectives

Alternative 2 consists of the circumstance under which Alternative 2 would only be developed as permitted by right under current zoning and land use designations. As Alternative 2 would maintain ECF parking in its current location on-site, Alternative 2 would meet the following Project Objective:

- Provide safe access to parking for ECF to replace parking currently on-site associated with that use.

Although Alternative 2 would still provide for a mixed-use development, it would not maximize infill development, create more jobs and housing near transit, and would provide fewer residential uses and no affordable housing units. Furthermore, while Alternative 2 would provide publicly accessible open space on the Project Site, the provided open space would be smaller and would not provide the same level of landscaping and accessibility to pedestrians as the Project. As such, Alternative 2 would not meet the following objectives to the same extent as under the Project and is, thus, considered to be only partially consistent with the following objectives:

- Fulfill the City’s housing goals by improving access to quality housing for all members of the community through the provision of affordable housing in proximity to open space and public transportation, while maintaining access to a wide range of services and goods.

- Provide open space amenities that will enhance existing site conditions through a publicly accessible park (Machado Park), a Paseo Courtyard, an Entry Courtyard, as well as a unified landscape design with common open space areas for Project residents.

- Provide for a mix of commercial and residential uses to promote pedestrian activity, reduce vehicle trips and vehicle miles traveled, and encourage active transportation.

- Activate the Sepulveda and Jefferson Boulevard frontages by providing street-oriented retail and restaurant uses, and a landscaping program that further enhances the pedestrian experience.

- Promote vehicular, pedestrian and bicycle safety and access through the Project Site, including the elimination of seven driveways around the Project Site; a new traffic signal at Janisann and Sepulveda Boulevard, new eight foot sidewalks along Sepulveda and Jefferson Boulevards and Machado Road; bicycle racks, lockers, bicycle share facilities; provision of bicycle lanes along Sepulveda Boulevard between Machado Road and Jefferson Boulevard; contributions to design and construction of bike lanes on Sepulveda Boulevard to connect to the Ballona Creek Bike Path; and the provision of a pedestrian circulation system connecting a Paseo Courtyard, Entry Courtyard, ground level commercial uses and open space areas.

- Provide a development that complements and improves the visual character of the area by connecting with the surrounding urban environment through a high level of architectural design, including a porous building form with vertical and horizontal breaks, generous setbacks, light materiality, landscape features, and active ground floor uses with open space amenities.

- Create a development with high quality design that supports environmental sustainability through energy efficiency, water conservation, and the reduction of greenhouse gas emissions through such features as solar photovoltaic power, electric vehicle charging stations, energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping.
Alternative 2 would not provide any affordable housing, the Machado Park, or the on-site grocery store as part of its development program. Therefore, Alternative 2 would not meet the following objectives:

- Develop new, high-quality infill housing with a diverse mix of residential dwelling types, containing both market-rate and affordable units, to serve a range of household sizes adjacent to existing roadway improvements, service connections, and near existing transit.
- Activate Machado Road at Sepulveda Boulevard with a publicly accessible park that is open to the sky and offers future residents and the general public both active and passive areas such as seating, landscaped paseos, and exercise areas.
- Provide an on-site grocery store where future residents and employees at the Project Site and nearby residents may purchase groceries, reducing reliance on single occupancy vehicles.
- Utilize the City’s Community Benefits and Density Bonus Programs to increase the permitted density at the Project Site in order to provide much needed housing at a variety of income levels that will assist the City in meeting its Regional Housing Needs goals.

5.7.3 Alternative 3: Reduced Density Alternative

Description of the Alternative

The Reduced Density Alternative, Alternative 3, would reduce proposed residential and commercial uses on the Project Site by 20 percent. As shown in Table 5-2, Comparison of Alternative 3 to the Project, Alternative 3 would develop a total of 184 residential units, inclusive of 9 units affordable to very low income households) and 53,200 sf of commercial uses, including the same uses as under the Project (e.g., market, restaurants, coffee and bakery, office, retail, and gym). Alternative 3 would, similar to the Project, develop a five-story building that would be 67 feet tall (70.5 feet including the parapet). Under Alternative 3, 530 vehicle parking spaces, including 34 spaces for ECF, would be provided. One level of subterranean parking would still be provided under Alternative 3, similar to under the Project. Alternative 3 would require excavation to accommodate subterranean parking, building foundations, utilities and other improvements. Up to approximately 70,000 cubic yards of earthwork would be excavated under Alternative 3 compared to the 88,000 cubic yards of earthwork under the Project.

Under Alternative 3, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would still be developed. Similarly, Alternative 3 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into the Project and eastbound Machado Road, respectively.

Under Alternative 3, a total of 23,040 sf of publicly accessible open space would be provided, compared to the 28,800 sf under the Project. Given the reduction in open space under Alternative 3, Machado Park would not be developed.
TABLE 5-2

Comparison of Alternative 3 to the Project

<table>
<thead>
<tr>
<th>Use</th>
<th>Project</th>
<th>Alternative 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studios</td>
<td>54 units</td>
<td>43 units</td>
</tr>
<tr>
<td>1-Bedrooms</td>
<td>113 units</td>
<td>91 units</td>
</tr>
<tr>
<td>2-Bedrooms</td>
<td>63 units</td>
<td>50 units</td>
</tr>
<tr>
<td>Residential Lobby</td>
<td>2,500 sf</td>
<td>2,000 sf</td>
</tr>
<tr>
<td>Residential Amenity (Third Level)</td>
<td>2,500 sf</td>
<td>2,000 sf</td>
</tr>
<tr>
<td>Subtotal Residential Units and Square Footage</td>
<td>230 units (244,609 sf)</td>
<td>184 units (195,687 sf)</td>
</tr>
<tr>
<td>Affordable Units (Included in Unit Count)</td>
<td>19 units</td>
<td>9 units</td>
</tr>
<tr>
<td>Commercial Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>38,600 sf</td>
<td>30,880 sf</td>
</tr>
<tr>
<td>Restaurant (High Turnover Sit-Down)</td>
<td>3,300 sf</td>
<td>2,640 sf</td>
</tr>
<tr>
<td>Restaurant (Fast Casual)</td>
<td>4,900 sf</td>
<td>3,920 sf</td>
</tr>
<tr>
<td>Coffee & Bakery</td>
<td>2,400 sf</td>
<td>1,920 sf</td>
</tr>
<tr>
<td>Office</td>
<td>11,450 sf</td>
<td>9,160 sf</td>
</tr>
<tr>
<td>Retail</td>
<td>3,900 sf</td>
<td>3,120 sf</td>
</tr>
<tr>
<td>Gym/Fitness</td>
<td>1,950 sf</td>
<td>1,560 sf</td>
</tr>
<tr>
<td>Subtotal Commercial Square Footage</td>
<td>66,500 sf</td>
<td>53,200 sf</td>
</tr>
<tr>
<td>Total Residential and Commercial Square Footage</td>
<td>311,109 sf</td>
<td>248,887 sf</td>
</tr>
<tr>
<td>Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Parking</td>
<td>308 spaces</td>
<td>247 spaces</td>
</tr>
<tr>
<td>Commercial Parking</td>
<td>311 spaces</td>
<td>249 spaces</td>
</tr>
<tr>
<td>ECF Parking(^a)</td>
<td>34 spaces</td>
<td>34 spaces</td>
</tr>
<tr>
<td>Total Vehicle Parking Provided</td>
<td>653 spaces</td>
<td>530 spaces</td>
</tr>
<tr>
<td>Bicycle Parking Spaces (Long / Short-Term)</td>
<td>71 / 26 spaces</td>
<td>60 / 19 spaces</td>
</tr>
<tr>
<td>Open Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publicly Accessible Open Space</td>
<td>28,800 sf</td>
<td>23,040 sf</td>
</tr>
<tr>
<td>Common Open Space (for Residents)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courtyard (Third Level)</td>
<td>24,000 sf</td>
<td>19,200 sf</td>
</tr>
<tr>
<td>Private Open Space (Balconies)</td>
<td>14,350 sf</td>
<td>11,480 sf</td>
</tr>
<tr>
<td>Total Open Space Provided</td>
<td>68,350 sf</td>
<td>53,720 sf</td>
</tr>
</tbody>
</table>

\(^a\) The 34 parking spaces for the ECF are a relocation of the existing 34 ECF parking stalls on-site.

Environmental Impacts

(a) Air Quality

(1) Conflict with Air Quality Management Plan

As discussed in Section 4.1, Air Quality, of this Draft EIR, Project construction would increase the frequency or severity of an existing violation for pollutant emissions, and impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1 to ensure that NOX emissions are below the SCAQMD thresholds of significance and to reduce impacts to less than significant. Project construction would also comply with SCAQMD Rule 403 requirements and the ATCM such that the Project would meet or exceed the AQMP requirements to reduce emissions from construction equipment and activities. The Project’s operational emissions would not exceed SCAQMD localized operational emissions thresholds for NOX, CO, PM10, and PM2.5, and impacts would be less than significant.

Similar to the Project, construction activities under Alternative 3 would occur, and the Project Site would be developed with new residential and commercial uses. Alternative 3 would have reduced construction due to the decrease in development intensity and uses as compared to the Project, but would still require implementation of Mitigation Measure AIR-1 to ensure that NOX emissions are below the SCAQMD thresholds of significance and to reduce impacts to less than significant, and impacts would be less than significant with implementation of Mitigation Measure AIR-1 and would be less than those of the Project. Additionally, operational impacts to air quality under Alternative 3 would be reduced compared to the Project, due to the reduction in development intensity and corresponding vehicle emissions. Therefore, operational impacts under Alternative 3 would be less than significant, and impacts would be less than those of the Project.

(2) Cumulative Increase in Criteria Pollutants/Violation of Air Quality Standards

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s construction would exceed the SCAQMD’s regional significance thresholds for NOX, cumulative construction impacts would be less than significant with implementation of Mitigation Measure AIR-1. As with the Project, Alternative 3’s construction phases have the potential to generate emissions that would exceed SCAQMD air quality standards through the use of heavy-duty construction equipment, construction traffic, fugitive dust emissions, paving operation, and the application of architectural coatings and other building materials. The maximum emissions under Alternative 3 would be similar to the Project because emission levels are based on a single day in which maximum construction activity would occur; however, Alternative 3 would have reduced construction due to the decrease in development intensity, uses, and excavation. Similar to the Project, Alternative 3 would be required to implement Mitigation Measure AIR-1 during construction to reduce the potential exceedance of daily NOX emissions to less-than-significant levels. Therefore, as with the Project, impacts would be less than significant with implementation of the mitigation measure; however, impacts would be less than those of the Project.

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s operation would not exceed the SCAQMD threshold of significance for any non-attainment pollutants (VOC, NOX, CO, SOX, PM10, and PM2.5) and impacts would be less than significant. As with the Project, during operation
Alternative 3 would generate emissions associated with vehicle trips, heating, lighting, other electric and natural gas power requirements, emergency generators, and architectural coatings. Alternative 3 would develop commercial and residential uses on the Project Site, but would be reduced compared to the Project due to the reduction in development intensity and corresponding vehicle emissions. As Alternative 3 would be developed at a lower intensity and have less traffic than the Project, its operational daily emissions would similarly not exceed the SCAQMD numerical significance thresholds for VOC, CO, SO\textsubscript{X}, PM10 and PM2.5. Thus, as with the Project, impacts would be less than significant under Alternative 3 for these criteria pollutants. However, because of its reduced emissions, impacts under Alternative 3 would be less than the Project.

(3) Exposure of Sensitive Receptors to Pollutant Concentrations

(a) Localized Emissions

As discussed in Section 4.1, Air Quality, of this Draft EIR, given that NO\textsubscript{X}, PM10 and PM2.5 emissions would exceed regulatory screening levels, Project impacts would be potentially significant and would require implementation of Mitigation Measure AIR-1. As with the Project, Alternative 3 would generate construction activity and traffic, and increase localized emission levels during construction. While the construction duration is reduced as compared to the Project, the maximum daily localized construction emissions for Alternative 3 would be similar to the Project. Similar to the Project, Alternative 3 would have significant impacts and be required to implement Mitigation Measure AIR-1 during construction to reduce NO\textsubscript{X}, PM10 and PM2.5 emissions to below regulatory thresholds. Therefore, as with the Project, impacts under Alternative 3 would be less than significant with implementation of Mitigation Measure AIR-1; however, because the duration of impacts during construction associated with localized emissions would be reduced, impacts would be less than those of the Project.

Project operation would not exceed the localized thresholds for NO\textsubscript{X}, CO, PM10, and PM2.5. Therefore, impacts related to localized operational emissions would be less than significant. Because of its smaller scale and intensity, Alternative 3’s operation would have less localized operational emissions than the Project. The reduction in building floor area and reduced occupancy of the Project Site under Alternative 3 would reduce daily operational localized emissions from less building energy demand, consumer product usage, and architectural coatings usage. Accordingly, impacts under Alternative 3 during operation with respect to localized emissions would be less than significant and would be less than under the Project.

(b) Carbon Monoxide Hotspots

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project would result in less-than-significant impacts with respect to CO hotspots. Vehicle trips would be less under Alternative 3 than the Project. As with the Project, Alternative 3 would not cause or contribute considerably to the formation of CO hotspots, and impacts would be less than significant. However, because Alternative 3 would reduce the Project’s daily vehicle trips, impacts would be less than the Project.

(c) Toxic Air Contaminants

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s regional and localized emissions would exceed SCAQMD significance thresholds for regional and localized criteria pollutants during construction (as shown in Table 4.1-5 and Table 4.1-7) and would result in
potentially significant impacts requiring implementation of Mitigation Measures AIR-1 and AIR-2. Under Alternative 3, as with the Project, temporary TAC emissions associated with DPM emissions from heavy construction equipment would occur during construction activities. Similar to the Project, Alternative 3 would result in significant impacts and would require implementation of Mitigation Measures AIR-1 and AIR-2 to reduce cancer risk to below regulatory thresholds for both residential and school receptors. As with the Project, with implementation of the required mitigation, Alternative 3 would not expose sensitive receptors to substantial TAC concentrations, and impacts would be less than significant. However, because Alternative 3 would reduce the scale and duration of construction activities, impacts under Alternative 3 would be less than the Project.

As discussed in Section 4.1, Air Quality, of this Draft EIR, the Project’s regional and localized emissions would be below SCAQMD significance thresholds during operation and impacts would be less-than-significant. Operation of Alternative 3, as with the Project, would not generate a substantial number of daily truck trips, nor would it result in the emission of other TACs at a level where concern would be raised regarding health risk. The minor use of TACs onsite would be consistent with, or less than, what is currently used under the existing conditions. Additionally, Alternative 3 would utilize a similar emergency generator as under the Project, which would be required to be permitted by the SCAQMD and therefore would not be permitted to emit TAC emissions in excess of regulatory thresholds. Therefore, Alternative 3 would not warrant the need for a health risk assessment associated with on-site operational activities. Based on the uses expected on the Project Site, as with the Project, potential long-term operational impacts associated with the release of TACs under Alternative 3 would be minimal, regulated, and controlled, and would not be expected to exceed the applicable SCAQMD numerical significance thresholds. Operation of Alternative 3, as with the Project, would not expose sensitive receptors to substantial TAC concentrations, and operational impacts would be less than significant. However, because of Alternative 3’s reduced overall scale of development and reduction in use of consumer products and other sources, such as architectural coatings, impacts under Alternative 3 would be less than the Project.

(b) Cultural Resources

(1) Historical Resources

As discussed in Section 4.2.1, Cultural Resources – Historical Resources, of this Draft EIR, there are no historical resources present on the Project Site. Therefore, Alternative 3, similar to the Project, would not result in an impact to known historical resources during construction. Therefore, Alternative 3 would result in similar impacts to historical resources as the Project.

(2) Archaeological Resources

As discussed in Section 4.2.2, Cultural Resources – Archaeological Resources, of this Draft EIR, there are no known archaeological resources identified within or immediately adjacent to the Project Site and the majority of the Project Site is developed. Nonetheless, and based on the general prevalence of archaeological resources in the vicinity shown in records search results, there is a moderate to high potential that excavation activities associated with the Project could encounter previously unknown buried historic and prehistoric archaeological resources during construction. Therefore, Project impacts to previously unknown buried historic and prehistoric archaeological resources are considered potentially significant during construction and require implementation of
Mitigation Measures ARCH-1 through ARCH-4 to reduce impacts to less than significant. Under Alternative 3, excavation and ground-disturbing construction activities would occur, which could potentially encounter previously undiscovered archaeological resources. While Alternative 3 would have a reduced level of excavation compared to the Project, Alternative 3 would, similar to the Project, be required to implement Mitigation Measures ARCH-1 through ARCH-4 to reduce potential impacts to archaeological resources to a less-than-significant level. However, because Alternative 3 would involve less excavation, it would have less potential to encounter and have an impact on such resources. Thus, impacts related to archaeological resources under Alternative 3 would be less than the Project.

(c) Energy

(1) Efficient Energy Consumption

As discussed in Section 4.3, Energy, of this Draft EIR, construction of the Project would utilize fuel-efficient equipment consistent with State and federal regulations, such as fuel efficiency regulations in accordance with the CARB Pavley Phase II standards, the anti-idling regulation in accordance with CCR Title 13, Section 2485 and fuel requirements in accordance with CCR Title 17, Section 93115, and would comply with State measures to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. Construction would utilize energy only for necessary on-site activities and to transport construction materials, excavated fill, and demolition debris to and from the Project Site, and impacts would be less than significant. Project operation would include infrastructure for EV charging stations for residential and retail uses. The Project would support Statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles due to the Project Site being an infill location close to retail, restaurant, services, educational and religious institutions, and would be in proximity to existing public transit stops. Therefore, operation of the Project would not result in the wasteful, inefficient, and unnecessary consumption of energy, and impacts would be less than significant.

As with the Project, construction of Alternative 3 would utilize similar equipment which would be utilized in accordance with the applicable federal and State regulations. Because Alternative 3 would reduce the scale and duration of construction activities, construction impacts under Alternative 3 would be less than the Project.

As with the Project, Alternative would be located at the same Project Site and would comply with and exceed existing minimum energy efficiency requirements such as the Title 24 standards and CALGreen Code. As Alternative 3 would reduce the scale of the Project and building floor area compared to the Project, the reduction in building floor area and reduced occupancy of the Project Site under Alternative 3 would reduce impacts related to efficient energy consumption as compared to the Project. Therefore, impacts with respect to energy consumption during operation would be less than significant and would be less than the Project.

(2) Conflict with Plans for Renewable Energy or Energy Efficiency

As discussed in Section 4.3, Energy, of this Draft EIR, the Project would support and promote the use of renewable energy and energy efficiency and would result in less-than-significant impacts. The Project would support Statewide and regional efforts to incorporate green building design.
features, improve mobility and access to diverse destinations, and to improve transportation energy efficiency in order to reduce wasteful or inefficient energy consumption. Overall the Project’s features would support and promote the use of renewable energy and energy efficiency, therefore, impacts would be less than significant. As with the Project, Alternative 3 would comply with existing energy standards and would not conflict with adopted energy conservation plans. By exceeding the regulatory standards, similar to the Project, Alternative 3 would have a less-than-significant impact regarding the provisions of plans for renewable energy and energy efficiency. As Alternative 3 would be in compliance, impacts under Alternative 3 would be similar to the Project.

(d) Geology and Soils – Paleontological Resources

As discussed in Section 4.4, Geology and Soils – Paleontological Resources, of this Draft EIR, the Project would be located in an urban developed location with no unique geologic features and would result in no operational impacts. However, Project impacts on paleontological resources due to grading and excavation during construction are considered potentially significant and require implementation of Mitigation Measures GEO-1 through GEO-4 to reduce impacts to less than significant. Under Alternative 3, excavation and ground-disturbing construction activities would occur, which could potentially encounter previously undiscovered paleontological resources. While Alternative 3 would have a reduced level of excavation compared to the Project, Alternative 3 would, similar to the Project, be required to implement Mitigation Measures GEO-1 through GEO-4 to reduce potential impacts to paleontological resources to a less-than-significant level. However, because Alternative 3 would involve less excavation, it would have less potential to encounter and result in impacts on paleontological resources. Thus, impacts related to paleontological resources under Alternative 3 would be less than the Project.

(e) Greenhouse Gas Emissions

(1) Generation of GHG Emissions

As discussed in Section 4.5, Greenhouse Gas Emissions, of this Draft EIR, the Project would generate GHG emissions due to construction and operational activities, and impacts would be less than significant. The construction and occupancy of the Project Site under Alternative 3, as with the Project, would increase GHG emissions. Although the State and City have not established quantitative values for GHG emissions, in order to comply with policies and regulations adopted for the purpose of reducing or mitigating GHG emissions, the smaller scale and lower mobile emissions associated with Alternative 3 would generate lower GHG emissions than the Project’s maximum GHG operational emissions. Due to its lower GHG emissions, under Alternative 3 with respect to GHG emissions, impacts on the environment would be less than the Project.

(2) Conflict with Applicable Plans, Policies, Regulations, or Recommendations

As discussed in Section 4.5, Greenhouse Gas Emissions, of this Draft EIR, the Project would be consistent with statewide, regional, and local plans, policies, regulations, and recommendations to reduce GHG emissions from development. Alternative 3, as with the Project would be consistent with Executive Orders S-3-05 and B-30-15, AB 32, SCAG’s 2020-2045 RTP/SCS, and the City’s Green Building Program. As such, similar to the Project, impacts under Alternative 3 related to conflicts with an applicable plan, policy, or regulation adopted for the purpose of reducing the
emissions of GHGs would be less than significant under Alternative 3 and impacts would be similar to those of the Project.

(f) Hazards and Hazardous Materials

(1) Hazard to the Public or Environment Involving the Accidental Release of Hazardous Materials into the Environment

As discussed in Section 4.6, Hazards and Hazardous Materials, of this Draft EIR, the Project would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment, and impacts would be less than significant. Construction of Alternative 3, as with the Project, would include demolition of existing uses on-site and the construction of the new building. Therefore, due to similar demolition and construction activities, impacts under Alternative 3 related to the accidental release of hazardous materials would be less than significant and similar to the Project.

(2) Hazards Resulting from Hazardous or Acutely Hazardous Materials, Substances, or Waste within One-Quarter Mile of a School

As discussed in Section 4.6, Hazards and Hazardous Materials, of this Draft EIR, the Project would be located adjacent to and south of ECF, which serves as a special education school, located across Machado Road. Additionally, El Rincon Elementary School, located at 11177 Overland Avenue, is located approximately 0.20 miles east of the Project Site. While the Project would emit small quantities of potentially hazardous materials typical of maintenance or operational uses within one-quarter mile of an existing or proposed school, all materials would be disposed of in accordance with applicable laws and regulations, and impacts would be less than significant. Accordingly, as Alternative 3 would emit similar quantities and types of hazardous materials, impacts would be less than significant and would be similar to the Project.

(3) Hazards Materials Sites

As discussed in Section 4.6, Hazards and Hazardous Materials, of the Draft EIR, although the Project was identified in twelve environmental database reports, the removal of hazardous materials would be carried out in accordance with regulatory requirements and the Phase II ESA and the vapor intrusion HHRA concluded that future building occupants would not be at risk from the former gasoline service station, hydraulic lift, and soil vapor and would result in less-than-significant impacts. As Alternative 3 would result in similar construction activities as the Project and would also require the removal of hazardous materials in accordance with regulatory requirements, impacts under Alternative 3 would be less than significant and would be similar to the Project.

(g) Land Use and Planning

As further detailed above under the Land Use and Planning discussion for Alternative 1, and as discussed in Section 4.7, Land Use and Planning, of the Draft EIR, the Project would support a number of City and regional plans and policies, and with approval of the Project’s requested discretionary actions, including adoption of a Comprehensive Plan, it would not conflict with or impede implementation of applicable land use plans, policies, or regulations adopted for the purpose of avoiding or mitigating an environmental effect. Therefore, the Project’s impact on land use and planning would be less than significant. Alternative 3 would develop the Project Site with
similar uses that are proposed under the Project but at a reduced density. Alternative 3 would require the same approvals as under the Project. As with the Project, Alternative 3 would not conflict with applicable General Plan, Bicycle & Pedestrian Action Plan, Urban Forest Master Plan, Zoning Code, 2020 RTP/SCS, and Metro’s Active Transportation Strategic Plan. However, as Alternative 3 would develop fewer residential units and fewer affordable housing units compared to the Project, it would not further regional and local policies to provide more residential units, affordable housing units, or increase transit use to the same extent as under the Project. Also, without Machado Park, Alternative 3 would not fulfill the General Plan policy to increase passive recreational open space. Therefore, although impacts under Alternative 3 would be less than significant in relation to consistency with existing plans that avoid or reduce environmental impacts, effects would be greater under Alternative 3 than the Project as Alternative 3 would not fulfill the policies and objectives of these plans to the same extent as the Project.

(h) Noise

(1) Noise Levels in Excess of Standards

As discussed in Section 4.8, *Noise*, of this Draft EIR, Project construction would result in temporary increases in ambient noise that would exceed thresholds of significance at studied receptors, and impacts would be potentially significant and would require implementation of Mitigation Measures NOISE-1 and NOISE-2 to reduce impacts to less-than-significant levels. Alternative 3 would utilize similar construction activities as the Project, but would require less excavation than the Project due to the removal of the subterranean level of parking. Based on a worst-case evaluation of maximum concurrent operation of hand tools and equipment and construction phase overlap, construction noise levels would exceed the applicable noise significance thresholds at several nearby off-site noise-sensitive receptors during a peak day of construction activity at the Project Site. Therefore, as with the Project, Alternative 3 would have a significant impact and would be required to implement Mitigation Measures NOISE-1 and NOISE-2 to reduce on-site construction-related noise to a less-than-significant level. As Alternative 3 would have less excavation and reduced construction duration and intensity compared to the Project, impacts would be less than those of the Project.

Similar to the Project, construction of Alternative 3 would result in construction truck trips associated with hauling material and excavated soil from the Project Site and to deliver concrete and building materials to the Project Site. As with the Project, maximum construction traffic under Alternative 3 would not result in significant noise levels (greater than 5 dBA L_{eq} increase in ambient conditions), and impacts would be less than significant. As Alternative 3 would have less excavation and reduced construction duration and intensity compared to the Project, impacts would be less than those of the Project.

As discussed in Section 4.8, *Noise*, of this Draft EIR, Project-related increases in traffic noise would be less than significant compared to existing traffic baseline conditions, future traffic conditions in 2024, and future traffic conditions in 2045. Furthermore, Project-related fixed mechanical equipment noise, parking structure noise, loading dock noise, and outdoor open space noise would not result in significant noise levels, and impacts would be less than significant. Alternative 3, as with the Project, would increase off-site traffic and generate on-site composite noise associated with fixed equipment, vehicle activity, and outdoor open space activities. As Alternative 3 would
involve a smaller scale development with fewer overall off-site vehicle trips from a maximum of 4,934 trips under the Project to 3,951 trips under Alternative 3, operational mobile source noise impacts would be less under Alternative 3 than the Project.²

With a decrease in development intensity compared to the Project, operational noise levels from mechanical equipment, on-site vehicle activity from the parking structure, and outdoor open space activities would be less under Alternative 3 than the Project. While Alternative 3 would still include publicly accessible open space across the Project Site, given the reduction in open space under Alternative 3, Machado Park would not be developed. Alternative 3 would include 23,040 sf of publicly accessible open space across the Project Site and 19,200 sf of common residential open space on the second floor, compared to the 28,800 sf of publicly accessible open space across the Project Site and 24,000 sf of common residential open space on the third level under the Project. Therefore, the maximum occupant load in the open spaces would be less under Alternative 3 than the Project, and the amount of noise generated would be less than the Project. Overall, composite operational noise levels would be less than significant and less than the Project.

(2) Groundborne Noise and Vibration

As discussed in Section 4.8, Noise, of this Draft EIR, construction activities at the Project Site have the potential to generate low levels of groundborne vibration as the operation of heavy equipment generates vibrations that propagate through the ground and diminish in intensity with distance from the source. With respect to human annoyance, the nearest vibration-sensitive residential and school uses (at 100 feet) to the Project Site would not be exposed to vibration levels which would exceed the threshold. Therefore, Project construction impacts would be less than significant with respect to human annoyance, and no mitigation measures are required.

Alternative 3 would have less excavation and reduced construction duration and intensity compared to the Project. Therefore, while construction of Alternative 3 would involve similar construction activities and utilize similar equipment as under the Project, construction impacts under Alternative 3 would be less than significant and would be less than those of the Project due to the reduced construction duration.

As discussed in Section 4.8, Noise, of this Draft EIR, Project operations would include typical commercial-grade stationary mechanical and electrical equipment, such as air handling units, condenser units, and exhaust fans, which would produce vibration. However, Project vibration levels would be less than the significance threshold of 80 VdB, and impacts would be less than significant. Similar to the Project, Alternative 3 would include the same types of mechanical and electrical equipment which would produce vibration. As Alternative 3 would have a reduced development intensity and day-to-day activity during operation, Alternative 3 would result in less-than-significant impacts related to the generation of groundborne vibration during operation, and impacts would be less than those of the Project.

² The trips used in this comparison are based on gross trips generated by the development program and do not account for the removal of trips based on existing uses.
(i) Population and Housing

As discussed in Section 4.9, Population and Housing, of this Draft EIR, the Project would involve demolition of the existing commercial buildings on the Project Site to support a mixed-use development with residential and commercial uses. The Project’s 230 residential units would result in an increase in 529 residents on the Project Site, and the Project’s commercial uses would result in a net increase of 112 employees. The Project’s projected growth would be within SCAG’s 2020-2045 RTP/SCS projections for the City, and the Project would not induce unplanned substantial population growth in an area directly through the development of new housing and employment opportunities. Furthermore, Project operation would modify access from streets that surround the Project Site, however, modifications represent improvements that would not induce substantial population growth indirectly through the extension of roads or other infrastructure into undeveloped areas. As such, the Project would not induce substantial population growth in the area, either directly or indirectly that cannot be reasonably accommodated, and impacts would be less than significant.

Alternative 3 would provide 46 fewer residential units than the Project (184 units compared to the Project’s 230 units), of which 9 would be affordable units compared to the Project’s 19 affordable units. Additionally, Alternative 3 would develop less commercial square footage (53,200 sf compared to the Project’s 66,500 sf), which would result in fewer employees generated at the Project Site. Therefore, Alternative 3 would result in population, housing, and employment increases on the Project Site that would be less than the Project, and Alternative 3 would not induce unplanned substantial population growth in an area directly through the development of new housing and employment opportunities. However, because the Project’s growth is planned and anticipated within projected growth forecasts, and because Alternative 3 would not provide the level of housing and affordable housing in support of local and regional planning objectives such as the affordable household goals and housing obligations provided in the SCAG RHNA to the same extent as the Project, effects on population and housing under Alternative 3 are considered greater than the Project.

(j) Public Services

(1) Fire Protection

As discussed in Section 4.10.1, Public Services – Fire Protection, of this Draft EIR, Project demand for fire protection and response times during construction would be less than significant. The Project would implement Project Design Feature PDF-TRAF-1 (Construction Management Plan) which would require the CCFD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would comply with the applicable Building and Fire Codes, which would reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities. The Project would implement Project Design Features PDF-FIRE-1 and PDF-FIRE-2 to reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities, thereby minimizing the risk of increased operational fire safety hazards. Impacts during Project operation would be less than significant.

Alternative 3, as with the Project, would involve construction activities that would increase demand on fire protection services. Alternative 3, as with the Project, would incorporate Project Design
5. Alternatives

Feature PDF-TRA F-1 (Construction Management Plan) to improve vehicular access around the construction site, which would facilitate emergency access during construction. As Alternative 3 would have reduced construction duration compared to the Project, impacts would be less than those of the Project.

During operation, due to the reduction in the size of the development, Alternative 3 would have less residential population and employees on the Project Site compared to the Project. Alternative 3, as with the Project, would comply with the applicable Building and Fire Codes and would implement Project Design Features PDF-FIRE-1 and PDF-FIRE-2 to reduce demand on CCFD facilities and equipment without creating the need for new or expanded fire facilities. Accordingly, Alternative 3, as with the Project, would not result in substantial adverse physical impacts associated with the provision of or need for new or altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant.

Because Alternative 3 would result in less population and employee growth that would increase demand as compared to the Project, impacts would be less than the Project.

(2) Police Protection

As discussed in Section 4.10.2, Public Services – Police Protection, of this Draft EIR, Project construction demand for police protection during construction would be less than significant. The Project would implement Project Design Feature PDF-POL-1 to include security fencing, lighting, and personnel during construction to discourage construction site crime and reduce the need for CCPD services during construction. The Project would implement Project Design Feature PDF-TRA F-1 (Construction Management Plan) which would require the CCPD would review and approve any proposed lane closures to minimize potential effects on traffic flow and emergency response. During Project operation, the Project would implement Project Design Feature PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Therefore, the Project would not result in substantial adverse physical impacts associated with the provision of or need for new or altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant.

Alternative 3, as with the Project, would result in construction and operation activities that could affect emergency access and increase demand for police protection services. As with the Project, Alternative 3’s construction phase, although of shorter duration and intensity than that of the Project, could increase potential demand for CCPD services related to potential trespassing, theft, vandalism, and graffiti. Similar to the Project, Alternative 3 would implement Project Design Feature PDF-POL-1 to include security fencing, lighting, and personnel during construction to discourage construction site crime and reduce the need for CCPD services during construction. Alternative 3, as with the Project, would incorporate Project Design Feature PDF-TRA F-1 (Construction Management Plan) which would require the CCPD would review and approve any
5. Alternatives

proposed lane closures during construction to minimize potential effects on traffic flow and emergency response. As such, similar to the Project, construction under Alternative 3 would result in less-than-significant impacts, and impacts would be similar to the Project. During operation, Alternative 3 would result in less population and employee increase on the Project Site as compared to the Project. Alternative 3, as with the Project, would implement Project Design Feature PDF-POL-2, which includes a 24-hour/seven-day a week security program, full-time on-site security personnel, controlled access to residential and office spaces, CCTV surveillance for the parking structure and other areas, security lighting, and other features. These security features would help reduce the potential for on-site crimes, including loitering, theft, and burglaries, and would reduce demand for CCPD services. Accordingly, while Alternative 3 would increase demand for police protection services, Alternative 3, as with the Project, would not result in substantial adverse physical impacts associated with the provision of or need for new or altered police protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives, and impacts would be less than significant. Because Alternative 3 would result in less population and employee growth that would increase demand as compared to the Project, impacts would be less than the Project.

(k) Transportation

(1) Conflict with Programs, Plans, Ordinances or Policies Addressing the Circulation System, Transit, Roadways, Bicycle and Pedestrian Facilities

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities and impacts would be less than significant. Alternative 3, as with the Project, would develop the Project Site with a mixed-use development and would support multimodal transportation options and would support a reduction in single-occupant vehicle trips. Alternative 3, as with the Project, would not conflict with policies of the City’s General Plan Circulation Element, the Culver City Short Range Transit Plan, the Culver City BPAP, and the Complete Streets Policy, which were adopted to protect the environment and reduce reliance on single-occupant vehicle trips. Alternative 3 would implement site design that would improve the pedestrian network include sidewalk improvements on all Project Site frontages to connect the Project Site with the surrounding public pedestrian network. Similar to the Project, Alternative 3 would not conflict with programs, plans, ordinances or policies addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities and, as such, impacts relative to plans and programs would be less than significant and similar to the Project.

(2) Consistency with CEQA Guidelines Section 15064.3, Subdivision (b)

As discussed in Section 4.11, Transportation, of this Draft EIR, the Project’s estimated daily household VMT per capita is 5.7, which is below the threshold of 7.1 for the City. The Project’s estimated daily work VMT per employee is 9.2, which is above the threshold of 8.6 for the City and would result in a potentially significant VMT impact. The Project would implement Mitigation Measure TRAF-1 to reduce the daily work VMT per employee to 8.4, which would be below the threshold of 8.6. Therefore, VMT impacts from office uses would be reduced to less than significant with implementation of Mitigation Measure TRAF-1.
As shown in Appendix L of this Draft EIR, Alternative 3 would result in an estimated daily household VMT per capita of 5.8, which is greater than the Project but still below the threshold of 7.1 for the City. Alternative 3’s estimated daily work VMT per employee is 9.1, which is above the threshold of 8.6 for the City and would result in a potentially significant VMT impact. Alternative 3 would implement Mitigation Measure TRAF-1 to reduce the daily work VMT per employee to 8.4, which would be below the threshold of 8.6. Therefore, VMT impacts from office uses would be reduced to less than significant with implementation of Mitigation Measure TRAF-1. Therefore, Alternative 3’s VMT impacts would be less than significant with mitigation, and impacts related to VMT would be similar to the Project.

(3) Design Hazards
As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site, and would not have a significant impact regarding increased hazards due to geometric design features. Alternative 3, as with the Project, would reduce existing curb cuts and provide new sidewalks, driveways, and roadway improvements in and around the Project Site. Under Alternative 3, the proposed traffic signal at the intersection of Janisann Avenue and Sepulveda Boulevard would be developed. Similarly, Alternative 3 would also provide the proposed road improvements for Machado Road, including a new 8-foot sidewalk, curb, street trees and removal of portions of the median to allow for turn lanes for eastbound and westbound left turns into Heritage Park and the Project Site, respectively. A channelizing island would be added on the Heritage Park approach to prevent through and left-turns from Heritage Park into Alternative 3 and eastbound Machado Road, respectively. Alternative 3, as with the Project, would not substantially increase hazards or conflicts and would contribute to overall walkability through enhancements to the Project Site, and would not have a significant impact regarding increased hazards due to geometric design features. Similar to the Project, Alternative 3 would contribute to overall pedestrian connectivity and walkability through enhancements to the Project Site and would not substantially increase geometric hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses. Impacts under Alternative 3 would be less than significant and similar to the Project.

(4) Emergency Access
As discussed in Section 4.11, Transportation, of this Draft EIR, the Project would not result in inadequate emergency access during construction and operation. The Project Site is located in an established urban area served by the surrounding roadway network, and multiple routes exist in the area for emergency vehicles and evacuation. Drivers of emergency vehicles normally have a variety of options for avoiding traffic, such as using sirens to clear a path of travel or driving in the lanes of opposing traffic. Similar to the Project, Alternative 3 would implement Project Design Feature PDF-TRAF-1 to reduce potential impacts to emergency access during construction. Alternative 3 would not impair implementation of or physically interfere with adopted emergency response or emergency evacuation plans. Impacts regarding emergency access under Alternative 3 would be less than significant and similar to the Project.

(I) Tribal Cultural Resources
As discussed in Section 4.12, Tribal Cultural Resources, of this Draft EIR, no known tribal cultural
resources or tribal cultural places have been identified within the Project Site or immediate vicinity. Therefore, the Project would result in no impacts to tribal cultural resources. However, the City has prescribed Mitigation Measures ARCH-2 and ARCH-3 to address inadvertent discovery of prehistoric archaeological resources as these two mitigation measures include requirements for Native American construction monitoring and the treatment of inadvertent prehistoric archaeological discoveries.

Under Alternative 3, excavation and ground-disturbing construction activities would occur, but given that no known tribal cultural resources or tribal cultural places have been identified within the Project Site or immediate vicinity, like the Project, there would be no impacts to tribal cultural resources. Nonetheless, like the Project, Mitigation Measures ARCH-2 and ARCH-3 would be implemented in the event of inadvertent discovery of prehistoric archaeological resources. Thus, impacts related to tribal cultural resources under Alternative 3 would be similar to the Project.

Relationship of the Alternative to Project Objectives

Alternative 3 consists of the circumstance under which Alternative 3 would reduce proposed residential and commercial uses on the Project Site by 20 percent. As Alternative 3 would provide parking for the ECF within its subterranean level, Alternative 3 would meet the following Project Objective:

- Provide safe access to parking for ECF to replace parking currently on-site associated with that use.

Although Alternative 3 would still provide for a mixed-use development, it would not maximize infill development, create more jobs and housing near transit, and would provide fewer residential uses and affordable housing units. Furthermore, while Alternative 3 would provide publicly accessible open space on the Project Site, the provided open space would be smaller and would not provide the same level of landscaping and accessibility to pedestrians as the Project. As such, Alternative 3 would not meet the following objectives to the same extent as under the Project and is, thus, considered to be only partially consistent with the following objectives:

- Develop new, high-quality infill housing with a diverse mix of residential dwelling types, containing both market-rate and affordable units, to serve a range of household sizes adjacent to existing roadway improvements, service connections, and near existing transit.
- Fulfill the City’s housing goals by improving access to quality housing for all members of the community through the provision of affordable housing in proximity to open space and public transportation, while maintaining access to a wide range of services and goods.
- Provide open space amenities that will enhance existing site conditions through a publicly accessible park (Machado Park), a Paseo Courtyard, an Entry Courtyard, as well as a unified landscape design with common open space areas for Project residents.
- Provide for a mix of commercial and residential uses to promote pedestrian activity, reduce vehicle trips and vehicle miles traveled, and encourage active transportation.
- Activate the Sepulveda and Jefferson Boulevard frontages by providing street-oriented retail and restaurant uses, and a landscaping program that further enhances the pedestrian experience.
5. Alternatives

- Promote vehicular, pedestrian and bicycle safety and access through the Project Site, including the elimination of seven driveways around the Project Site; a new traffic signal at Janisann and Sepulveda Boulevard, new eight foot sidewalks along Sepulveda and Jefferson Boulevards and Machado Road; bicycle racks, lockers, bicycle share facilities; provision of bicycle lanes along Sepulveda Boulevard between Machado Road and Jefferson Boulevard; contributions to design and construction of bike lanes on Sepulveda Boulevard to connect to the Ballona Creek Bike Path; and the provision of a pedestrian circulation system connecting a Paseo Courtyard, Entry Courtyard, ground level commercial uses and open space areas.

- Provide an on-site grocery store where future residents and employees at the Project Site and nearby residents may purchase groceries, reducing reliance on single occupancy vehicles.

- Utilize the City’s Community Benefits and Density Bonus Programs to increase the permitted density at the Project Site in order to provide much needed housing at a variety of income levels that will assist the City in meeting its Regional Housing Needs goals.

- Provide a development that complements and improves the visual character of the area by connecting with the surrounding urban environment through a high level of architectural design, including a porous building form with vertical and horizontal breaks, generous setbacks, light materiality, landscape features, and active ground floor uses with open space amenities.

- Create a development with high quality design that supports environmental sustainability through energy efficiency, water conservation, and the reduction of greenhouse gas emissions through such features as solar photovoltaic power, electric vehicle charging stations, energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping.

Alternative 3 would not provide the Machado Park as part of its development program. Therefore, Alternative 3 would not meet the following objective:

- Activate Machado Road at Sepulveda Boulevard with a publicly accessible park that is open to the sky and offers future residents and the general public both active and passive areas such as seating, landscaped paseos, and exercise areas.

5.8 Environmentally Superior Alternative

CEQA Guidelines Section 15126.6(e)(2) indicates that an analysis of alternatives to a proposed project shall identify an environmentally superior alternative among the alternatives evaluated in an EIR and that if the “no project” alternative is the environmentally superior alternative, the EIR shall identify another environmentally superior alternative among the remaining alternatives. Selection of an environmentally superior alternative is based on comparison of the alternatives to determine which among the alternatives would reduce or eliminate the impacts associated with the Project to the greatest degree. The comparative impacts of the Project and the Project Alternatives are summarized in Table 5-3, below.

Of the alternatives analyzed in this Draft EIR, Alternative 1, the No Project Alternative, would be considered the environmentally superior because it would not involve new development and assumes on-site uses would continue to operate similar to existing conditions, with the exception of the United States Post Office building which is assumed to move at some point in the future and remain vacant until such time it is occupied by another commercial or industrial use. Although the
No Project Alternative would not meet any of the Project Objectives, it would avoid all of the Project’s potentially significant impacts and would have reduced impacts compared to the Project, with the exception of Alternative 1 having greater impacts related to population and housing and design hazards. However, because the No Project Alternative has been identified as the environmentally superior alternative, identification of another environmentally superior alternative is required.

Alternative 2, the Code-Compliant Alternative, and Alternative 3, the Reduced Density Alternative, would both involve less excavation and development compared to the Project, and both alternatives would reduce the Project’s less-than-significant or less-than-significant-with-mitigation impacts related to construction (e.g., air quality, archaeological and paleontological resources, and noise). However, Alternative 2, is considered the environmentally superior alternative, as it would reduce the magnitude of overall impacts compared to the Project, and would avoid the significant transportation impact that would occur under the Project and Alternative 3. More specifically, as Alternative 2 does not include office uses, it would avoid the Project’s significant impact associated with daily work VMT. And, Mitigation Measure TRAF-1 which would be implemented under the Project and Alternative 3 to reduce daily work VMT impacts to a less-than-significant level, would not be required.

However, because Alternative 2 would not develop affordable housing units, would not include a grocery store, or provide Machado Park, objectives related to these components of the Project would not be met. Furthermore, other Project objectives would not be met to the same extent as under the Project. Compared to the Project, and as further discussed above on pages 5-33 and 5-34, Alternative 2 would not meet four Project objectives, and would only partially meet seven Project objectives.
TABLE 5-3
COMPARISON OF THE IMPACTS OF THE PROJECT AND ALTERNATIVES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIR-1a: Conflict with Air Quality Management Plan during construction</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>AIR-1b: Conflict with Air Quality Management Plan during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>AIR-2a: Cumulatively Considerable Increase of Criteria Pollutant in Nonattainment Area during construction</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>AIR-2b: Cumulatively Considerable Increase of Criteria Pollutant in Nonattainment Area during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>AIR-3a: Sensitive Receptors Exposure to Non-Attainment Criteria Pollutant Concentrations during construction</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>AIR-3b: Sensitive Receptors Exposure to Non-Attainment Criteria Pollutant Concentrations during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>AIR-3c: Carbon Monoxide Hotspots</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>AIR-3d: Toxic Air Contaminants during construction</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>AIR-3e: Toxic Air Contaminants during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUL-1: Historic Resources</td>
<td>No Impact</td>
<td>No Impact (Similar)</td>
<td>No impact (Similar)</td>
<td>No impact (Similar)</td>
</tr>
<tr>
<td>CUL-2: Archaeological Resources</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE-1a: Cause Wasteful, Inefficient, or Unnecessary Consumption of Energy during construction</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
</tbody>
</table>
5. Alternatives

Impact

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE-1b: Cause Wasteful, Inefficient, or Unnecessary Consumption of Energy during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>ENE-2: Conflict with or Obstruct a State or Local Plan for Renewable Energy or Energy Efficiency</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>Geology and Soils - Paleontological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-1: Paleontological Resources</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHG-1: Generate Emissions</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>GHG-2: Conflict with Applicable Plans</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>Hazards and Hazardous Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-2: Upset/Accident Conditions</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>HAZ-3: Hazardous Emissions Near Schools</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>HAZ-4: Hazardous Materials Database Listings</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
<td>Less than Significant with Mitigation (Similar)</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU-1: Create a Significant Impact due to a Conflict with Plans, Policies, or Regulations</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Greater)</td>
<td>Less than Significant (Greater)</td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOI-1a: Noise Levels in Excess of Established Standards during construction</td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
<td>Less than Significant with Mitigation (Less)</td>
</tr>
<tr>
<td>NOI-1b: Noise Levels in Excess of Established Standards during operation</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>NOI-2: Excessive Groundborne Vibration or Groundborne Noise Levels</td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
</tbody>
</table>
5. Alternatives

City of Culver City

Project Title: 11111 Jefferson Boulevard Mixed-Use Project

SCH No.: 2020090329

Date: May 2021

<table>
<thead>
<tr>
<th>Impact</th>
<th>Project</th>
<th>Alternative 1:</th>
<th>Alternative 2:</th>
<th>Alternative 3: Reduced Density Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td></td>
<td>No Project</td>
<td>Code-Compliant Alternative</td>
<td></td>
</tr>
<tr>
<td>Population and Housing</td>
<td></td>
<td>Less than Significant</td>
<td>Less than Significant</td>
<td>Less than Significant (Greater)</td>
</tr>
<tr>
<td>POP/H-1: Induce Unplanned Population Growth</td>
<td></td>
<td>No Impact (Greater)</td>
<td>Less than Significant</td>
<td>Less than Significant (Greater)</td>
</tr>
<tr>
<td>Public Services – Fire Protection</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>FIRE-1a: Result in Adverse Impacts Associated with the Provision of New or Physically Altered Fire Protection Facilities due to construction</td>
<td></td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>FIRE-1b: Result in Adverse Impacts Associated with the Provision of New or Physically Altered Fire Protection Facilities due to operation</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>Public Services – Police Protection</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>POL-1a: Result in Adverse Impacts Associated with the Provision of New or Physically Altered Police Protection Facilities due to construction</td>
<td></td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>POL-1b: Result in Adverse Impacts Associated with the Provision of New or Physically Altered Police Protection Facilities due to operation</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Less)</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>TRAF-1: Conflict with Plan, Ordinance, or Policy Addressing Circulation System, Including Transit, Roadway, Bicycle, and Pedestrian Facilities</td>
<td></td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>TRAF-2: Conflict or be Inconsistent with CEQA Guidelines Section 15064.3</td>
<td></td>
<td>Less than Significant with Mitigation</td>
<td>No Impact (Less)</td>
<td>Less than Significant with Mitigation (Similar)</td>
</tr>
<tr>
<td>TRAF-3: Increase Hazards due to a Geometric Design Feature or Incompatible Uses</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>TRAF-4: Inadequate Emergency Access</td>
<td></td>
<td>Less than Significant</td>
<td>No Impact (Less)</td>
<td>Less than Significant (Similar)</td>
</tr>
<tr>
<td>Tribal Cultural Resources</td>
<td></td>
<td>No Impact</td>
<td>No Impact (Less)</td>
<td>No Impact (Similar)</td>
</tr>
<tr>
<td>TCR-1: Change in the significance of a Tribal Cultural Resource</td>
<td></td>
<td>No Impact</td>
<td>No Impact (Less)</td>
<td>No Impact (Similar)</td>
</tr>
</tbody>
</table>

SOURCE: ESA, 2021.
CHAPTER 6
Other CEQA Considerations

This section summarizes the findings of the Draft EIR with respect to: irreversible environmental changes; significant unavoidable environmental impacts; potential secondary effects related to Project mitigation; growth inducing impacts; and effects found to be less than significant.

6.1 Irreversible Environmental Changes

According to CEQA Guidelines Sections 15126(c) and 15126.2(c), an EIR is required to address any significant irreversible environmental changes that would occur should the proposed Project be implemented:

Uses of nonrenewable resources during the initial and continued phases of the project may be irreversible since a large commitment of such resources makes removal or nonuse thereafter likely. Primary impacts and, particularly, secondary impacts (such as highway improvement which provides access to a previously inaccessible area) generally commit future generations to similar uses. Also, irreversible damage can result from environmental accidents associated with the Project. Irretrievable commitments of resources should be evaluated to assure that such current consumption is justified.

The Project would necessarily consume limited, slowly renewable and non-renewable resources. This consumption would occur during the construction phase of the Project and would continue throughout its operational lifetime. Project development would require a commitment of resources that would include: (1) building materials, (2) fuel and operational materials/resources, and (3) the transportation of goods and people to and from the Project Site. Project construction would require the consumption of resources that are non-replenishable or may renew so slowly as to be considered non-renewable. These resources would include the following construction supplies: certain types of lumber and other forest products; aggregate materials used in concrete and asphalt such as sand, gravel and stone; metals such as steel, copper, and lead; petrochemical construction materials such as plastics; and water. Furthermore, nonrenewable fossil fuels such as gasoline and diesel would also be consumed in the use of construction vehicles and equipment, as well as the transportation of goods and people to and from the Project Site. As stated in Section 4.3, Energy, of this Draft EIR, Project construction would utilize energy for necessary on-site activities and to transport construction materials, excavated fill, and demolition debris to and from the Project Site. Project construction would implement idling restrictions and the use of cleaner, energy-efficient equipment would result in less fuel combustion and energy consumption and thus reduce the Project’s construction-related energy use.
Project operation would continue to expend nonrenewable resources that are currently consumed within the City. These include energy resources such as electricity and natural gas, petroleum-based fuels required for vehicle-trips, fossil fuels, and water. Fossil fuels would represent the primary energy source associated with both construction and ongoing operation of the Project, and the existing, finite supplies of these natural resources would be incrementally reduced. As discussed in Section 4.3, Energy, of this Draft EIR, buildout of the Project would result in an increase in on-site demand for electricity, natural gas, and transportation energy (e.g., petroleum-based fuels related to vehicular travel). The Project would be built in compliance with 2019 Title 24 standards and applicable CALGreen Code requirements. The Project would implement PV solar in compliance with the City’s Green Building Program which, at a minimum requires 1 kW of solar for every 10,000 square feet, resulting in approximately 87 kW of solar PV power. The Project would also include building features that would include such items as energy-efficient appliances, water efficient plumbing fixtures and fittings, and water-efficient landscaping. Additionally, in accordance with Chapter 17.320.035 of the Culver City Municipal Code (CCMC), the City requires at least 20 percent EV capable parking spaces, 10 percent EV-ready parking spaces, and 10 percent EV charging stations for both new residential and retail developments. The Project would be required to and would provide a minimum of 132 EV capable spaces, 66 EV-ready spaces, and 66 spaces that would have full EV chargers and stations. Therefore, while the Project would result in a net increase in energy demand, the Project would be consistent with energy efficiency policies from the City, region, and State, and would also incorporate its own energy conservation measures to reduce energy usage.

Furthermore, the Project would not affect access to existing resources, nor interfere with the production or delivery of such resources. The Project Site is currently developed and contains no known energy resources that would be precluded from future use through Project implementation. Based on the above, the Project’s irreversible changes to the environment related to the consumption of nonrenewable resources would not be significant.

6.2 Significant Unavoidable Impacts

CEQA Guidelines Section 15126.2(b) requires that an EIR describe significant environmental impacts that cannot be avoided, including those effects that can be mitigated but not reduced to a less-than-significant level. As determined throughout Chapter 4, Environmental Analysis, of this Draft EIR, the Project’s significant impacts identified for construction-related air quality and noise, archaeological and paleontological resources, and transportation, are all addressed through mitigation measures that reduce impacts to less than significant levels. Accordingly, no impacts associated with the Project would be significant and unavoidable.

6.3 Growth-Inducing Impacts

CEQA Guidelines Section 15126.2(d) requires an EIR to discuss the ways a proposed project could foster economic or population growth or the construction of additional housing, directly or indirectly, in the surrounding environment. Growth-inducing impacts include the removal of obstacles to population growth (e.g., the expansion of a wastewater treatment plant allowing more development in a service area) and the development and construction of new service facilities that
could significantly affect the environment individually or cumulatively. In addition, pursuant to CEQA, growth must not be assumed as beneficial, detrimental, or of little significance to the environment.

The Project is located on land developed with commercial uses in a highly urbanized area that is well served by existing infrastructure. The Project would demolish the existing uses (35,011 square feet [sf]) on the Project Site and develop 230 residential units and 66,500 square feet (sf) of commercial space (totaling 311,109 sf), resulting in an increase of 276,098 sf in developed floor area on the Project Site. As discussed in Section 4.9, Population and Housing, of this Draft EIR, the Project would result in 529 new residents and 112 new employees and its contribution to population, housing, and employment compared to the growth projections for the City in SCAG’s Regional Housing Needs Assessment (RHNA) and the 2020-2045 RTP/SCS for both the Project’s fully operational year (2024) and the 2020-2045 RTP/SCS horizon year (2045), would not induce unplanned substantial population growth in the area directly through new housing and employment. The Project’s residential development would represent the City’s share of the RHNA approved by SCAG for the period through 2021 and 2029. Therefore, the Project would not generate growth beyond the range of development anticipated within the established SCAG regional forecast for the City. Therefore, the Project would not increase or induce residential density growth not otherwise anticipated.

The Project would develop residential and commercial uses within a SCAG-designated High Quality Transit Area (HQTA), located in proximity to existing public transit, including proximity to the Culver City Transit Center (approximately 0.8 miles south), a municipal rapid bus line, and other bus lines along Sepulveda Boulevard and Jefferson Boulevard. Therefore, the Project would concentrate employment growth in an area well-served by regional and local bus lines. As such, the Project would be consistent with SCAG’s 2020-2045 RTP/SCS policies for the concentration of growth in proximity to transit.

The Project would link with and tie into existing infrastructure in the Project area. As described in the Initial Study, new infrastructure for public service and utility systems that would be required, such as service connections to local water and sewer network and electricity and natural gas utilities would be sized to serve only the Project’s needs. As the Project would represent infill development and growth within the range of development anticipated in regional and local plans, and as the Project Site is well served by existing infrastructure, it would not remove obstacles to growth or induce unplanned growth beyond that associated with the Project that would require development and construction of new service facilities that would significantly affect the environment individually or cumulatively.

Therefore, the Project would not spur unplanned growth and would not eliminate impediments to growth. Consequently, the Project would not foster growth inducing impacts.
6.4 Potential Secondary Effects Related to Project Mitigation Measures

CEQA Guidelines Section 15126.4(a)(1)(D) requires that if a mitigation measure proposed to address the significant effects of the Project would cause one or more significant effects in addition to those caused by the Project, the effects of the mitigation measure shall be discussed but in less detail than the significant effects of the Project. Accordingly, the mitigation measures proposed to address significant Project impacts were evaluated to determine if significant secondary impacts associated with their implementation would occur. The following provides a discussion of the subject areas in which mitigation measures are required, as well as any potential secondary significant effects that could occur as a result of their implementation. For the reasons stated below, implementation of the Project’s mitigation measures would not result in significant secondary impacts.

6.4.1 Air Quality

Mitigation Measure AIR-1 would reduce NOx, PM10, and PM2.5 emissions associated with construction of the Project to below regulatory thresholds through implementing cleaner, more efficient construction equipment, increasing watering to four times per day during site preparation and grading phases, and by limiting the number of haul and vendor trucks that can access the Project Site on a given day. Additionally, Mitigation Measure AIR-1 would reduce DPM emissions and cancer risk for both residential and school receptors through implementing cleaner, more efficient construction equipment.

Mitigation Measure AIR-2 requires construction equipment, including concrete/industrial saws, cranes, forklifts, plate compactors, pumps, welders, and cement and mortar mixers to be electric or non-diesel fueled. Mitigation Measure AIR-2 would reduce cancer risk to below regulatory thresholds for both residential and school receptors.

These mitigation measures for air quality would implement emissions control strategies that would reduce impacts to less-than-significant levels. As these mitigation measures are control strategies for different construction equipment that the Applicant would use or install, no further impacts would occur with their implementation. Therefore, these mitigation measures for air quality would not result in significant secondary impacts on the environment.

6.4.2 Cultural Resources – Archaeological Resources

Mitigation Measures ARCH-1 through ARCH-4 establish protections for archaeological resources and tribal cultural resources through monitoring plans to identify such resources should they be uncovered during construction at the Project Site. These measures also include treatment and reporting of resources should they be encountered. The mitigation measures ensure that resources would be treated consistent with CEQA Guidelines and regulatory provisions for the protection of these resources. The actions required for monitoring and treatment of resources if they are encountered would not require additional disturbance on the Project Site or cause changes in the physical environment that would result in significant secondary impacts on the environment.
6.4.3 Geology and Soils – Paleontological Resources

Mitigation Measures GEO-1 through GEO-4 establish protections for paleontological resources through identification, treatment, and preservation of such resources should they be discovered on the Project Site. These measures include treatment and reporting of resources should they be encountered. The mitigation measures ensure that resources would be treated consistent with CEQA Guidelines and regulatory provisions for the protection of these resources. Similar to the mitigation of archaeological resources described above, the activities involved with monitoring, treatment, and reporting would not require additional disturbance on the Project Site or cause changes in the physical environment that would result in secondary impacts on the environment.

6.4.4 Noise

Implementation of Mitigation Measure NOISE-1 would reduce construction noise through provision of a temporary 15-foot-tall construction fence equipped with noise blankets. The construction fence would be temporary, but would result in impacts on aesthetics, which would be secondary and also temporary in nature. Once construction is completed, the construction fence would be removed. As such, Mitigation Measure NOISE-1 would not result in significant secondary impacts. Implementation of Mitigation Measure NOISE-2 requires that construction equipment be equipped with noise muffler systems that would achieve specific reductions in noise compared to the same equipment without an installed muffler system. Mitigation Measure NOISE-2 would be a control strategy for construction equipment that the Applicant would use or install, thus no further impacts would occur with this implementation. Therefore, these mitigation measures for construction noise would not result in secondary impacts on the environment.

6.4.5 Transportation

Mitigation Measure TRAF-1 requires the implementation of a Transportation Demand Management (TDM) Program to reduce vehicle miles traveled (VMT) impacts from office uses through implementation of strategies to encourage the use of alternative forms of transportation, and implements parking pricing for off-street parking locations for Project office employees. The implementation of the TDM Program under Mitigation Measure TRAF-1 would only apply to the Project Site’s employees and would not result in any physical improvements. This mitigation measure would not result in secondary impacts on the environment.

6.5 Effects Found Not to Be Significant in the Initial Study

CEQA Guidelines Section 15128 states that an EIR shall contain a brief statement indicating reasons that various possible significant effects of a Project were determined not to be significant and were not discussed in detail in the Draft EIR. The Initial Study, provided in Appendix A-2 of the Draft EIR, supports findings that the Project would result in less than significant impacts related to Aesthetics; Agriculture and Forestry Resources; Air Quality (odors); Biological Resources; Cultural Resources (human remains); Geology and Soils (all subtopics except for paleontological resources); Hazards and Hazardous Materials (routine transport, proximity to airports/airstrips, emergency response, and wildfires); Hydrology and Water Quality; Land Use and Planning
(physical division of an established community); Mineral Resources; Noise (airport noise), Population and Housing (displacement); Public Services (schools, parks, and other public facilities); Recreation; Utilities and Service Systems; and Wildfire. As such, the Initial Study concluded that these issues would not be evaluated further in the Draft EIR in accordance with CEQA Guidelines Section 15063(c)(3)(A). For further discussion of these issues and more detailed evaluation of potential impacts found not to be significant refer to the Initial Study provided in Appendix A-2 of this Draft EIR.
CHAPTER 7

References

Project Description

City of Culver City Zoning Code, Title 17, Sections 17.560, Comprehensive Plans,
http://library.amlegal.com/nxt/gateway.dll/California/culver/title17zoningcode/article5land
useanddevelopmentpermitproce/chapter17560comprehensiveplans?f=templates$fn=default.

City of Culver City, Culver City Municipal Code (CCMC), Section 17.300.025, Screening,

Environmental Setting

Provided as Appendix A of the Transportation Study, which is provided in Appendix J of
this Draft EIR.

4.1 Air Quality

42 U.S.C. §§ 7502(c)(5), 7503; Clean Air Act (CAA) §§ 172(c)(5), 173.

42 U.S.C. §§ 7511a(e), 7511a(f); Clean Air Act (CAA) §§ 182(e), 182(f).

California Air Resources Board (CARB), AB 2588 Air Toxics “Hot Spots”,

California Air Resources Board (CARB), Air Quality Standards and Area Designations,
https://ww2.arb.ca.gov/our-work/programs/state-and-federal-area-designations/state-area-

California Air Resources Board (CARB), California Ambient Air Quality Standards,
October 1, 2020.
California Air Resources Board (CARB), CARB Identified Toxic Air Contaminants,

California Air Resources Board (CARB), Carbon Monoxide & Health,

California Air Resources Board (CARB), EMFAC2017 Web Database (v1.0.2),

California Air Resources Board (CARB), Final Regulation Order, Amendments to the California
Diesel Fuel Regulations, Amend Section 2281, Title 13, California Code of Regulations

California Air Resources Board (CARB), Inhalable Particulate Matter and Health (PM2.5 and
January 2021.

California Air Resources Board (CARB), Lead & Health, https://ww2.arb.ca.gov/resources/lead-

California Air Resources Board (CARB), News Release - CARB establishes next generation of
emission controls needed to improve state’s air quality, March 23, 2017,
https://ww2.arb.ca.gov/news/carb-establishes-next-generation-emission-controls-needed-

California Air Resources Board (CARB), Nitrogen Dioxide & Health,

California Air Resources Board (CARB), Overview of the Air Toxics “Hot Spots” Information
and Assessment Act, https://ww2.arb.ca.gov/overview-air-toxics-hot-spots-information-

California Air Resources Board (CARB), Overview: Diesel Exhaust & Health,
https://ww2.arb.ca.gov/resources/overview-diesel-exhaust-and-health. Accessed October 1,
2020.

California Air Resources Board (CARB), Ozone & Health, Health Effects of Ozone,

California Air Resources Board (CARB), Sulfate & Health,

California Air Resources Board (CARB), The California Almanac of Emissions and Air Quality

California Air Resources Board (CARB), Vinyl Chloride & Health,

City of Culver City, Culver City General Plan, Circulation Element, 1995.

City of Culver City, Municipal Code Chapter 15.02.1100, Green Building Program and Requirements.

Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.

South Coast Air Quality Management District (SCAQMD), Air Quality Significance Thresholds, Chapter 12 (Assessing Consistency with Applicable Regional Plans), pp. iii, 6-1, and 12-1.

South Coast Air Quality Management District (SCAQMD), CEQA Air Quality Handbook, November 1993, Chapter 6 (Determining the Air Quality Significance of a Project), Chapter 10 (Assessing Toxic Air Pollutants).

South Coast Air Quality Management District (SCAQMD), Final – Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds, October 2006.

South Coast Air Quality Management District (SCAQMD), Final Localized Significance Threshold Methodology, June 2003, Revised July 2008.

4.2.1 Cultural Resources – Historical Resources

36 Code of Federal Regulations (CFR) Section 60.2.

California Code of Regulations (CCR), CEQA Guidelines, Title 14, Section 15064.5(a).

California Code of Regulations (CCR), Title 14, Chapter 11.5, Section 4852(c).

Public Resources Code, Section 5024.1(a).

Public Resources Code, Section 5024.1(b).

Public Resources Code, Section 5024.1(c).

Public Resources Code, Section 5024.1(d).

Public Resources Code, Section 5024.1(e).

Public Resources Code, Section 21084.1.

4.2.2 Cultural Resources – Archeological Resources

Kirkman, George W., The Kirkman-Harriman Pictorial and Historical Map of Los Angeles County; 1860 A.D.–1937 A.D. Copyright 1938.

4.3 Energy

4.4 Geology and Soils – Paleontological Resources

Stewart, Joe D. and Fatima Clark, Paleontological Resources Assessment Report for the 11111 Jefferson Boulevard Mixed-Use Project, Culver City, California, October 2020. Provided in Appendix E of this Draft EIR.

4.5 Greenhouse Gas Emissions

California Air Pollution Control Officers Association (CAPCOA), CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, 2008.

California Air Resources Board (CARB), First Update, May 2014, page 32.

California Air Resources Board (CARB), Low Carbon Fuel Standard and Alternative Diesel Fuels Regulation 2019.

California Air Resources Board (CARB), Southern California Association of Governments’ (SCAG) 2016 Sustainable Communities Strategy (SCS) ARB Acceptance of GHG Quantification Determination, June 2016.

California Climate Change Center, Our Changing Climate: Assessing the Risks to California, 2006.

California Environmental Protection Agency, Climate Action Team, Climate Action Team Report to Governor Schwarzenegger and the Legislature, 2006.

California Legislative Information, Senate Bill 100 California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases.

City of Culver City, Municipal Code Chapter 15.02.1100, Green Building Program and Requirements.

City of Culver City, Zoning Code, Title 17, Sections 17.560, Comprehensive Plans.

Fehr & Peers, Memorandum of Understanding for Transportation Study, October 21, 2020. Provided as Appendix A of the Transportation Study, which is provided in Appendix J of this Draft EIR.

Office of the Governor Arnold Schwarzenegger, Executive Order S-01-07, 2007

OPR, Technical Advisory – CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA) Review.

Parmesan, C., Ecological and Evolutionary Response to Recent Climate Change, first published on August 24, 2006.

4.6 Hazards and Hazardous Materials

Stantec, Phase I Environmental Site Assessment, March 29, 2019. Provided in Appendix G-1 of this Draft EIR.

Stantec, Phase II Environmental Site Assessment, September 14, 2019. Provided in Appendix G-2 of this Draft EIR.

Stantec, Vapor Intrusion Human Health Risk Assessment Report. 5350/5380 Sepulveda Boulevard and 11111 Jefferson Avenue, Culver City, CA. November 25, 2020. Provided in Appendix G-3 of this Draft EIR.

4.7 Land Use and Planning

California Government Code Section 65915(j)(1).

City of Culver City, Municipal Code (CCMC) Section 17.220.010B.

City of Culver City, Municipal Code (CCMC) Section 17.220.015.

City of Culver City, Municipal Code (CCMC) Section 17.220.020.

City of Culver City, Municipal Code (CCMC) Section 17.300.025.

4.8 Noise

California Department of Transportation (Caltrans), Technical Noise Supplement (TeNS), September 2013, Section 2.2.1, Section 2.2.1.1, Section 2.1.4.1., Section 2.1.4.2, Section 2.1.4.3.

Federal Transit Administration (FTA), Transit Noise and Vibration Impact Assessment Manual, 2018, Sections 5.1, 6.1, 6.2, 6.3 and Table 7-4.

Federal Transit Administration (FTA), Transit Noise and Vibration Impact Assessment, May 2006, Section 7.1.3, 7.2.1, and Table 6-1.

4.9 Population and Housing

4.10.1 Public Services – Fire Protection

Culver City Fire Department (CCFD), Fire Chief Jeremy DeBie, correspondence dated December 22, 2020. Provided in Appendix I-1 of this Draft EIR.

4.10.2 Public Services – Police Protection

Culver City Police Department (CCPD), Correspondence from Assistant Chief of Police Jason Sims, September 23, 2020. Provided in Appendix I-2 of this Draft EIR.

4.11 Transportation

California Air Pollution Control Officers Association (CAPCOA), Quantifying Greenhouse Gas Mitigation Measures, August 2010.

4.12 Tribal Cultural Resources

Governor’s Office of Planning and Research, Tribal Consultation Guidelines: Supplement to General Plan Guidelines, 2005.

Kirkman, George W., The Kirkman-Harriman Pictorial and Historical Map of Los Angeles County; 1860 A.D.–1937 A.D. Copyright 1938.

CHAPTER 8
List of EIR Preparers and Organizations and Persons Contacted

8.1 Lead Agency
Culver City Current Planning Division
9770 Culver Boulevard
Culver City, CA 90232-0507
• Michael Allen, Current Planning Manager
• Lisa Edwards, Contract Planner

8.2 Project Applicant and Applicant Team
Jefferson Park LLC
151 North Franklin Street, Suite 300
Chicago, IL 60606
• Jaqui Braver
• Kyle Faulkner
• Rupesh Bhakta

8.3 Environmental Impact Report Preparation
ESA
626 Wilshire Boulevard, Suite 1100
Los Angeles, CA 90017
• Jay Ziff, Director – Project Director
• Jessie Fan, Managing Planner – Project Manager
• Sylvia Palomera, Associate – Deputy Project Manager
• Luci Hise-Fisher, Principal Associate
• Jacqueline De La Rocha, Senior Associate
• Anitra Rice, Senior Managing Associate
• Tony Chung, Principal Associate
• Olivia Chan, Managing Associate
• Heather Dubois, Technical Associate
• Elbert Hsiung, Senior Associate
• Tim Witwer, Senior Associate
• Monica Strauss, Vice President
• Margarita Jarabek, Ph.D., Director
• Kyle Garcia, Senior Managing Associate
• Fatima Clark, Senior Associate
• Gabrielle Harlan, Senior Associate
• Alison Garcia Kellar, Senior Associate
• Denise Kaneshiro, Senior Graphics Manager
• Jaclyn Anderson, Senior Associate
• Stephan Geissler, Managing Associate
• Gary Gick, Senior Word Processor
• Aaron Guzman, Word Processor

Architect
AO Architects
500 South Figueroa Street
Los Angeles, CA 90071
 • Bryan Tessner, Project Director

Transportation and Traffic
Fehr & Peers
600 Wilshire Boulevard, Suite 1050
Los Angeles, CA 90017
 • Tom Gaul, Principal
 • Ryan Liu, Senior Transportation Engineer

Geotechnical Engineer
GeoDesign, Inc.
9450 SW Commerce Circle, Suite 300
Wilsonville, OR 97070
 • Shawn M. Dimke, P.E., Principal Engineer
 • Brett A. Shipton, P.E., G.E. (Oregon), Principal Engineer
Civil Engineering and Hydrology

Kimley-Horn and Associates, Inc.
660 South Figueroa Street, Suite 2050
Los Angeles, CA 90017
- Chris Young, P.E., ENV SP, QSD

Hazards and Hazardous Materials

Stantec Consulting Services Inc.
25864-F Business Center Drive
Redlands, CA 92374
Stantec Consulting Services Inc.
735 East Carnegie Drive, Suite 280
San Bernardino, California 92408
- Joshua Sargent, Geologic Staff
- Alicia Jansen, Associate Scientist
- Kyle Emerson, Managing Principal Geologist, C.E.G. 1271

8.4 Agencies Consulted

Culver City Police Department
4040 Duquesne Avenue
Culver City, CA 90232
- Jason Sims, Assistant Chief of Police

Culver City Fire Department
9600 Culver Boulevard
Culver City, CA 90232
- Fire Chief Powell
CHAPTER 9

Standard Terms, Acronyms, and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>All Appropriate Inquiry</td>
</tr>
<tr>
<td>AAM</td>
<td>American Alliance of Museums</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ACBM</td>
<td>Asbestos-Containing Building Materials</td>
</tr>
<tr>
<td>ACM</td>
<td>Asbestos-Containing Material</td>
</tr>
<tr>
<td>AHERA</td>
<td>Asbestos Hazard Emergency Response Act</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standard Institute</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan</td>
</tr>
<tr>
<td>AR4</td>
<td>AR4 Climate Change 2007: Synthesis Report</td>
</tr>
<tr>
<td>ARB</td>
<td>Air Resources Board</td>
</tr>
<tr>
<td>ASF</td>
<td>Age Sensitivity Factor</td>
</tr>
<tr>
<td>AST</td>
<td>Aboveground Storage Tank</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ATCM</td>
<td>Airborne Toxic Control Measure</td>
</tr>
<tr>
<td>ATSP</td>
<td>Advanced Technology Support Program</td>
</tr>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>BAU</td>
<td>Business-As-Usual</td>
</tr>
<tr>
<td>BERD</td>
<td>Built Environment Resource Directory</td>
</tr>
<tr>
<td>BPMP</td>
<td>Bicycle and Pedestrian Master Plan</td>
</tr>
<tr>
<td>BTU</td>
<td>British thermal unit</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CAFE</td>
<td>Corporate Average Fuel Economy</td>
</tr>
<tr>
<td>Cal/OSHA</td>
<td>California Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>CalEPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>CalGEM</td>
<td>California Geological Energy Management Division</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium Oxide</td>
</tr>
<tr>
<td>CAPCOA</td>
<td>California Air Pollution Control Officers Association</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCAA</td>
<td>California Clean Air Act</td>
</tr>
<tr>
<td>CCFD</td>
<td>Culver City Fire Department</td>
</tr>
<tr>
<td>CCMC</td>
<td>Culver City Municipal Code</td>
</tr>
<tr>
<td>CCPD</td>
<td>Culver City Police Department</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed-Circuit Television</td>
</tr>
<tr>
<td>CDO</td>
<td>Cease and Desist Orders</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEC-A15</td>
<td>California Retail Fuel Annual Report</td>
</tr>
<tr>
<td>CEHD</td>
<td>Community, Economic & Human Development</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CERS</td>
<td>California Environmental Reporting System</td>
</tr>
<tr>
<td>CEUS</td>
<td>Commercial End Use Survey</td>
</tr>
<tr>
<td>CFC</td>
<td>California Fire Code</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CG</td>
<td>Commercial General</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CHR</td>
<td>California Historical Resource</td>
</tr>
<tr>
<td>CMP</td>
<td>Congestion Management Plan</td>
</tr>
<tr>
<td>CNEL</td>
<td>Community Noise Equivalent Level</td>
</tr>
<tr>
<td>CNRA</td>
<td>California Natural Resources Agency</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>COG</td>
<td>Council of Governments</td>
</tr>
<tr>
<td>CPA</td>
<td>Clean Power Alliance</td>
</tr>
<tr>
<td>CPT</td>
<td>Cone Penetrometer Test</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utility Commission</td>
</tr>
<tr>
<td>CR</td>
<td>California Register</td>
</tr>
<tr>
<td>CRA</td>
<td>Community Redevelopment Agency</td>
</tr>
<tr>
<td>CRECs</td>
<td>Controlled Recognized Environmental Conditions</td>
</tr>
<tr>
<td>CRT</td>
<td>Crisis Response Team</td>
</tr>
<tr>
<td>CUPA</td>
<td>Certified Unified Program Agency</td>
</tr>
<tr>
<td>CVC</td>
<td>California Vehicle Code</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DNL</td>
<td>Day-Night Average Sound Level</td>
</tr>
<tr>
<td>DOSH</td>
<td>Division of Occupational Safety and Health</td>
</tr>
<tr>
<td>DPM</td>
<td>Diesel Particulate Matter</td>
</tr>
<tr>
<td>DPR</td>
<td>Department of Parks and Recreation</td>
</tr>
<tr>
<td>DPW</td>
<td>Los Angeles Department of Public Works</td>
</tr>
<tr>
<td>DTSC</td>
<td>Department of Toxic Substances Control</td>
</tr>
<tr>
<td>ECF</td>
<td>Exceptional Children’s Foundation</td>
</tr>
<tr>
<td>ECHO</td>
<td>Enforcement and Compliance History Online</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resources, Inc.</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EISA</td>
<td>Energy Independence and Security Act</td>
</tr>
<tr>
<td>EMFAC</td>
<td>Emission Factors</td>
</tr>
<tr>
<td>EMFAC2017</td>
<td>Emission Factors 2017</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Services</td>
</tr>
<tr>
<td>ERF</td>
<td>Effective Response Force</td>
</tr>
<tr>
<td>ERT</td>
<td>Emergency Response Team</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESLs</td>
<td>Environmental Screening Levels</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>FAR</td>
<td>Floor Area Ratio</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>FCMP</td>
<td>Final Construction Management Plan</td>
</tr>
<tr>
<td>FDC</td>
<td>Fire Department Connection</td>
</tr>
<tr>
<td>FED</td>
<td>Functional Equivalent Document</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FINDS</td>
<td>Facility Index System/Facility Registry System</td>
</tr>
<tr>
<td>FMZs</td>
<td>Fuel Management Zones</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>GRRPs</td>
<td>Groundwater Replenishment Reuse Projects</td>
</tr>
<tr>
<td>GSW</td>
<td>Golden State Water Company</td>
</tr>
<tr>
<td>GVWR</td>
<td>Gross Vehicle Weight Rating</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>HAPs</td>
<td>Total Hazardous Air Pollutants</td>
</tr>
<tr>
<td>HAZNET</td>
<td>Hazardous Waste Information System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>HCD</td>
<td>California Department of Housing and Community Development</td>
</tr>
<tr>
<td>HERO</td>
<td>Human and Ecological Risk Office</td>
</tr>
<tr>
<td>HFCs</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>HHRA</td>
<td>Human Health Risk Assessment</td>
</tr>
<tr>
<td>HMS</td>
<td>Hazardous Materials System</td>
</tr>
<tr>
<td>HQTA</td>
<td>High-Quality Transit Area</td>
</tr>
<tr>
<td>HRA</td>
<td>Health Risk Assessment</td>
</tr>
<tr>
<td>HREC</td>
<td>Historical Recognized Environmental Conditions</td>
</tr>
<tr>
<td>HSC</td>
<td>California Health and Safety Code</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating/Ventilation/Air Conditioning</td>
</tr>
<tr>
<td>HWCL</td>
<td>Hazardous Waste Control Law</td>
</tr>
<tr>
<td>I-10</td>
<td>Interstate 10</td>
</tr>
<tr>
<td>I-405</td>
<td>Interstate 405</td>
</tr>
<tr>
<td>ICT</td>
<td>Innovative Clean Transit Program</td>
</tr>
<tr>
<td>IIPP</td>
<td>Injury and Illness Prevention Program</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LACM</td>
<td>Los Angeles County Museum of Natural History</td>
</tr>
<tr>
<td>LADOT</td>
<td>Los Angeles Department of Transportation</td>
</tr>
<tr>
<td>LASD</td>
<td>Los Angeles Sheriff's Department</td>
</tr>
<tr>
<td>LAX</td>
<td>Los Angeles International Airport</td>
</tr>
<tr>
<td>LBP</td>
<td>Lead-Based Paint</td>
</tr>
<tr>
<td>LCFS</td>
<td>Low-Carbon Fuel Standard</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>LQGs</td>
<td>Large-Quantity Generators</td>
</tr>
<tr>
<td>LST</td>
<td>Localized Significance Threshold</td>
</tr>
<tr>
<td>LUST</td>
<td>Leaking Underground Storage Tank</td>
</tr>
<tr>
<td>MATES</td>
<td>Multiple Air Toxics Exposure Study</td>
</tr>
<tr>
<td>MET</td>
<td>Mental Health Evaluation Team</td>
</tr>
<tr>
<td>MIASLs</td>
<td>Modified Indoor Air Screening Levels</td>
</tr>
<tr>
<td>MMRP</td>
<td>Mitigation, Monitoring, and Reporting Program</td>
</tr>
<tr>
<td>MND</td>
<td>Mitigated Negative Declaration</td>
</tr>
<tr>
<td>MOU</td>
<td>Memoranda of Understanding</td>
</tr>
<tr>
<td>MPO</td>
<td>Metropolitan Planning Organization</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MSATs</td>
<td>Mobile Source Air Toxics</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatts</td>
</tr>
<tr>
<td>N2O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NDIR</td>
<td>Non-Dispersive Infrared Photometry</td>
</tr>
<tr>
<td>NF₃</td>
<td>Nitrogen Trifluoride</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>NOA</td>
<td>Notice of Availability</td>
</tr>
<tr>
<td>NOC</td>
<td>Notice of Completion</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>OEHHA</td>
<td>Office of Environmental Health Hazard Assessment</td>
</tr>
<tr>
<td>OEM</td>
<td>County of Los Angeles Office of Emergency Management</td>
</tr>
<tr>
<td>OES</td>
<td>Office of Emergency Services</td>
</tr>
<tr>
<td>OHP</td>
<td>Office of Historic Preservation</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administrations</td>
</tr>
<tr>
<td>OPR</td>
<td>California Governor’s Office of Planning and Research</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PCE</td>
<td>Passenger Car Equivalent</td>
</tr>
<tr>
<td>PD</td>
<td>Planned Development</td>
</tr>
<tr>
<td>PDFs</td>
<td>project Design Features</td>
</tr>
<tr>
<td>PFCs</td>
<td>Perfluorocarbons</td>
</tr>
<tr>
<td>PIP</td>
<td>Partnership in Policing</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Respirable Particulate Matter</td>
</tr>
<tr>
<td>PM₂·₅</td>
<td>Fine Particulate Matter</td>
</tr>
<tr>
<td>POM</td>
<td>Polycyclic Organic Matter</td>
</tr>
<tr>
<td>PPV</td>
<td>Peak Particle Velocity</td>
</tr>
<tr>
<td>PRC</td>
<td>Public Resources Code</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>R/AC</td>
<td>Refrigeration and Air Conditioning</td>
</tr>
<tr>
<td>RCNM</td>
<td>Roadway Construction Noise Model</td>
</tr>
<tr>
<td>RCP</td>
<td>Reinforced Concrete Pipe</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resources Conservation and Recovery Act</td>
</tr>
<tr>
<td>RECs</td>
<td>Recognized Environmental Concerns</td>
</tr>
<tr>
<td>RFS</td>
<td>Renewable Fuel Standard</td>
</tr>
<tr>
<td>RHNA</td>
<td>Regional Housing Needs Allocation</td>
</tr>
<tr>
<td>RME</td>
<td>Reasonable Maximum Exposure</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable Portfolio Standard</td>
</tr>
<tr>
<td>RTP/SCS</td>
<td>Regional Transportation Plan/Sustainable Communities Strategy</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SAFE</td>
<td>Safer Affordable Fuel-Efficient</td>
</tr>
<tr>
<td>SAR</td>
<td>Second Assessment Report</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SCAG</td>
<td>Southern California Association of Governments</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound Exposure Level</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>Sulfur Hexafluoride</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SLF</td>
<td>Sacred Lands File</td>
</tr>
<tr>
<td>SLM</td>
<td>Sound Level Meters</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulfur Dioxide</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>Sulfates</td>
</tr>
<tr>
<td>SOON</td>
<td>Surplus Off-Road Option for NO$_x$</td>
</tr>
<tr>
<td>SQGs</td>
<td>Small-Quantity Generators</td>
</tr>
<tr>
<td>SR-90</td>
<td>State Route 90</td>
</tr>
<tr>
<td>SRA</td>
<td>State Responsibility Area</td>
</tr>
<tr>
<td>SRTP</td>
<td>Short-Range Transit Plan</td>
</tr>
<tr>
<td>SWP</td>
<td>State Water Project</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TACs</td>
<td>Toxic Air Contaminants</td>
</tr>
<tr>
<td>TCE</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>TDM</td>
<td>Transportation Demand Management</td>
</tr>
<tr>
<td>TNM</td>
<td>Traffic Noise Model</td>
</tr>
<tr>
<td>TOD</td>
<td>Transit-Oriented District</td>
</tr>
<tr>
<td>TPH</td>
<td>Total Petroleum Hydrocarbons</td>
</tr>
<tr>
<td>TRUs</td>
<td>Transport Refrigeration Units</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Act</td>
</tr>
<tr>
<td>TSCG</td>
<td>Transportation Study Criteria and Guidelines</td>
</tr>
<tr>
<td>UFMP</td>
<td>Urban Forest Master Plan</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USDOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VHFHSZ</td>
<td>Very High Fire Hazard Severity Zone</td>
</tr>
<tr>
<td>VIHHRA</td>
<td>Vapor Intrusion Human Health Risk Assessment</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle Miles Traveled</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>ZE</td>
<td>Zero Emission</td>
</tr>
<tr>
<td>ZEV</td>
<td>Zero-Emissions Vehicle</td>
</tr>
</tbody>
</table>