Ferrel, Mimi

From:	Nicole Levin nicole.levin@sierraclub.org
Sent:	Friday, October 15, 2021 5:23 PM
To:	Public Comment at Culver City
Subject:	Written Comment for Monday's Meeting
Attachments:	HEALTH STUDIES AND REPORTS THAT SUPPORT CULVER CITY'S MOTION TO PHASE
	OUT OIL DRILLING.pdf

To whom it may concern,
I am writing in support of Culver City's motion to phase out existing oil wells in Culver City (item PH-1). Our members in Culver City have experienced health effects from living near oil and gas drilling ranging from asthma to cancer. We believe that it is essential that Culver City phases out its portion of the Inglewood Oil Field so that the rest of LA County can do the same.

Attached is a list of studies that support Culver City's motion to phase out oil drilling.
Best,
Nicole Levin
--

Nicole Levin (Pronouns: she/her/hers)
Campaign Representative
Beyond Dirty Fuels Campaign
nicole.levin@sierraclub.org
707-688-9275 (C)

HEALTH STUDIES AND REPORTS THAT SUPPORT CULVER CITY'S MOTION TO PHASE

 OUT OIL DRILLING
HEALTH IMPACTS

- A substantial body of national and California-based scientific research documents deleterious health impacts resulting from close proximity to oil drilling operations, including asthma, headaches, rashes, cardiovascular disease, nausea, nosebleeds and reproductive harm;
- Upstream oil and gas production and ambient air pollution in California by Stanford (2021)
- Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006-2015 Births (News article) by University of California Environmental Health Perspectives (2020)
- Oil and gas production and spontaneous preterm birth in the San Joaquin Valley, CA (News article)by Stanford University (2020)
- Oil and Gas Extraction in Los Angeles and Public Health Evidence by Healthcare Professionals (2019)
- Human Health and Oil and Gas Development in the City of Los Angeles by Physicians, Scientists, and Engineers (PSE) for Healthy Energy (2019)
- Public Health and Safety Risks of Oil and Gas Drilling in Los Angeles by LA County Department of Public Health (February 2018)
- Danger Next Door: The Top 12 Air Toxics Used for Neighborhood Oil Drilling in Los Angeles by Center for Biological Diversity (2017)
- Air Pollution Is Slashing off the Lives of Billions (Guardian, 2021)
- The Public Health Dimensions of Oil and Gas Development in California by PSE Healthy Energy (2017)
- New scientific research published in 2020 documents harmful reproductive impacts from two studies conducted in California, specifically, evidence of low birth weight infants (UC Berkeley) and pre-term births (Stanford University);
- New scientific research published in June 2021 documents significant decreased lung and pulmonary function from living proximate to both active and inactive drill sites in South Los Angeles, specifically the Jefferson and Allenco drill sites (Department of Preventive Medicine, Keck School of Medicine, USC; and Department of Urban and Environmental Policy, Occidental College);
- "In the U.S., 15% of COVID-19 mortality is specifically attributable to fossil fuel-related air pollution, showing that fossil fuel-related air pollution contributes significantly to overall U.S. air emissions." (American Lung Association, 2021)
- One recent study estimated that approximately 34,000 Californians died prematurely due to fossil fuel pollution in 2018

CLIMATE IMPACTS

- "Oil and gas facilities emit large quantities of methane, a potent climate change pollutant. Climate change already impacts the health of millions of Americans, from extreme heat, increased air pollution, worsened wildfires, and more." (American Lung Association, 2019)
- "Methane is a greenhouse gas more than 80 times more potent than carbon dioxide in the short term." (American Lung Association, 2019)
- "Oil and gas facilities also emit highly reactive pollutants called volatile organic compounds (VOCs) that can cause cancer and other harmful health impacts. VOCs also react with other pollutants to form dangerous ozone pollution." (American Lung Association, 2019)
- The dangers presented by oil drilling operations and associated well-to-wheel impacts from fossil fuels, including toxic emissions, smog-forming chemicals, odors, greenhouse gases, hazardous chemical transport, and climate impacts, cannot be treated separately, as if they exist in a vacuum.
- Continued oil extraction in the LA Basin could release climate emissions about equal to annual emissions from 19 coal plants or 16.7 million passenger vehicles
- (The estimates are based on the estimate of proved crude oil reserves -- EIA as of 12/31/2019 -- in the LA onshore basin. Proved reserves of crude oil as of December 31 of the report year are the estimated quantities of all liquids defined as crude oil, which geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from known reservoirs under existing economic and operating conditions.Source: EIA, https://www.eia.gov/dnav/pet/pet crd pres dcu RCAL a.htm)

2021 IPCC REPORT

- As California was scorched by wildfires, drought and extreme heat, the Intergovernmental Panel on Climate Change (IPCC) issued their Working Group 1 report signaling code red in addressing the climate crisis.
- Some key points:
- Climate change is widespread, intensifying and many changes are unprecedented in thousands of years of Earth history
- It's "unequivocal" that humans are warming the world - and at a rate faster than anything during at least the past 2,000 years
- The last decade's global temperatures were likely the hottest it's been on Earth in 125,000 years.
- The world already has warmed by more than a degree Celsius since the 19th century.
- The recent rate of sea level rise has nearly tripled compared with 1901-1971
- Carbon dioxide emissions in 2019 were higher than any time in at least 2 million years
- Many climate harms are long-lived, lasting for centuries to millennia because carbon dioxide is so long-lived-especially threats to oceans including ocean warming and acidification, ice sheet and glacier melting, and sea level rise
- The report highlights that we can still prevent the worst damages of the climate crisis (limiting warming to 1.5) but we must act now. We need immediate transformative change from our federal and state governments to end new fossil fuel projects, phase-out existing fossil fuel extraction and use, and speed a just transition to clean, renewable energy.
- Note: Also strong statements on the report on the need to phase-out fossil fuels from the UN Secretary General.

ENVIRONMENTAL JUSTICE IMPACTS

- 72 percent of people living near oil and gas drilling in Los Angeles County are people of color. (Table from Drilling Down)

Demographic Characteristics in Selected Areas Hosting Oil Production Facilities

LOCATION	PEOPLE OF COLOR	$\begin{gathered} 200 \% \\ \text { POVERITY } \end{gathered}$	RENTERS	$\begin{aligned} & \text { LMEUIST- } \\ & \text { CALIY } \\ & \text { ISOLMTED } \end{aligned}$	$\begin{aligned} & \text { LEss Than } \\ & \text { High } \\ & \text { school } \\ & \text { EDUCATION } \end{aligned}$
L.A. County	72.6\%	37.3\%	46.9\%	12.4\%	27.0\%
L.A. City	72.9\%	44.5\%	56.2\%	18.7\%	30.8\%
Within 1,500 ft. of an active L.A. City well	74.4\%	42.3\%	55.7\%	18.5\%	30.3\%
University Park: Allenco	87.0\%	72.6\%	90.6\%	50.0\%	42.5\%
Historic West Adams: lefferson	83.4\%	73.5\%	70.9\%	27.0\%	48.5\%
Historic West Adams: Murphy	89.7\%	60.2\%	73.4\%	21.8\%	35.5\%
Wilmington: Warren E\&P	99.7\%	53.6\%	76.6\%	42.4\%	54.3\%
Baldwin Hills: Inglewood Oil Field	78.8\%	45.2\%	34.9\%	2.0\%	30.1\%

Analysis by authors using the 2010 US Census.

- Studies make clear that Latinx, Black, Indigenous, other people of color are hardest hit by the negative environmental impacts exacerbated by climate change:
- Racial Disparities and Climate Change - PSCI; (Princeton, 2020)
- Urban Heat Management and the Legacy of Redlining. (Wilson, 2020)
- Drilling in California: Who's at Risk? by Natural Resources Defense Council (2014)

Inglewood Oil Field Specific

- Culver City includes the largest urban oil field in the country, the Inglewood Oil Field (IOF)
- The Inglewood oil field covers about 1,000 acres in Los Angeles County around Culver City, Baldwin Hills, Ladera Heights, View Park, and other neighboring communities.
- Oil was discovered in the field in 1924, and currently there are a total of about 900 new, active, or idle wells. On average, 2.5-3.1 million barrels of oil are produced each year. The Inglewood Oil Field is operated by Sentinel Peak Resources. It is the largest urban oil field in the U.S., with more than one million people living within five miles of the site.
- There is a long legacy of spills and disasters at the Inglewood Oil Field. In April 2021, a pipeline leaked 1,600 gallons of oil on the field. In a July 2021 Community Advisory Panel, oil operators alerted the public to a 60 barrel contaminated water leak after members of the public filled odor complaints. And in March 2021, oil operators alerted the public to a possible methane leak that is currently ongoing.
- On April 1, 2019, a oil spill ran down a hill, along the gutter and down into a storm drain. Investigation into this spill is currently pending.
- On November 22, 2018, Thanksgiving night, a tank containing an oil-water mixture overflowed and caused a benzene exposure estimated at 7 times the legal limit set by the EPA. Benzene is a known carcinogen and may have extended as far as 4,100 feet from the spill location. Many residents called in complaints of noxious odors to the air board hotline (800-CUT-SMOG).
- In October 2010, a local park was closed because of methane gas leaks from the field. In 2005 and 2006, major toxic releases forced residents to evacuate their homes. On December 14, 1963, the Baldwin Hills Dam breached and resulted in five deaths and \$11 million in property damage.
- Neighbors to the Inglewood Oil Field have raised concerns for years about exposure to toxic chemicals and smog-forming gases. Many suffer from heart and lung disease, leukemia, lymphoma, lung cancer, nervous system damage, birth defects, and premature death.

OTHER RELEVANT STUDIES AND REPORTS

Polling: Californian's Overwhelmingly Want Action on Oil Hazards, Just Transition by Change Research (202o)

Killer Crude: How California Produces some of the Dirtiest, Most Dangerous Oil in the World, by Center for Biological Diversity. (2021)

California Oil and Gas Waste Report: The failure to safely manage oil and gas waste by Earthworks (2021)

How limiting oil production could help California meet its climate goals by Stockholm Environment Institute (2018)

Oil Stain: How Crude Oil Undercuts California's Climate Progress by Center for Biological Diversity (2017)

Fracking and Dangerous Drilling in California Briefing Book by Center for Biological Diversity (2017)

Still in the Pits: Oil and Gas Wastewater Disposal in California - Clean Water Action (2016)

Well Stimulation in California by California Council on Science and Technology (July 2015)

The Environmental Risks and Oversight of Enhanced Oil Well Recovery in the United States by Clean Water Fund (2017)

Study of Neighborhood Air near Petroleum Sources by California Air Resources Board

The Risk of Unplugged Wells for California's Taxpayers: California Resources Corporation—A Case Study, Sierra Club (October 2020)

Orphan Wells in California, California Council on Science and Technology CCST, (January 2020)

An Oil And Gas Setback in Los Angeles Would Not Create Billions in Liability (Legal Planet, 2019)

Urban Oil and Gas Production in LA County by University of Southern California Environmental Health Centers (2019)

From:	Nicole Levin nicole.levin@sierraclub.org
Sent:	Monday, October 18, 2021 11:40 AM
To:	Fisch, Alex; Lee, Daniel; Eriksson, Goran; Vera, Albert; Imani.Mcmorrin@culvercity.org
Cc:	Baker, Heather; Public Comment at Culver City
Subject:	Re: Written Comment for Tonights Meeting
Attachments:	Culver City Group Letter .pdf

Apologies, attached is the letter.
Best,
Nicole

On Mon, Oct 18, 2021 at 11:14 AM Nicole Levin nicole.levin@sierraclub.org wrote:
Dear Mayor Fisch, Vice-Mayor Lee, and Councilmembers,

Ahead of tonight's meeting, I would like to resubmit this letter signed by many community groups in support of the motion to phase out and clean up oil wells in Culver City.

Best,

Nicole Levin

Nicole Levin (Pronouns: she/her/hers)
Campaign Representative
Beyond Dirty Fuels Campaign
nicole.levin@sierraclub.org
707-688-9275 (C)

Nicole Levin (Pronouns: she/her/hers)
Campaign Representative
Beyond Dirty Fuels Campaign
nicole.levin@sierraclub.org
707-688-9275 (C)

SIERRA CLUB

Community Health Councils

June 15, 2021

Mayor Alex Fisch
Vice-Mayor Daniel Lee
Council Member Goran Eriksson
Council Member Yasmine-Imani McMorrin
Council Member Albert Vera
9770 Culver Blvd.
Culver City, CA 90232
Re: SUPPORT for City-Initiated Zoning Code Amendment to Chapter 17.610 (Nonconforming Uses, Structures and Parcels), Section 17.610.010.D (Nonconforming Oil Use), to terminate and phase out over a five-year period (by July 28, 2026) the closure and removal of nonconforming oil and gas activities within Culver City, including the Culver City portion of the Inglewood Oil Field ("Ordinance")

Dear Mayor Fisch, Vice-Mayor Lee, and Council Members:
On behalf of the undersigned organizations, which represent tens of thousands of people living, working, and recreating in and around Culver City, we write in full support of Culver City's plan to phase out and clean up oil drilling throughout its portion of the Inglewood

Oil Field (IOF). To that end, we urge you to approve the proposed Ordinance at the public hearing on June 17.

This action is urgent and necessary because oil drilling is a proven public health and safety risk. Numerous studies link proximity to oil and gas wells to a host of health problems, including increased risk of preterm births and high-risk pregnancies, asthma and other respiratory illnesses, depression and other adverse mental health outcomes, and some types of cancer. Also, oil spills and leaks at well sites threaten local ecosystems and waterways. Over the last few years, we have seen multiple oil spills and leaks at the IOF, including one this past April that involved a release of 1,600 gallons of oil.

Culver City also has a chance to start the process of correcting a serious and long-standing environmental injustice. As a result of decades of redlining, environmental racism, and the indifference of politicians, most oil fields in the Los Angeles region -- including the IOF -are situated in close proximity to low-income Black and Latinx communities. By phasing out oil drilling in a portion of the IOF, Culver City would be taking the lead in undoing years of racist land use decisions that have directly harmed BIPOC communities in South Los Angeles.

With this proposed Ordinance and direction to the Subcommittee and staff to continue to work on "just transition" strategies, Culver City has an unprecedented opportunity to create high-quality jobs in the plugging and abandonment of active oil wells, the remediation of the well sites and their surroundings, and the repurposing of the area for beneficial reuse. We would urge that any agreements covering the "just transition" require good-quality jobs, in terms of prevailing wage compensation, benefits (health care, paid sick leave, retirement, etc.), access to union representation (including card check agreements), and training opportunities as needed. Local and targeted hire provisions are necessary to ensure equitable access by race and gender to these expanding job opportunities, and should prioritize fossil fuel workers and frontline community members. We support strong consideration of project labor agreements and community benefit agreements. We further encourage strategies to support any fossil fuel workers who may be displaced with safety nets such as healthcare, wage replacement, retraining and high-quality job placement.

At the same time, processes and mechanisms must be put in place to ensure that current and previous operators of the IOF are held responsible for the costs of well plugging and abandonment, remediation, and cleanup. Taxpayers should not have to bail out the oil industry for any pollution resulting from oil operations. Furthermore, during the phase-out period, robust monitoring and inspection protocols must be established to ensure that, while oil operations remain, strict regulatory standards are followed to minimize the chances of a catastrophic accident, spill, or exposure. For example, any agreements with the operator should include funding mechanisms to cover the costs of monitoring and potential mishaps so these potential future costs do not fall on City taxpayers.

Looking ahead, Culver City residents and neighboring communities should be engaged to help determine future uses at the IOF. We encourage Culver City to consider a public process
that allows locally impacted residents to provide meaningful input into the site's future uses. Also, we feel strongly that free, prior and informed consent must be obtained from the local Indigenous communities regarding future uses. Consideration should be given to reserving a significant portion of the IOF as parkland and open space for community use, and/or as wildlife habitat or a wildlife corridor, as well as using the land for distributed renewable energy resources, including generation and storage, to help the City and its residents become more energy resilient.

We support the prohibition of new drilling, redrilling, and deepening after July 28, 2021 and the five-year plugging and remediation timeline in the Ordinance. Urgency dictates that phase-out must be initiated and completed as soon as possible. Our communities have suffered and our health and wellbeing have been put at risk for far too long. We urge you to consider the shortest possible phase-out timeline, given the impacts of neighborhood oil drilling on our health, environment, and climate. The plugging, capping, abandonment, and remediation of the wells and immediate surrounding areas should be undertaken as quickly as possible.

Thank you for considering our comments.

Sincerely,
Martha Dina Arguello, Executive Director, Physicians for Social Responsibility-Los Angeles and Co-Chair, STAND-LA Coalition
Eric Romann, STAND-LA Coalition Coordinator
Alison Hahm, Associate Attorney, Communities for a Better Environment
Richard Parks, President Redeemer Community Partnership
Rabeya Sen, Policy Director, Esperanza Community Housing
Reverend Louis Chase, Holman United Methodist Church
Sonya Vasquez, Chief Operations Officer, Community Health Councils
David Haake, M.D., Chair, Clean Break Committee, Angeles Chapter, Sierra Club
Nicole Levin, Campaign Representative, Beyond Dirty Fuels, Sierra Club
Damon Nagami, Senior Attorney, Natural Resources Defense Council
Ethan Senser, Southern California Organizer, Food \& Water Watch
Liz Jones, Staff Attorney, Center for Biological Diversity

From:	Consoli, Julia Julia.Consoli@alston.com
Sent:	Monday, October 18, 2021 12:45 PM
To:	Clerk, City; Public Comment at Culver City
Cc:	Carlsen, Nicki; Wickersham, Matt; Berlin, Greg
Subject:	Sentinel Peak Resources Comments on Proposed Ordinance
Attachments:	2021-10-18 Sentinel Peak Comment Letter to City.pdf; 2021-10-18 - AM Response
	Letter.pdf; 2021-10-12 - Monterey case.pdf; State Map.pdf

Good afternoon,
On behalf of Sentinel Peak Resources, please see the attached comment letter and attachments submitted in advance of the October 18, 2021 City Council Meeting regarding the proposed ordinance terminating nonconforming oil uses.

Please let me know if you have any issues opening or accessing these documents.
Thank you,
Julia Consoli-Tiensvold | Associate | ALSTON \& BIRD
333 South Hope Street, $16^{\text {th }}$ Floor | Los Angeles, CA 90071
Julia.Consoli@Alston.com | t: 213.576.2517 | c: 619.504 .8007

NOTICE: This e-mail message and all attachments may contain legally privileged and confidential information intended solely for the use of the addressee. If you are not the intended recipient, you are hereby notified that you may not read, copy, distribute or otherwise use this message or its attachments. If you have received this message in error, please notify the sender by email and delete all copies of the message immediately.

ALSTON \& BIRD

333 South Hope Street, 16th Floor

Los Angeles, CA 90071-1410
213-576-1000 | Fax: 213-576-1100

Direct Dial: 213-576-1128
Email: nicki.carlsen@alston.com

October 18, 2021

VIA EMAIL

City of Culver City
City Council for the City of Culver City
9770 Culver Boulevard
Culver City, CA 90232
public.comment@culvercity.org

Re: Proposed Zoning Code Amendment P2021-0036-ZCA City Council October 18, 2021 Public Hearing

Dear Mayor, Vice Mayor and Honorable Council Members:
We represent Sentinel Peak Resources California, LLC ("Sentinel") and are writing in opposition to the City of Culver City's ("City") reintroduction of its proposed Zoning Code Amendment, Ordinance P2021-0036-ZCA entitled, "Nonconforming Oil Use, to Terminate Nonconforming Oil and Gas Uses by November 24, 2026" (the "proposed Ordinance").

Despite taking four months to bolster its position, amending the proposed Ordinance and preparing a 40-page long CEQA document with various reports, the City has utterly failed to substantively address the comments in Sentinel's June 17, 2021 letter to the City in opposition to the proposed Ordinance (the "June Letter"). Not only this, but the City now provides the community a mere week to consider and respond to its new materials, upending due process protections. However, last Tuesday (October 12), the California Court of Appeal issued a published decision on State preemption, which eviscerates the validity of the City's proposed action.

As described in detail below and in the June Letter, incorporated herein by reference, the City's proposed action is illegal and improper, and the City Council must reject the proposed Ordinance.

1. Factual Background

Sentinel is the operator of the oil and gas facilities of the entire Inglewood Oil Field ("IOF"), which is located predominantly within the unincorporated area of Los Angeles County ("County") along with a small section in the jurisdiction of the City. The IOF, which is the most stringently regulated oil field in California, is operated as an integrated whole pursuant to the Baldwin Hills Community Standards District ("CSD") and the 2011 Settlement Agreement and Mutual Release regarding the CSD between the City, Community Health Councils, Inc., Natural Resources Defense

City Council for the City of Culver City
October 18, 2021
Page 2

Council, Mark Salkin, Citizens Coalition for a Safe Community, and Concerned Citizens of South Central Los Angeles, and the County along with the operator at the time, Plains Exploration \& Production Company ("Settlement Agreement"). The requirements for the County CSD by nature embrace the oil field in its entirety and therefore are implemented at the City portion of the IOF and have been so implemented since 2008.

2. Recently Decided Case Law Confirms that the Proposed Ordinance is Preempted by State Law

Local laws conflict with general law if the local laws duplicate, contradict, or enter an area fully occupied by general law. Morehart v. County of Santa Barbara, 7 Cal. 4th 725 (1994). As Sentinel informed the City in its June Letter, the proposed Ordinance conflicts with California law regarding the production of oil and gas, including drill, operations, abandonment, and maintenance and is therefore preempted. A recently decided case certified for publication in the Sixth District Court of Appeal confirms this. The City entirely fails to respond to Sentinel's preemption argument in its October 18, 2021 Staff Report (the "Staff Report").

In Chevron U.S.A., Inc. v. County of Monterey, attached hereto, the County of Monterey ("Monterey") enacted Measure Z, which would prohibit "[I]and Uses ... in support of oil and gas wastewater injection or oil and gas wastewater impoundment" throughout the County's unincorporated areas. Chevron U.S.A., Inc. v. County of Monterey, No. H045791, 2021 Cal. App. LEXIS 844, at *4 2021 WL 4743024 (Ct. App. Oct. 12, 2021) ("Chevron"). Measure Z would also prohibit "[I]and uses in support of drilling new oil and gas wells" anywhere in Monterey's unincorporated area. Id. Like the City's proposed Ordinance, Measure Z provided for "a reasonable amortization period" for phasing out uses that were inconsistent with Measure Z's provisions. Id. Unlike the City's proposed Ordinance, Measure Z authorized the Board of Supervisors to grant an exception to a property owner if the application of Measure Z would result in an unconstitutional taking.

Petitioner Chevron U.S.A., Inc. ("Petitioner") argued that Measure Z was preempted under State law because it conflicts with Article XI, section 7 of the California Constitution. In response, Monterey presented a variety of theories. First, the Monterey argued that "Measure Z is not preempted by state law because 'California oil and gas statutes and regulations expressly acknowledge and affirm local authority, precluding a finding that the state has completely occupied the field,' and 'state law addresses only specific technical aspects of oil and gas production, leaving local governments free to exercise their traditional authority over land use, health, and safety to protect communities from harm.'" Id. at *10-*11. The court disagreed, analyzing the legislative history of Section 3106 of the Public Resources Code ("PRC") and stating that Section 3106 "makes no mention whatsoever of any reservation to local entities of any power to limit the State's authority to permit well operators to engage in these 'methods and practices.'" Id. at 14.

Second, Monterey argued that Measure Z's provisions are not preempted because "the state's oil and gas rules narrowly address only the manner in which operations are carried out, not whether or where oil and gas resources should be developed." Id. at 22. Again, the court disagreed, reasoning that the provisions of Measure Z did not regulate "where and whether" oil drilling would occur on the land, but rather what and how oil drilling operations could proceed. The court found that this was improper. The court continued that, "[t]he fact that Measure Z repeatedly uses the words 'use of land' and 'land use' does not obliterate the inescapable fact that Measure Z would ban specific oil and gas operation methods." Id. at 24 . Ultimately, the court held that Measure Z was preempted by California law.

Similarly, here, the City frames its prohibitions on oil and gas activity as limited to regulating "land use." This argument is contradicted by Chevron. The City's proposed Ordinance improperly seeks to prohibit most oil and gas activity, including the drilling and redrilling, or deepening of existing wells and to prohibit the erection of any derrick, structure, or equipment related to oil and gas operations, all of which conflict with the State's laws and regulations. [Proposed Zoning Code Amendment, section D.] In addition, the proposed Ordinance attempts to control the process by which closure of the oil operations must occur. [Proposed Zoning Code Amendment, section D.d.] This is in direct conflict with Section 3106(a) of the PRC, as well as the reasoning in Chevron. Chevron U.S.A., Inc. v. County of Monterey, 2021 Cal. App. LEXIS 844, at *23 ("These provisions did not regulate 'where and whether' oil drilling would occur on land ... but rather what and how any oil drilling operations could proceed."); PRC, section 3106(a) ("The supervisor shall so supervise the drilling, operation, maintenance, and abandonment of well and the operation, maintenance, and removal or abandonment of tanks and facilities attending to oil and gas production ...") (emphasis added).

The City's proposed ordinance also seeks to eliminate all oil and gas operations in the City IOF by November 24, 2026, which directly conflicts with the State's mandate to produce oil and gas resources in the State. [Proposed Zoning Code Amendment, section D; PRC, section 3106(b).] The court in Chevron supports this when it found Measure Z to be preempted because it banned activities that Section 3106 "not only promotes and encourages, but also explicitly places the authority to permit in the hands of the state." Monterey, 2021 Cal. App. LEXIS 844, at *23-*24.

The City attempts to avoid potential preemption by including language in the proposed Ordinance regarding its coordination with CaIGEM, stating that the termination process will be "overseen by the California Geologic Energy Management Division ("CalGEM") and in strict accordance with all the other applicable local, state, and federal laws, regulations, rules and standards." [Proposed Zoning Code Amendment, section D.2.c.] This is of no matter. The City intends to approve the termination program, not CalGEM. The fact that CalGEM is going to oversee the process of termination does not allow the City to escape the fact that its proposed Ordinance directly conflicts with State law.

3. The Closure of Sentinel's Jefferson Drill Site Does Not Support the City's Determination That Five Years is a Reasonable and Appropriate Time Period to Close the City IOF

The City contends that Sentinel's agreement with the City of Los Angeles to close Sentinel's Jefferson Drill Site, located at 1371 W. Jefferson Boulevard (the "Jefferson Drill Site"), within three years is evidence of the legitimacy and feasibility of the City's five-year phase out plan. [Staff Report, p. 11.] This comparison is misguided.

By way of background, on January 25, 2018, the South Los Angeles Area Planning Commission made the determination to require corrective measures and methods and additional conditions for the oil drilling and production operations at the Jefferson Drill Site. Sentinel filed a lawsuit challenging this determination (LASC Case No. BS173410) on April 24, 2018. While the lawsuit was pending, on August 13, 2018, Sentinel applied to the City of Los Angeles for a modification of the determination. Ultimately, Sentinel voluntarily agreed to abandon the wells at the Jefferson Drill Site within a 3-year period between 2019 and 2021. The circumstances and considerations that made it feasible for Sentinel to commit to this timeframe were vastly different than the circumstances here.

The City claims that because Sentinel will be able to close the wells at the Jefferson Drill Site at a pace of 12 wells a year, it should be able to do the same at the City IOF. This claim ignores the size, terrain, and topographical differences between the two sites. First, the Jefferson Drill Site is a mere 1.75 acres in size, whereas the City IOF is a 77-acre site. This alone creates its own set of difficulties. Setting aside the difference in size, the terrain and topography of the City IOF, a largely undeveloped area with a sloped terrain, would make it challenging to safely close all 41 wells within five years.

Moreover, Sentinel's decision made with respect to the Jefferson Drill Site was a voluntary one, based on discussions with the City of Los Angeles regarding the objectives and capabilities of both entities and the future use of the site. While Sentinel would like to come to a similarly amicable resolution with the City here, it cannot in the timeframe that the City demands.

4. The City's References to Recent Local Oil Field Incidents Do Not Provide Support for Its Position

The City attempts to justify the proposed Ordinance by referencing a litany of recent local incidents in the vicinity of the City IOF. [Staff Report, pp. 10-11.] However, minor impacts resulted from these incidents, and several of the incidents cannot even be attributed to Sentinel's oil operations at the City IOF. First, the City describes a small brush fire that occurred on October 3, 2021, the spread of which was quickly halted by the Culver City Fire Department within an hour after it was identified. There were no injuries and no structures or equipment were damaged. The City admits that there is no evidence indicating that Sentinel's operations caused the incident, stating that the "fire's specific ignition source is undetermined." [Staff Report, p. 10.] In fact, it was later determined that the fire was caused by a faulty overhead electrical line, which is controlled by another entity and not Sentinel. In light of this, it is unclear why the City even

City Council for the City of Culver City
October 18, 2021
Page 5
referenced this incident. The incident was apparently resolved in full compliance with all regulatory and government requirements.

The City next describes an oil-water leak in the vicinity of Culver City Park, however, the leak did not occur within the City limits. This leak was discovered at 8:31 a.m., confirmed by Sentinel at 8:53 a.m., and contained a mere seven minutes later. The spill was quickly cleaned up, and no leaked fluids entered the La Ballona Creek. Although the source of the leak was determined to be from a high-impact puncture to a 2 -inch diameter pipe flow line, the cause of the rupture remains unknown. Again, the incident was apparently resolved in full compliance with all regulatory and government requirements.

The City then goes on to describe three additional incidents, with at least one of them attributable to a different oil operator and two of them not within the boundaries of the City. The referenced E\&B Pipeline Open-Valve Leak that occurred on April 6, 2021 was not the responsibility of Sentinel.

Further, the City references another incident that occurred only within the City of Los Angeles' jurisdiction - the Stocker Line Leak. There was no oil involved in this leak, and it was reported to the California Governor's Office of Emergency Services as is standard protocol, as well as CaIGEM. The produced water flowed off of Sentinel's site exclusive into the curb and gutter and back onto Sentinel's site on the northeast side of La Cienega Boulevard and Stocker Street. The produced water line shutdown was immediately repaired in the days following the occurrence, and the subsequent hydrotest of the line was witnessed by a CalGEM representative.

The BC Tank Flow Failure Spill that occurred on November 11, 2018 also occurred within the City of Los Angeles' boundaries. This spill resulted in 14 calls from local residents concerning a petroleum odor; the calls were received over a time period of less than an hour. The tank overflow was caused by a faulty level controller on a wash tank. All liquids were captured within the tank system containment, however, the vapor space on the tank was released to the atmosphere and carried by an east to west wind into the Ladera Heights neighborhood immediately west of the City IOF. The vapor quickly dispersed and lasted for a few minutes. As a long-term response to the spill, Sentinel has installed redundant control systems on all wash tanks, which were completed by the end of 2019. The incident was resolved in satisfaction of all regulatory and government requirements, and there has been no follow-up to date from the South Coast Air Quality Management District.

Oil and gas operations are highly regulated. These regulations have been put in place to address and protect the health and safety of the public. Indeed, Sentinel has fully complied with these regulations which has resulted in minimal impact to the public health and safety. Sentinel operates in full compliance pursuant to the CSD, as shown in the 2015 and 2019 CSD periodic review documents submitted with the June Letter, as well as the FM O\&G Inglewood Oil Field, Safety Inspection, Maintenance and Quality Assurance Program Safety Audits (July 2016 and August 2018) and Environmental Quality Assurance Program Report, 2011-2020, also submitted with the June Letter.

City Council for the City of Culver City
October 18, 2021
Page 6

In short, the incidents presented by the City are not proof that the City IOF must be closed.

5. The Methodology Used in the City's Capital Investment Amortization Study is Flawed

The City attempts to recast the 5-year amortization period as a "termination" period instead, erroneously claiming that a "return on the original investment of capital was accomplished years ago." [Staff Report, p. 4.] It further claims that because Sentinel's future costs to close the oil wells happen post-amortization, these costs should not be included in the calculation of the time to achieve amortization because capital expenditures and investments are normally accounted for at the time funds are invested and capitalized. This makes no sense. The City cannot artificially define the amortization period based on the exclusion of costs which must be amortized. A detailed response to the October 8, 2021 report by Baker \& O'Brien (the "B\&O October Report") is attached hereto as the October 18, 2021 Alvarez \& Marsal Disputes and Investigations, LLC. Response to the Baker \& O'Brien Letter Dated October 8, 2021 (the "A\&M October Response").

As an initial matter, the implementation of an amortization program to avoid paying compensation for existing property rights in general is improper in the context of oil fields. This is because the utility of an oil field depends on its productivity, which requires ongoing infrastructure investment. The amortization concept is based upon the idea that the property owner must be given an opportunity to recoup its investment and be made whole. The concept is most generally applied with respect to billboards, which do not require ongoing investment. Nat'l Adver. Co. v. County of Monterey, 1 Cal. 3d 875 (1970); People ex rel. Dept. Pub. Wks. V. Adco Advertisers, 35 Cal. App. 3d 507 (1973). The application of the concept to oil fields does not achieve the same goals.

Even if amortization were possible, amortization has not already occurred. An Amortization of Capital Investment (" ACl ") calculation must first establish the amount of capital investment as of a certain date and then project future cash flows from that date to determine when sufficient cash flows have been generated to cover both the capital investment and a "reasonable" rate of return to the investor. The June 17, 2021 report of A\&M ("A\&M June Report"), attached to the June Letter, and the A\&M October Response provide a detailed analysis of this based on information specific to and provided by Sentinel regarding its business model, whereas the June 8, 2021 report by Baker \& O'Brien (the "B\&O June Report") and the B\&O October Report, relied on by the City are based upon inaccurate information. Despite the fact that Sentinel had provided accurate information in its A\&M June Report that B\&O could have incorporated into the analysis in its B\&O October Report, it failed to.

Additionally, $\mathrm{B} \& \mathrm{O}$'s calculation of the ACl based on a scenario that evaluates amortization of the initial capital investment made by historical operators dating back to 1925 for wells located in the City IOF is an irrelevant analysis in which B\&O essentially seeks to draw the conclusion that since the City IOF must have reached ACl decades ago, then the City is justified in requiring Sentinel to cease operations. This disregards the fact that Sentinel did not realize any returns that were generated by the City IOF for periods dating back to 1925 and impacts the amortization period. [A\&M October Response, pp. 4-5.]

City Council for the City of Culver City
October 18, 2021
Page 7

Further, $B \& O^{\prime}$ s claims that A\&M's use of a target rate of return of 16% is incorrect because it is "unreasonably high." [B\&O October Report, p. 24.] B\&O has confused A\&M's use of a 16% discount rate in the calculation of the value of the City IOF, on the one hand, with a "reasonable rate of return" allowed under the ACI methodology, on the other hand. [A\&M October Response, p. 3.] While these two things are associated, the use of a higher discount rate results in a lower valuation, which therefore results in a smaller damage quantification. [/d.] A\&M's determination of a 16% rate of return correctly accounts for the asset specific risk of the City IOF when compared with Sentinel's broader oil and gas holdings. [Id.] B\&O's criticism of the 16% rate of return actually does a disservice to the City, because the use of $\mathrm{B} \& \mathrm{O}$'s 8% rate of return would increase damages by approximately $\$ 925,000$. [Id., p. 3-4.]

Based on the fact that amortization has not already occurred, the future costs for closure must be considered in determining the amortization period and must be considered in an ACl study. Closure costs represent a significant capital investment to be incurred in the future. In any case, Sentinel rejects the idea that closure costs may only be accounted for if they were incurred during an amortization period that excludes them. The life cycle of an oil well includes closure of the oil well, as required by State law. 14 CCR §1723.1; 14 CCR 1745.1. Because these operation costs to close the wells are required by State law, they have to be considered whether amortization has occurred or not. Further, as described in the various A\&M reports, closing costs are factored in at the time of acquisition. To exclude closing costs in the City's calculations is a ploy to reach the termination outcome of its choosing - this method is not valid and it violates the Constitution's protections against takings.

6. Because the City IOF Cannot Be Amortized in the Time Period Set by the City, the Proposed Ordinance Constitutes a Taking of Sentinel's Property

The City attempts to avoid providing Sentinel just compensation for the taking of its property by implementing an amortization period. Because the City IOF would not amortize until at least 2036, any forced closure of the City IOF before then constitutes a taking of vested rights held by Sentinel and the landowners and mineral rights holders in violation of the U.S. Constitution and California Constitution.

Contrary to the City's assertions, Sentinel's vested rights to develop and produce oil and gas resources are not limited to the production value of the existing well, and instead, includes all prudent and feasible means to develop and produce oil and gas resources as contemplated by State law. See Hansen Bros. Enters. v. Bd. of Supervisors, 12 Cal. 4th 533 (1996). The proposed Ordinance infringes on the full extent of Sentinel's vested rights.

The City's proposed elimination of oil and gas related activities is not based on scientific evidence regarding the oil and gas resources in the IOF, nor is it based on input from Sentinel or the landowners. Additionally, if all oil and gas operations in the City IOF were to be terminated, the City would be denying Sentinel all economically viable use of its property. Lucas v. S.C. Coastal Council, 505 U.S. 1003, 1015 (1992) ("[T]he Fifth Amendment is violated when land-use regulation . . . denies an owner economically viable use of his land.").

The City's attempted imposition of a "Termination Fee" that reflects the City's "reasonable costs" for an expanded staff role under the proposed Ordinance also ignores the legal authorities protecting against regulatory takings, including takings in the form of unconstitutional monetary exactions. [Staff Report, p. 12-13.] The California Supreme Court has already determined that there must exist a rough proportionality between the magnitude of a fiscal exaction and the effects of the proposed development. Ehrlich v. City of Culver City, 12 Cal. 4th 854 (1996). The requisite "rough proportionality" does not exist here.

7. There Can Be No Zoning Ordinance or General Plan Consistency Without a Valid General Plan

The City entirely fails to respond to or acknowledge its failure to have a valid General Plan or to perform the required "Focused Special Study" needed to identify the applicable land uses for the area as required by State law (Gov't Code § 65302(a)), nor does it "address the potential for appropriate open space, residential, commercial and industrial uses and access." [See June Letter, p. 2.] Indeed, the City's Staff Report eliminates the majority of its discussion of the General Plan from its Staff Report, perhaps in an attempt to bury this issue.

The City is required to designate land uses for this area, and its failure to do so results in an invalid General Plan. Camp v. Bd. of Supervisors, 123 Cal. App. 3d 334, 348 (1981). As explained in detail in the June letter, without a valid General Plan, the proposed Ordinance would be void ab initio or invalid when passed. Lesher Communications, Inc. v. City of Walnut Creek, 52 Cal.3d 531, 541 (1990).

Further, State law requires that zoning ordinances be consistent with the general plan. Gov't Code § 65860. Because the City cannot make consistency findings based on the invalid General Plan, the City cannot adopt the proposed Ordinance. The City cannot claim that the proposed Ordinance will "improve the City's ability to implement the goals, objectives, and policies of the General Plan for the affected areas because it will resolve a nonconforming land use that is a barrier to accomplishing those goals." ${ }^{1}$ [Staff Report, p. 7.] The City does not even attempt to expand on this statement. This is because these goals, objectives, and policies do not exist. As described in full in the June Letter, the City ignores the most relevant and critical sections of the General Plan, Policy 27.F and Measure 3, which require the City to prepare a Focused Special Study for the area.

8. The Conclusions of the City's CEQA Exemption Review Are Not Supported by Substantial Evidence

As described in detail in the June Letter, the City's determination that the proposed Ordinance is exempt from CEQA ignores the environmental effects of closing the IOF. In response,

[^0]City Council for the City of Culver City
October 18, 2021
Page 9
the City prepared a flawed CEQA exemption analysis, again concluding that the proposed Ordinance is exempt from CEQA under the common sense exemption and various categorical exemption classes - Existing Facilities (Class 1), Minor Alterations to Land (Class 4), and Actions by Regulatory Agencies for the Protection of the Environment (Class 8). None of these exemptions apply, either because the exemption does not apply on its own terms, or because the "unusual circumstances" exception applies. The proposed Ordinance is not exempt from CEQA.

In order to conduct a proper CEQA review, the City must set forth a stable, finite, and accurate project description. The City has not done so. As described above, the City does not have a valid General Plan. Without a valid General Plan, by implementing the proposed Ordinance, the City terminates one use without identifying what use will be allowable on the property in the future. This is improper. Bozung v. Local Agency Formation Com., 13 Cal. 3d 263 (1975) (holding that the annexation of land which involved the change of land use was a "project" that needed to be studied under CEQA); see also City of Santa Clara v. Local Agency Formation Com., 139 Cal. App. 3d 923 (1983) (holding that an agency was correct in requiring CEQA review of an annexation based upon the consideration that CEQA requires a lead agency to consider the ultimate use of a property in its environmental review). Therefore, the CEQA analysis of the proposed Ordinance must also analyze an amendment to the General Plan that delineates the land use designation for the area. To fail to analyze these two together constitutes improper piecemealing.

Furthermore, the City has evaluated some fabricated set of physical activities to terminate oil and gas operations in the City IOF, although the City is not the operator and the City has no specific knowledge regarding the actual physical activities that would be required to terminate oil and gas operations. This simple fact alone undermines the City's use of any exemption, either on their own terms or the "unusual circumstances" exception to the application of exemptions. 14 CCR § 15300.2(c).

Even if the City did have an accurate project description, the Class 8 exemption involving actions by regulatory agencies for the protection of the environment does not apply. The Class 8 exemption only applies "where the regulatory process involves procedures for protection of the environment." 19 CCR § 15308 (emphasis added). This exemption expressly excludes projects that involve "construction activities." Id. Because the proposed Ordinance would require physical work in order to close the City IOF, it involves more than just "procedures for protection of the environment," and therefore the Class 8 exemption does not apply. Moreover, the Class 1 exemption regarding existing facilities also does not apply. This exemption applies to the "operation, repair, maintenance permitting, leasing, licensing, or minor alteration of existing public or private structures." 19 CCR 15301. The closure of the City IOF is none of these things.

Additionally, the common-sense exemption does not apply to the proposed Ordinance. The common-sense exemption only applies "[w]here it can be seen with certainty that there is no possibility that the activity in question may have a significant effect on the environment." 14 CCR $\S 15061(b)(3)$. Because the City has not and cannot analyze potential future uses of the City IOF, nor has the City evaluated the actual physical activities to be performed to terminate oil and gas uses, it cannot be seen with certainty that there is no possibility that the proposed Ordinance may have a significant effect on the environment.

City Council for the City of Culver City
October 18, 2021
Page 10

Lastly, the City's conclusion that the proposed Ordinance will have no impact on the availability of a known mineral resource of value to the region and state residents and will have no impact on the availability of a locally important mineral recovery site delineated on a land use plan is not supported by the evidence. First, the closure of the City IOF would result in the loss of availability of a known mineral resource that is of value to the region and residents of the State. CalGEM is directed to produce these mineral resources from identified fields, the City IOF being one of them, consistent with State law. [See State Map of Southern, Central Coastal, and Offshore California Oil and Gas Fields ("State Map"), attached hereto.] Further, the policy that promotes the "the wise development of oil and gas resources" is embodied in State law. PRC, § 3106(d).

Additionally, reduced domestic production of oil will increase environmental impacts caused by the necessary importation of oil. Because oil and gas producers in other states and countries are not required to adhere to California's environmental standards, increasing oil and gas import would increase GHG emissions and impact global environmental quality. The City's exemption analysis fails to take into account the air quality impacts associated with favoring imported oil over oil produced in the City.

Second, the City IOF is a locally-important mineral resource recovery site delineated by a land use plan. The City IOF is located in the City, making it locally important, and it is delineated in the State Map on pages 16, 18, 19, 192-194.

9. Conclusion

The City's proposed action is illegal and improper. Based on the foregoing, as well as the June Letter and the attachments included thereto, the City Council must reject the proposed Ordinance.

Attachments:
October 18, 2021 A\&M Response to the Baker \& O'Brien Letter Dated October 8, 2021
Chevron Case
State Map of Southern, Central Coastal, and Offshore California Oil and Gas Fields

October 18, 2021

To: Ms. Heather S. Baker
Assistant City Attorney
City of Culver City
9770 Culver Boulevard
Culver City, CA 90230-0507

Subject: Alvarez \& Marsal's Response to the Baker \& O'Brien Letter Dated October 8, 2021

I. EXECUTIVE SUMMARY

1. Alvarez \& Marsal ("A\&M") was retained on behalf of Sentinel Peak Resources California LLC ("SPR") in a matter related to the Inglewood oil field in the City of Culver City (the "City" or the "City IOF"). I issued reports dated August 13, 2020 and June 17, 2021. I continue to stand by the opinions expressed in those reports.
2. I was provided with Baker \& O'Brien Inc.'s ("B\&O") letter dated October 8, 2021 (the "B\&O Letter") and was asked to provide a response. First, B\&O's assertion that I only performed a valuation of the City IOF and have not performed an amortization of capital investment ("ACI") analysis is false. ${ }^{1}$ Opinion 1 from my June 2021 report describes my ACI calculations and the fact that the City IOF has not presently reached ACI. ${ }^{2}$ Second, while I do not agree with many of the statements and conclusions in the $\mathrm{B} \& \mathrm{O}$ Letter, the main point of disagreement is the treatment of the field closure costs in an ACI calculation.
3. B\&O's position is that field closure costs are "not relevant to a cash flow analysis, which is used to determine the time to achieve ACI..." ${ }^{3} \mathrm{~B} \& \mathrm{O}$ essentially ignores the field closure costs altogether. This is arbitrary, absurd, and does not make rational economic sense.
4. Field closure costs refer to all amounts that must be expended by the operator to remove the wellbore and surface facilities and return the well site to its original condition.
[^1]These costs, just like any other costs, must be accounted for in any evaluation of the cash flows of an oil and gas property in order to determine the actual return or profitability of a project. My June 2021 report included an estimate of the field closure costs that ranged from $\$ 9.4$ million to $\$ 10.7$ million. ${ }^{4}$
5. Should the City Council commence an Amortization Program and set an end date to remove all oil field related equipment and facilities, SPR will be required to expend the field closure costs. Logically, these costs should be included in any calculation of the return realized by SPR.
6. B\&O's exclusion of the field closure costs is similar to financing a car with a large balloon payment at the end of the term but not considering the final payment in the total cost of the car. The final balloon payment will be due and is very much a part of the total cost of the car and the cash flows the purchaser necessarily has to make. In the same way, the field closure costs are cash flows SPR will incur and therefore those cash outflows must be considered in the calculation of ACI.
7. Should the City Council terminate SPR's oil and gas operations in the City IOF, SPR will be required to nearly immediately pay the field closure costs. Logically, those costs drastically change the return SPR has realized on the City IOF. While B\&O refers to the field closure costs as "non-cash future liabilities" ${ }^{5}$, those amounts immediately become due if the City should amortize the field and are cash amounts SPR will be required to pay. If the purpose of an ACI calculation is to allow the investor to realize a reasonable rate of return, all significant cash outflows must be considered in the rate of return calculation, else the investor has not actually realized the calculated rate of return.
8. Based on my analysis in the June 2021 report, SPR has presently realized a negative return on its investment and SPR's investment does not yield a positive return until 2030 or 2034 (depending on the price of oil) after factoring in the field closure costs. ${ }^{6}$ SPR will be required to expend the field closure costs whenever it is either no longer allowed to operate the City IOF or at the end of the actual economic life of the field. To ignore these costs (as B\&O has done) in a calculation of SPR's rate of return is inappropriate.
9. Any determination by City Council that SPR's investment has presently reached ACI would not be based upon the appropriate consideration of all expected and required costs associated with the City IOF.

[^2]
II. OTHER ITEMS ADDRESSED IN THE B\&O LETTER

10. While B\&O's exclusion of field closure costs constitutes the largest error in their analysis, there are additional deficiencies in the latest letter. In general, $\mathrm{B} \& \mathrm{O}$'s points and criticisms are either based on errors or inaccuracies, or the issue raised does not result in a meaningful difference between their analysis and mine. Several of the items raised by $\mathrm{B} \& \mathrm{O}$ are addressed below.
11. First, B\&O takes issue with the operating expenses I utilized in my June 2021 report. As stated in my report, the historical LOEs for the City IOF averaged approximately $\$ 28$ per BOE from January 2017 through May 2021. ${ }^{7}$ The B\&O Letter claims that my analysis projects "much higher operating costs after 2021 than historical operating costs" with "operating costs after 2021 that range from about $\$ 46$ per barrel to more than $\$ 60$ per barrel, based on production volumes used in the [BEOO Report dated May 29, 2020]." ${ }^{8}$ This statement is incorrect. My projected operating expenses average approximately $\$ 29$ per barrel and $\$ 34$ per barrel for 2021 forward based on the strip price case and the $\$ 75$ price case, respectively. B\&O arrives at the $\$ 46$ and $\$ 60$ per barrel amounts by inappropriately taking operating expenses from one source and dividing them by volumes from another source. B\&O appears to divide the total operating costs included in my June 2021 report by the total projected volumes from the BEOO report in May 2020. B\&O's volumes apparently do not match the volumes projected by SPR (and used in my June 2021 report), which causes B\&O to calculate incorrect per barrel amounts. As $B \& O$'s entire analysis of my alleged per barrel operating expenses is based on inaccurate and incorrect data, any comments by B\&O related to "unreasonably high" projected operating expenses in my analysis should be disregarded.
12. Second, B\&O takes issue with my calculation of a 16 percent discount rate, which $\mathrm{B} \& \mathrm{O}$ refers to as the 'target rate of return'. ${ }^{9} \mathrm{~B} \& \mathrm{O}$ has confused my use of a 16 percent discount rate in the calculation of the value of the City IOF, on the one hand, with a 'reasonable rate of return' allowed under the ACI methodology, on the other hand. While those two items are associated, the use of a higher discount rate results in a lower valuation, which therefore results in a smaller damage quantification. In my determination of the discount rate (as part of the calculation of the weighted average cost of capital), I have included additional consideration for the asset specific risk of the City IOF when compared with SPR's broader oil and gas holdings. If I were to use the 8

[^3]percent rate that $\mathrm{B} \& \mathrm{O}$ argues, my valuation of the City IOF would increase damages by approximately $\$ 925,000$.
13. Third, B\&O takes issue with my calculation of depreciation, depletion, and amortization ("DD\&A"). ${ }^{10}$ To be clear, I am not deducting DD\&A from the cash flows. ${ }^{11}$ I considered DD\&A only in the determination and calculation of income taxes (as DD\&A is an allowed expense when calculating taxable income), as I did deduct income taxes from the cash flows. I utilized DD\&A of 5 percent of revenue as a proxy for DD\&A over the life of the field based on input from SPR. It is somewhat unclear in the B\&O Letter, but it appears that $\mathrm{B} \& \mathrm{O}$ believes that my depreciation is understated and therefore the time to reach ACI is overstated. Even if I were to change my DD\&A calculation to equal 15 percent of revenue, the time to reach ACI does not materially change. This appears to be a criticism of B\&O's that does not cause a material difference between our analyses.
14. Additionally, $\mathrm{B} \& \mathrm{O}$ addresses items like income tax rates, ad valorem taxes, severance taxes, and SPR's purchase price. ${ }^{12}$ B\&O also takes issue with the crude and natural gas prices and differentials ${ }^{13}$, even though pricing was based upon SPR's actual realized prices and contractual differentials and adjustments. Further, B\&O discusses general and administrative costs but appears to again overstate the per barrel amount which overstates their conclusion of the total G\&A costs. ${ }^{14}$ Regardless, even according to $\mathrm{B} \& \mathrm{O}$, the differences between their analysis and mine for these inputs does not result in a "material change in time required to achieve ACI." 15,16
15. Lastly, $\mathrm{B} \& \mathrm{O}$ continues to reference performing an ACI calculation based on a scenario that evaluates amortization of the initial capital investment made by historical operators dating back to 1925 for wells located in the City IOF. ${ }^{17}$ This is an irrelevant analysis in which $B \& O$ essentially seeks to draw the conclusion that since the City IOF must have reached ACI decades ago, then the City is justified in requiring the current operator, SPR, to cease operations. First, this disregards the fact that SPR was not the operator prior to 2017 and did not realize any returns that were generated by the City

[^4]IOF for periods dating back to $1925 .{ }^{18}$ The reality is that SPR purchased the City IOF in 2017 and has only realized cash flows since that time. Basing an ACI determination on estimates of amounts prior operators may have earned decades ago, and ignoring the current operator's actual cash flows, is absurd.

III.CONCLUSION

16. In summary, I disagree with B\&O's conclusion that SPR's investment in the City IOF has reached ACI. ${ }^{19}$ As described above, many of the bases for B\&O's conclusions are flawed, factually inaccurate, and result in an ACI analysis by B\&O that is unreliable and incorrect. Importantly, any calculation of a reasonable rate of return must include the field closure costs.
17. I stand by the analysis contained in my June 2021 report that shows that SPR's investment in the City IOF has not currently amortized and is not likely to amortize until 2036 or after. ${ }^{20}$ Nothing within the B\&O Letter has caused me to revise or update my prior analysis or conclusions.
18. Further, should the City terminate the oil and gas operations of the City IOF in the next five years as a result of B\&O's purported ACI calculation, the financial damages to SPR would include (but are not limited to) the loss in market value and the accelerated end of life costs. As of June 2021, these damages were estimated to be approximately $\$ 14.6$ million to $\$ 15.9$ million. ${ }^{21}$

Kind Regards,

[^5]
CERTIFIED FOR PUBLICATION

IN THE COURT OF APPEAL OF THE STATE OF CALIFORNIA SIXTH APPELLATE DISTRICT

CHEVRON U.S.A., INC. et al., Plaintiffs and Respondents, v.
COUNTY OF MONTEREY, Defendant;
\section*{PROTECT MONTEREY COUNTY et al.,} Interveners and Appellants.

H045791
(Monterey County
Super. Ct. No. 16CV003978)

Appellant Protect Monterey County (PMC) appeals from the trial court's judgment striking down a County ordinance banning "land uses in support of" new oil and gas wells and "land uses in support of" wastewater injection in unincorporated areas of Monterey County. These ordinances were enacted as part of Measure Z, an initiative sponsored by PMC and passed by Monterey County voters. The trial court upheld, in part, a challenge to Measure Z by plaintiffs, numerous oil companies and other mineral rights holders in Monterey County. ${ }^{1}$ PMC contends that the trial court erroneously
${ }^{1}$ Six separate actions were consolidated below. One was brought by Aera Energy LLC (Aera). A second action was brought by Chevron U.S.A. Inc. and a group of other entities, which we will refer to collectively as Chevron. A third action was brought by California Resources Corporation (CRC). The fourth action was brought by National Association of Royalty Owners-California, Inc. and various individuals and entities, which we will refer to collectively as NARO. A fifth action was brought by Eagle Petroleum, LLC (Eagle). The sixth action was brought by Trio Petroleum LLC and
concluded that these two components of Measure Z were preempted by state and federal laws and that they constituted a facial taking of the property of some plaintiffs. PMC also contends that the trial court made prejudicially erroneous evidentiary rulings.

We find that the trial court correctly concluded that these two components of Measure Z are preempted by Public Resources Code section 3106. ${ }^{2}$ Section 3106 explicitly provides that it is the State of California's oil and gas supervisor who has the authority to decide whether to permit an oil and gas drilling operation to drill a new well or to utilize wastewater injection in its operations. These operational aspects of oil drilling operations are committed by section 3106 to the State's discretion and therefore local regulation of these aspects would conflict with section 3106. Our narrow holding does not in any respect call into question the well-recognized authority of local entities to regulate the location of oil drilling operations, a matter not addressed by section 3106 or Measure Z.

Because we uphold the trial court's decision on the grounds of state law preemption, we need not consider whether Measure Z is also preempted by federal law or constituted a facial taking of plaintiffs' property. We also need not address PMC's challenge to the trial court's evidentiary rulings as those rulings play no role in the resolution of the state law preemption issue, which is an entirely legal issue. We affirm the trial court's judgment.

I. MEASURE \mathbf{Z}

Measure Z was a citizens' initiative on the November 2016 Monterey County ballot entitled: "Protect Our Water: Ban Fracking and Limit Risky Oil Operations Initiative." It proposed to amend Monterey County's general plan to add three new land

[^6]use policies. LU-1.21, which is not at issue in this appeal, would prohibit "Land Uses . . . in support of well stimulation treatments" throughout the County's unincorporated areas. ${ }^{3}$ LU-1.22 would prohibit "Land Uses . . . in support of oil and gas wastewater injection or oil and gas wastewater impoundment" throughout the County's unincorporated areas. LU-1.23 would prohibit "Land Uses in Support of Drilling New Oil and Gas Wells" anywhere in the County's unincorporated area. Measure Z also would amend Monterey County's local coastal program and its Ford Ord Master Plan to add identical prohibitions.

Measure Z contained a section setting forth "exemptions" for "any person or entity exercising a vested right obtained pursuant to State law" and provided for "a reasonable amortization period" for phasing out uses that were inconsistent with Measure Z's provisions. Measure Z also stated that its provisions would not be applied to the extent "that they would violate the constitution or laws of the United States or the State of California." Measure Z authorized the Board of Supervisors to grant an exception to a property owner if the application of Measure Z would result in an unconstitutional taking.

Measure Z identified its purpose as "protect[ing] Monterey County's water, agricultural lands, air quality, scenic vistas, and quality of life" by "prohibit[ing] and phas[ing] out land uses in support of oil and gas wastewater . . . disposal using injection wells or disposal ponds in the County's unincorporated area" and "prohibit[ing] drilling new oil and gas wells in the County's unincorporated area." Measure Z asserted that

[^7]these policies would "promote[] and protect[] the health, safety, welfare, and quality of life of County residents" Measure Z was passed by the voters in November 2016.

II. PROCEDURAL BACKGROUND

Beginning in December 2016, plaintiffs filed multiple mandate petitions and complaints for declaratory and injunctive relief and for inverse condemnation against defendant County of Monterey (the County). ${ }^{4}$ Plaintiffs alleged that Measure Z was preempted by state and federal law and would result in an unconstitutional taking of their property. The court stayed the effective date of Measure Z after the County and plaintiffs stipulated to a stay. PMC intervened in the actions. ${ }^{5}$

After a multi-day trial that consisted entirely of argument by counsel based on voluminous declarations and exhibits, the court issued an extensive statement of decision. The court found that plaintiffs lacked standing to challenge LU- 1.21 because no plaintiff was using or proposing to use any well stimulation treatments in Monterey County. The court found that LU-1.21 was severable from LU-1.22 and LU-1.23.

The court proceeded to plaintiffs' challenge to LU-1.22, which barred wastewater injection and impoundment. The court credited plaintiffs' arguments that this aspect of Measure Z was preempted by state law. The court rejected PMC's claim that Measure Z was simply a "land use" prohibition. The court characterized this argument as "clearly a pretextual attempt to do indirectly what it cannot do directly." The court focused on the lack of any "meaningful distinction between wastewater injection and impoundment on the one hand, and surface equipment and activities in support of wastewater injection and

[^8]impoundment on the other." The court eschewed the distinction between surface and subsurface activities and instead concluded that the key issue was whether Measure Z "regulates the conduct of oil and gas operations or their permitted location." The court viewed LU-1.22 as "regulat[ing] a specific production technique" The court found it significant that "Measure Z is a ban on specific production techniques not a total ban on oil operations." Because, in the trial court's view, state law "fully occupies the area of the manner of oil and gas production," and LU-1.22 "seeks to regulate the manner of oil and gas production," the court found that LU-1.22 was preempted. The court also found that LU-1.22 conflicted with section 3106. In addition, the court found that LU-1.22 conflicted with the state's authority under the federal Safe Drinking Water Act (SDWA) because the State, not local authorities, was authorized to make the findings that Measure Z purported to make regarding whether underground wastewater injection would endanger drinking water sources. Thus, the SDWA also preempted LU-1.22.

The court proceeded to LU-1.23. It found that the ban on new wells conflicted with the SDWA because LU-1.23 necessarily banned wastewater injection. It also found that the new well ban was preempted because it would prevent plaintiffs from maintaining the "steam chest" that was "necessary to their profitable operation" and from drilling new wells for wastewater disposal purposes as permitted by section 3106 .

The court then addressed the facial takings claim. The court found that the exemption procedure provided for in Measure Z violated due process so plaintiffs were not required to exhaust administrative remedies. The court found that LU-1.22 and LU-1.23 would cause a facial taking as to those plaintiffs who had no active wells, but no remedy was necessary because those two provisions were preempted. As to those plaintiffs who had active wells, the court found no facial taking.

The court entered judgment and issued a writ of mandate directing the County to invalidate LU-1.22 and LU-1.23. PMC timely filed a notice of appeal from the judgment. ${ }^{6}$

III. DISCUSSION

A. State Law Preemption

PMC contends that the trial court erred in finding that LU-1.22 and LU-1.23 are preempted. Plaintiffs maintain that Measure Z^{7} is preempted under state law because it conflicts with section 3106.
"Under article XI, section 7 of the California Constitution, '[a] county or city may make and enforce within its limits all local, police, sanitary, and other ordinances and regulations not in conflict with general laws.' [q]] 'If otherwise valid local legislation conflicts with state law, it is preempted by such law and is void.' [Citations.] [q] 'A conflict exists if the local legislation " 'duplicates, contradicts, or enters an area fully occupied by general law, either expressly or by legislative implication.'", [Citations.] [[1] Local legislation is 'duplicative' of general law when it is coextensive therewith. [Citation.] [T] Similarly, local legislation is 'contradictory' to general law when it is inimical thereto. [Citation.] [\$] Finally, local legislation enters an area that is 'fully occupied' by general law when the Legislature has expressly manifested its intent to 'fully occupy' the area [citation], or when it has impliedly done so in light of one of the following indicia of intent: '(1) the subject matter has been so fully and completely covered by general law as to clearly indicate that it has become exclusively a matter of state concern; (2) the subject matter has been partially covered by general law couched in

[^9]such terms as to indicate clearly that a paramount state concern will not tolerate further or additional local action; or (3) the subject matter has been partially covered by general law, and the subject is of such a nature that the adverse effect of a local ordinance on the transient citizens of the state outweighs the possible benefit to the' locality [citations]." (Sherwin-Williams Co. v. City of Los Angeles (1993) 4 Cal.4th 893, 897-898, fn. omitted, italics added.) "The party claiming that general state law preempts a local ordinance has the burden of demonstrating preemption." (Big Creek Lumber Co. v. County of Santa Cruz (2006) 38 Cal.4th 1139, 1149 (Big Creek).) "Whether state law preempts a local ordinance is a question of law that is subject to de novo review." (Roble Vista Associates v. Bacon (2002) 97 Cal.App.4th 335, 339.)

The trial court found that Measure Z is preempted by state law because, among other things, Measure Z conflicts with section 3106, which not only permits and encourages the drilling of new wells and the use of wastewater injection but explicitly vests in the State the authority to permit this conduct. ${ }^{8}$ Since Measure Z prohibits all wastewater injection and bans new well drilling, the trial court found that section 3106 preempts Measure Z .

PMC argues that Measure Z is not preempted by state law because "California oil and gas statutes and regulations expressly acknowledge and affirm local authority, precluding a finding that the state has completely occupied the field," and "state law addresses only specific, technical aspects of oil and gas production, leaving local governments free to exercise their traditional authority over land use, health, and safety to protect communities from harm."

Plaintiffs' position, on the other hand, is that section 3106 "mandate $[s]$ that oil and gas producers be allowed to undertake wastewater injection projects properly approved
${ }^{8}$ As we determine that Measure Z conflicts with section 3106, we need not consider plaintiffs' claim that the State has preempted the field of oil and gas regulation.
by the Oil and Gas Supervisor and also be allowed to undertake oil and gas well drilling projects properly approved by the Oil and Gas Supervisor."

We begin with the text of section 3106:
"(a) The [State Oil and Gas] supervisor ${ }^{[9]}$] shall so supervise the drilling, operation, maintenance, and abandonment of wells and the operation, maintenance, and removal or abandonment of tanks and facilities attendant to oil and gas production, including pipelines not subject to regulation pursuant to Chapter 5.5 (commencing with [s]ection 51010) of Part 1 of Division 1 of Title 5 of the Government Code that are within an oil and gas field, so as to prevent, as far as possible, damage to life, health, property, and natural resources; damage to underground oil and gas deposits from infiltrating water and other causes; loss of oil, gas, or reservoir energy, and damage to underground and surface waters suitable for irrigation or domestic purposes by the infiltration of, or the addition of, detrimental substances. [[4] (b) The supervisor shall also supervise the drilling, operation, maintenance, and abandonment of wells so as to permit the owners or operators of the wells to utilize all methods and practices known to the oil industry for the purpose of increasing the ultimate recovery of underground hydrocarbons and which, in the opinion of the supervisor, are suitable for this purpose in each proposed case. To further the elimination of waste by increasing the recovery of underground hydrocarbons, it is hereby declared as a policy of this state that the grant in an oil and gas lease or contract to a lessee or operator of the right or power, in substance, to explore for and remove all hydrocarbons from any lands in the state, in the absence of an express provision to the contrary contained in the lease or contract, is deemed to allow the lessee or contractor, or the lessee's or contractor's successors or assigns, to do what a prudent operator using reasonable diligence would do, having in mind the best interests of the lessor, lessee, and the state in producing and removing hydrocarbons, including, but not
${ }^{9}$ Section 3004 provides: "'Supervisor' means the State Oil and Gas Supervisor."
limited to, the injection of air, gas, water, or other fluids into the productive strata, the application of pressure heat or other means for the reduction of viscosity of the hydrocarbons, the supplying of additional motive force, or the creating of enlarged or new channels for the underground movement of hydrocarbons into production wells, when these methods or processes employed have been approved by the supervisor, except that nothing contained in this section imposes a legal duty upon the lessee or contractor, or the lessee's or contractor's successors or assigns, to conduct these operations. [[1] (c) The supervisor may require an operator to implement a monitoring program, designed to detect releases to the soil and water, including both groundwater and surface water, for aboveground oil production tanks and facilities. [9] (d) To best meet oil and gas needs in this state, the supervisor shall administer this division so as to encourage the wise development of oil and gas resources." (§ 3106.)

We agree with plaintiffs that the text of section 3106 supports the trial court's preemption finding. Section 3106 identifies the State's policy as "encourag $[$ ing $]$ the wise development of oil and gas resources," and expressly provides that the State will supervise the drilling of oil wells "so as to permit" the use of "all" practices that will increase the recovery of oil and gas. (§ 3106, italics added.) In doing so, section 3106 plainly lodges the authority to permit "all methods and practices" firmly in the State's hands. Section 3106 makes no mention whatsoever of any reservation to local entities of any power to limit the State's authority to permit well operators to engage in these "methods and practices."

The legislative history of section 3106 is consistent with our understanding of the statute's text. Section 3106 was originally enacted in 1939 when the Public Resources Code was first created. (Stats. 1939, ch. 93, § 3106.) At that time, section 3106 provided: "The supervisor shall so supervise the drilling, operation, maintenance, and abandonment of wells as to prevent, as far as possible, damage to underground oil and gas deposits from infiltrating water and other causes, loss of oil and gas, and damage to
underground and surface waters suitable for irrigation or domestic purposes by the infiltration of, or the addition of, detrimental substances, by reason of the drilling, operation, maintenance, or abandonment of wells." (Stats. 1939, ch. 93, § 3106, p. 1112.) We see no indication in this original version of section 3106 of any preemption of local authority.

However, the language of subdivision (b) of section 3106, which is the critical one for our purposes, was added in $1961 .^{10}$ (Stats. 1961, ch. 2074, § 1.) It read essentially as it reads today. Subdivision (a) was amended in 1970 to require the supervisor to "prevent, as far as possible, damage to life, health, property, and natural resources . . ." (Stats. 1970, ch. 799, § 1, italics added.) While the 1970 amendment acknowledged the potential for negative local impacts from oil drilling operations, section 3106 continued to lodge the power to supervise these operations in the hands of the State.

In 1972, the text that is now subdivision (d) was added. (Stats. 1972, ch. 898, § 7.) The legislative history identifies the purpose of this amendment as "strengthen[ing] the role" of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), ${ }^{11}$ the State entity supervising oil drilling and operations, "in dealing with environmental problems." (Resources Agency's Enrolled Bill Rep. on Sen. Bill No. 1022 (1972 Reg. Sess.) August 11, 1972.) There have been no subsequent material amendments to section 3106 . 12

[^10]PMC argues that, despite the language of section 3106 lodging the authority to supervise and permit oil and gas operational "methods and practices" throughout the State, the State's statutes and regulations have "explicitly recognized and preserved local authority." Yet none of the statutes identified by PMC as preserving local authority reflect that the authority vested in the State by section 3106 to decide whether to permit oil and gas operational "methods and practices" is to be shared with local entities. ${ }^{13}$

PMC first points to section 3012, which provides: "The provisions of this division apply to any land or well situated within the boundaries of an incorporated city in which the drilling of oil wells is now or may hereafter be prohibited, until all wells therein have been abandoned as provided in this chapter." (§ 3012.) We note that section 3012 predates the enactment of subdivision (b) of section 3106. (Stats. 1939, ch. 93, § 3012, p. 1110.) What is important to observe about section 3012 is that while it recognizes that a city may ban oil operations entirely, at the same time it mandates that the State continue to exercise authority over any existing oil wells. It therefore provides no support for PMC's argument that the State has ceded to local entities any of the State's authority over oil drilling operational methods and practices.

PMC also directs our attention to section 3690 , which provides: "This chapter [(chapter 3.5)] shall not be deemed a preemption by the state of any existing right of cities and counties to enact and enforce laws and regulations regulating the conduct and location of oil production activities, including, but not limited to, zoning, fire prevention,

[^11]public safety, nuisance, appearance, noise, fencing, hours of operation, abandonment, and inspection." Although this language on its face might seem to provide some support for PMC's argument, its limitation to chapter 3.5 reflects otherwise. Chapter 3.5 concerns "unit operations," and consists of sections 3630 through 3690 , which obviously does not include section 3106. Thus, section 3690 's provision that chapter 3.5 does not preempt local regulations provides no support for the proposition that section 3106 does not preempt local regulation of oil drilling operational methods and practices.

PMC argues that the Legislature's 2013 enactment of Senate Bill No. 4 demonstrates that section 3106 does not preempt local authority over oil and gas drilling operational methods and practices. Senate Bill No. 4 addressed only "hydraulic fracturing and other well stimulation treatments," which are not at issue in this appeal. (Stats. 2013, ch. 313, § 1.) PMC identifies two provisions of Senate Bill No. 4 that, in PMC's view, preserved local authority. Section 3160, subdivision (n) provides: "This article [(article 3, sections 3150 through 3161, which concern well stimulation)] does not relieve the division or any other agency from complying with any other provision of existing laws, regulations, and orders." Section 3161, subdivision (b)(1)(C) concerns environmental review of an oil well operator's use of well stimulation pending the adoption of state regulations addressing well stimulation. Section 3161 provides that the environmental review of such use is to be done by DOGGR, but this subdivision provides that " $[t]$ his paragraph does not prohibit a local lead agency from conducting its own EIR."

PMC claims that section 3160, subdivision (n) requires compliance with local regulations, thereby implying that local entities retain the power to regulate oil drilling operational methods and practices. The narrow scope of section 3160, subdivision (n) belies this claim. That subdivision applies only to well stimulation and concerns the obligations of DOGGR and other agencies. Nothing in that subdivision implicates the provisions of section 3106, subdivision (b) that we find preempt Measure Z. Similarly,
section 3161 , subdivision $(\mathrm{b})(1)(\mathrm{C})$ is also limited to well stimulation and does not explicitly or implicitly grant local entities the power to regulate anything other than well stimulation, which is not at issue in this appeal. Clearly, the Legislature may choose to carve out some oil drilling operational methods and practices for the exercise of shared regulatory power between local entities and the State. At most, these statutes may show that the Legislature carved out well stimulation methods and practices as an area of shared regulatory authority.

PMC also suggests that there is no preemption because provisions in plaintiffs' leases require them to comply with local laws. The leases themselves are not state laws and cannot conflict with state laws. We see nothing in these standard lease provisions, requiring the operators to comply with all laws and regulations, to suggest that the State was ceding all or part of its authority under section 3106 , subdivision (b) to local entities.

PMC and the amici make much of a line of authority affirming that local regulation of oil and gas drilling is within the police power of local entities, and they argue that this line of authority rebuts any preemption claim.

California courts have long viewed local zoning regulation of oil and gas drilling to be within a local entity's police power. Nearly a century ago, the California Supreme Court reversed the dismissal of an action by an oil company against a city because the local regulation had targeted one oil company's land but not that of its competitors, but the court acknowledged that local regulation of "the business of operating oil wells" was properly within the local entity's police power. "A municipality is not permitted, under the guise of regulating business and segregating it to a particular district, to grant a monopoly to business establishments and enterprises already situated in unrestricted districts. [Citation.] The City of Huntington Beach has the unquestioned right to regulate the business of operating oil wells within its city limits, and to prohibit their operation within delineated areas and districts, if reason appears for so doing." (Pacific Palisades Asso. v. City of Huntington Beach (1925) 196 Cal. 211, 216-217.)

In Beverly Oil Co. v. City of Los Angeles (1953) 40 Cal.2d 552, an oil company challenged a city's ordinance banning new oil wells and prohibiting redrilling of existing wells to new depths. The California Supreme Court rejected the challenge. "It must be deemed to be well settled that the enactment of an ordinance which limits the owner's property interest in oil bearing lands located within the city is not of itself an unreasonable means of accomplishing a legitimate objective within the police power of the city." (Id. at p. 558, italics added.)

In Higgins v. City of Santa Monica (1964) 62 Cal.2d 24, the California Supreme Court considered whether a 1939 City of Santa Monica initiative prohibiting oil drilling could properly be applied to tidelands that the State had explicitly granted power over to the city. (Id. at pp. 26-28.) The Higgins court rejected the argument that state laws had preempted the field with respect to oil drilling on tidelands. It found that state laws limited to tidelands had expressly vested discretion in the city to decide whether there should be oil drilling on the tidelands. (Id. at p. 32.)

Hermosa Beach Stop Oil Coalition v. City of Hermosa Beach (2001) 86 Cal.App.4th 534 involved, among other things, whether a citizens' initiative banning oil drilling in the city was a valid exercise of the city's police power. (Id. at pp. 543-545, 548.) The court held: "Enactment of a city ordinance prohibiting exploration for and production of oil, unless arbitrary, is a valid exercise of the municipal police power." (Id. at p. 555.)

The mere fact that some local regulation of oil and gas drilling is within a local entity's police power does not resolve the question of whether a particular local regulation is preempted by a particular state law. If a local regulation conflicts with a state law, the local regulation exceeds the local entity's power. (Cal. Const. art. XI, § 7 ["A county or city may make and enforce within its limits all local, police, sanitary, and other ordinances and regulations not in conflict with general laws"].) With the exception of Higgins, none of these cases even considered whether an otherwise valid local
regulation was preempted by state law. Pacific Palisades predated the enactment of the Public Resources Code, and Beverly Oil predated the addition of the language that now appears in section 3106, subdivision (b). While Hermosa Beach came after the language that became subdivision (b) was added to section 3106, the Court of Appeal did not consider whether the local regulation was preempted. "[I]t is axiomatic that cases are not authority for propositions not considered." (People v. Alvarez (2002) 27 Cal.4th 1161, 1176.) Higgins considered a preemption argument, but that argument was limited to specific state laws concerning tidelands over which the State, in that case, had expressly granted the local entity full authority. We find no support for PMC's argument in this line of authority.

PMC contends that Measure Z's provisions are not preempted because "the state's oil and gas rules narrowly address only the manner in which operations are carried out, not whether or where oil and gas resources should be developed." PMC asserts that "state law's exclusive focus on the technical manner in which oil and gas production occurs leaves ample room for the exercise of local police power and land use authority." PMC argues that Measure Z controls only "where and whether" oil drilling occurs, which it contends are outside the purview of the State's laws.

PMC's myopic view of Measure Z's provisions cannot be reconciled with the actual import of those provisions. The trial court found that Measure Z "regulates the conduct of oil and gas operations" and "specific production technique[s]" rather than the use of land. We agree. Measure Z did not identify any locations where oil drilling may or may not occur. Instead, it permitted continued operation of existing wells but barred new wells and wastewater injection even if the new wells and wastewater injection would be on the same land as the existing operation. These provisions did not regulate "where and whether" oil drilling would occur on land in the unincorporated areas of the County
but rather what and how any oil drilling operations could proceed. ${ }^{14}$ Operations could proceed only if they involved no new wells and no wastewater injection, which are operational methods and practices.

An accurate characterization of Measure Z's provisions is at the crux of the dispute between PMC and plaintiffs. While Measure Z does not regulate many of the technical aspects of oil drilling operations addressed by the voluminous state statutes and regulations, it does ban activities that section 3106 not only promotes and encourages, but also explicitly places the authority to permit in the hands of the State. Consequently, Measure Z conflicts with section 3106. The fact that Measure Z repeatedly uses the words "use of land" and "land use" does not obliterate the inescapable fact that Measure Z would ban specific oil and gas drilling operational methods and practices that section 3106 places solely under the authority of the State.

PMC insists that Measure Z does not conflict with section 3106. ${ }^{15}$ It cites City of Dublin v. County of Alameda (1993) 14 Cal.App.4th 264 for the proposition that a state law that "permits but does not require" a particular practice does not preempt a local

[^12]entity from banning that practice. (Id. at p. 278.) In Dublin, a County initiative banned incineration and promoted recycling. A state law permitted incineration. The Court of Appeal found no preemption because "several sections of the [state] Act demonstrate that the decision to permit or disallow incineration is a matter for the discretion of each city or county." (Ibid.) The same cannot be said here. Although PMC argues otherwise, it has failed to identify any provision of state law that, contrary to section 3106 , reflects that the Legislature intended to reserve all or part of the authority to make decisions about whether an oil drilling operation should be permitted to drill new wells or utilize wastewater injection for the discretion of local entities. Instead, section 3106 explicitly encouraged all methods that would increase oil production, including wastewater injection, and, crucially, placed the decision-making power in the State.

PMC also relies on People ex rel. Deukmejian v. County of Mendocino (1984) 36 Cal.3d 476 (Mendocino). In that case, the California Supreme Court found that a local ordinance was not preempted because the state laws required compliance with local regulations and lodged "wide discretion" in local authorities, a situation which is not present here. (Id. at pp. 486-487.) The Mendocino case also did not involve a conflict between local and state law, but instead a question of field preemption. (Id. at pp. 486488.)

PMC contends that conflict preemption does not apply here because section 3106 does not "demand" what Measure Z "forbids." It argues that Measure Z "does not require the Supervisor to permit any specific practice." PMC misreads the authorities it cites.

In T-Mobile West LLC v. City and County of San Francisco (2019) 6 Cal.5th 1107, the California Supreme Court observed: " 'The "contradictory and inimical" form of preemption does not apply unless the ordinance directly requires what the state statute forbids or prohibits what the state enactment demands.' [Citations.] '[N]o inimical conflict will be found where it is reasonably possible to comply with both the state and
local laws.'" (Id. at p. 1121.) In T-Mobile, unlike here, the state statutes made no mention of the subject matter addressed by the local ordinance so there was no conflict. Here, section 3106 specifically addresses the drilling of wells and the injection of wastewater, encourages both practices, and, critically, explicitly places the authority to permit these methods and practices in the hands of the State. It is not possible for the authority to permit these methods and practices to rest in the State's hands if the local ordinance forbids these methods and practices. As the two laws conflict with respect to who controls the use of these methods and practices, the local ordinance must yield to the supreme state law.

PMC's reliance on Big Creek is also misplaced. The state law in Big Creek contained an express preemption clause that was limited to " 'the conduct of timber operations," " while at the same time "general forestry law . . . expressly recognize[d] local zoning authority." (Big Creek, supra, 38 Cal.4th at pp. 1151, 1157, italics added.) The local zoning ordinance limited timber operations to certain zoning districts. (Id. at p. 1157.) The California Supreme Court, noting that state law expressly favored permitting local entities " ، "the maximum degree of control over local zoning matters,"," held that the local zoning ordinance was not expressly preempted because it did not involve the "conduct" of timber operations. (Id. at pp. 1151-1157.) The court proceeded to consider whether the local zoning ordinance was impliedly preempted and decided that it was not. (Id. at p. 1157.)

PMC relies on the following passage: "[A] local ordinance is not impliedly preempted by conflict with state law unless it 'mandate[s] what state law expressly forbids, [or] forbid[s] what state law expressly mandates.' [Citation.] That is because, when a local ordinance 'does not prohibit what the statute commands or command what it prohibits,' the ordinance is not 'inimical to' the statute. [Citation.] Here, County's ordinances are not impliedly preempted by conflict with state forestry law because it is reasonably possible for a timber operator to comply with both. [9] The zone district
ordinance does not mandate what general forestry law forbids or forbid[] what general forestry law mandates. While the forestry laws generally encourage 'maximum sustained production of high-quality timber products . . . while giving consideration to' competing values (§ 4513), they do not require that every harvestable tree be cut. Accordingly, County's zoning ordinance does not conflict with state law simply because it may have the effect of placing some trees, at least temporarily, off limits to logging. Nor does it appear the Board has adopted for Santa Cruz, or any other county, rules that comprehensively address appropriate geographical locations within the county for timber harvesting." (Big Creek, supra, 38 Cal.4th at p. 1161, fn. omitted.)

Big Creek is not inconsistent with our analysis. Section 3106, unlike the state forestry laws in Big Creek, explicitly places the authority to permit new wells and wastewater injection in the hands of the State, while Measure Z bans those methods and practices. Measure Z is not a local zoning ordinance that simply regulates the location of oil drilling operations. Instead, it bans particular methods and practices. Thus, Measure Z forbids the State from permitting certain methods and practices, while section 3106 encourages those methods and practices and mandates that the State be the entity deciding whether to permit those methods and practices. The conflict here, unlike the situation in Big Creek, is not limited to a general State policy encouraging oil drilling and a local ordinance restricting where drilling may take place.

The fact that state law leaves room for some local regulation of oil drilling, such as zoning regulations identifying where oil drilling will be permitted in a locality, does not mean that the County has the authority to ban all new wells and all wastewater injection under Measure Z . ${ }^{16}$ " $[\mathrm{W}]$ hen a statute or statutory scheme seeks to promote a certain activity and, at the same time, permits more stringent local regulation of that activity,

[^13]local regulation cannot be used to completely ban the activity or otherwise frustrate the statute's purpose." (Great Western Shows, Inc. v. County of Los Angeles (2002) 27 Cal.4th 853,868 .) Here, section 3106 's provisions placing the authority to permit certain oil and gas drilling operational methods and practices in the hands of the State would be entirely frustrated by Measure Z's ban on some of these methods and practices. We conclude that Measure Z is preempted by state law. It follows that we need not consider PMC's challenges to the trial court's rulings that Measure Z is invalid on federal preemption and takings grounds. ${ }^{17}$

B. Evidentiary Issues

PMC contends that the trial court denied it "a fair trial" because the court admitted irrelevant evidence proffered by plaintiffs and denied PMC and the County the opportunity to "contest Plaintiffs' evidence through discovery and cross-examination."

At the outset of the case, the court expressed the view that "discovery on the validity and preemption issues" was not "necessary" because these were "questions of law." PMC expressly agreed. When the court decided to have a Phase 1 trial that would "be limited to challenges to the validity of the ordinance on its face," which included the preemption and takings issues, the court envisioned little need for discovery or evidence. Plaintiffs sought to provide "some information about our operations." They argued that evidence was essential to show that Measure Z would take "all the economically viable use" of the property. The County and PMC disagreed. Their position was that such information would be beyond the scope of a facial challenge. The court suggested that there was a middle ground that could be addressed by means of a stipulated set of facts, since it needed "a basic understanding of what . . . the permits that are issued allow." At the same time, the court took the position that "I don't need testimony at this phase."

[^14]Plaintiffs filed many declarations and requests for judicial notice in support of their Phase 1 arguments along with many exhibits. ${ }^{\mathbf{1 8}}$ The County filed a declaration and a request for judicial notice in support of its Phase 1 opposition argument. PMC filed a request for judicial notice of 13 items in support of its Phase 1 opposition argument.

PMC also filed written objections to plaintiffs' declarations. ${ }^{19}$ PMC complained generally that, due to the lack of discovery, it had been deprived of the opportunity to challenge the information in the declarations. PMC also made voluminous specific objections based on lack of foundation, relevancy, improper legal opinion, speculation, the secondary evidence rule, "inadmissible opinion," and "improper opinion." The County joined in those objections and made some of its own. Plaintiffs challenged these objections. They also objected to some of the evidence offered by the County and PMC.

The Phase 1 trial was limited to standing, preemption, facial takings, due process procedural and vagueness challenges (to the procedures for resolving takings claims), a single-subject challenge, and general plan consistency challenges. ${ }^{20}$ At the commencement of the trial in November 2017, the court noted that it had "read voluminous materials about 2 feet thick" that included not only opening statements but also "deeds to property and mineral rights; declarations from geologists and petroleum engineers; materials from the Environmental Protection Agency, [DOGGR], and the state

[^15]Water Resources Control Board; declarations from former officials with [DOGGR]; ballot measure materials and photos of campaign materials and news clips, which is not to say that all of the above are admissible." The court noted that much of this material was related to standing. The court "reassure[d]" PMC "that you're not waiving your objections by failing to repeat them here in the court. We don't need to take the time to do that." The court made specific rulings on the evidentiary objections in its statement of decision, sustaining some and overruling others. The court pointed out that much of plaintiffs' evidence was needed only because PMC had ultimately contested standing.

As PMC concedes, "[p]reemption presents a pure question of law." Indeed, PMC asks us to disregard the evidence to which it objects and decide the issues as a matter of law. None of the evidence to which PMC objects has any relevance to the state law preemption issue that we find dispositive in this case. Consequently, PMC's claims that the trial court erred in admitting irrelevant evidence and denying discovery and crossexamination could not provide a basis for reversal because PMC could not have been prejudiced by any of the evidentiary or discovery rulings that it challenges. It follows that we need not devote any analysis to these contentions as we have disregarded this evidence and decided this case as a matter of law.

IV. DISPOSITION

The judgment is affirmed.

ELIA, J.

WE CONCUR:

Trial Court:	Monterey County Superior Co Superior Court No.: 16CV003
Trial Judge:	Honorable Thomas W. Wills
Counsel for Plaintiffs and Respondents: CHEVRON U.S.A., INC. et al.	Jeffrey David Dintzer Alston \& Bird
	Theodore Joseph Boutrous Gibson Dunn \& Crutcher Todd Welden Smith Ragghianti Freitas
Counsel for Plaintiff and Respondent: AERA ENERGY LLC	Andrew A. Bassak Hanson Bridgett
Counsel for Plaintiff and Respondent: CALIFORNIA RESOURCES CORPORATION	Matthew Thomas Kline Heather A. Welles O’Melveny \& Myers Barton Hurst Thompson
Counsel for Plaintiff and Respondent: EAGLE PETROLEUM, LLC	Donald Charles Oldaker Clifford and Brown
Counsel for Plaintiff and Respondent: TRIO PETROLEUM, LLC	Jason Stuart Retterer JRG Attorneys at Law
Counsel for Plaintiff and Respondent: NATIONAL ASSOCIATION OF ROYALTY OWNERS-CALIFORNIA, INC.	Edward Shield Renwick Hanna and Morton Jacqueline M. Zischke

Counsel for Interveners and Appellants: PROTECT MONTEREY COUNTY et al.,	Michael Geibelson
	Bernice Conn
	Lucas A. Messenger
	Robins Kaplan
	Deborah A. Sivas
	Alicia E. Thesing
	Mills Legal Clinic at Stanford Law School
	Hollin N. Kretzmann
	Center for Biological Diversity
	Catherine Engberg
	Kevin Patrick Bundy
	Aaron M. Stanton
	Shute, Mihaly \& Weinberger
Counsel for Amicus Curiae:	Katherine S. Hoff
COMMUNITIES FOR A BETTER ENVIRONMENT	Shana D.G. Lazerow
Counsel for Amicus Curiae: CENTER ON RACE, POVERTY \& THE ENVIRONMENT; COMMITTEE FOR A BETTER ARVIN	Paulina Nicole Torres
Counsel for Amicus Curiae:	Sean Bernard Hecht
LEAGUE OF CALIFORNIA CITIES;	UCLA School of Law
CALIFORNIA STATE ASSOCIATION	
OF COUNTIES	Benjamin Avi Harris
	Chambers of Judge Stephen V. Wilson

Counsel for Amicus Curiae: COMMUNITIES FOR A BETTER ENVIRONMENT

Michael Geibelson
Bernice Conn
Lucas A. Messenger
Robins Kaplan

Deborah A. Sivas
Alicia E. Thesing
Mills Legal Clinic at Stanford Law School
Hollin N. Kretzmann
Center for Biological Diversity
Catherine Engberg
Kevin Patrick Bundy
Aaron M. Stanton
Shute, Mihaly \& Weinberger
Katherine S. Hoff
Shana D.G. Lazerow

Paulina Nicole Torres

Sean Bernard Hecht
UCLA School of Law

Benjamin Avi Harris
Chambers of Judge Stephen V. Wilson

CALIFORNIA OIL \& GAS FIELDS
 Volume II - Southern, Central Coastal, and Offshore California Oil and Gas Fields (CD-1)

Contour maps, cross sections, and data sheets for

 California's oil and gas fields

Data for these fields are published in the following volumes
(and may be purchased in CD format):
Volume I, 1998, 499 pages (Central California)
Volume II, 1992, 645 pages (Southern, Central, and Offshore California)
Volume III, 1982, 330 pages (Northern California)
© California Department of Conservation
Division of Oil, Gas, and Geothermal Resources

A USERS GUIDE

Geological and statistical data are available in this document for most oil and gas fields in California. For each field, a contour map and a cross section page will appear, followed by a page of statistical data. Most fields have two pages of information, but larger fields have more. The information is current to the date at the foot of each page.

Oil and gas field information can be accessed with the alphabetized list of oil and gas fields (next page). Oil and gas fields are accessible by clicking on the name of the appropriate field.

Southern \& Central	Fillmore	Mesa
Coastal California	Four Deer	Mission
Alegria	Gaffey	Monroe Swell
Aliso Canyon	Glen Annie Gas	Montalvo, West
Alondra	Goleta	Montebello
Anaheim	Guadalupe	Moorpark
Arroyo Grande	Harris Canyon, Northwest	Moorpark, West
Bandini	Hasley Canyon	Morales Canyon
Bardsdale	Holser	Newgate
Barham Ranch	Honor Rancho	Newhall
Beverly Hills	Hopper Canyon	Newhall-Potrero
Big Mountain	Horse Meadows	Newport
Bouquet Canyon	Howard Townsite	Newport, West
Boyle Heights	Huasna	Oak Canyon
Brea-Olinda	Huntington Beach	Oak Park
Buena Park, East	Hyperion	Oakridge
Buena Park, West	Inglewood	Oakview
Canada Larga	Jesus Maria	Oat Mountain
Canton Creek	King City	Ojai
Capitan	Kraemer	Olive
Careaga Canyon	Kraemer, Northeast	Orcutt
Cascade	Kraemer, West	Oxnard
Casmalia	La Goleta Gas	Pacoima
Castaic Hills	La Mirada	Paris Valley
Castaic Junction	Lapworth	Piru
Cat Canyon	Las Cienegas	Piru Creek
Chaffee Canyon	Las Llajas	Placerita
Charlie Canyon	Las Posas	Playa Del Rey
Cheviot Hills	Las Varas Canyon	Point Conception
Chino-Soquel	Lawndale	Potrero
Conejo	Leffingwell	Prado-Corona
Coyote, East	Lompoc	Quinado Canyon
Coyote, West	Long Beach	Ramona
Cristianitos Creek	Long Beach Airport	Ramona, North
Cuyama, Central	Long Canyon	Refugio Cove Gas
Cuyama, South	Lopez Canyon	Richfield
Del Valle	Los Alamos	Rincon
Dominguez	Los Angeles City	Rincon Creek
El Rio	Los Angeles Downtown	Rosecrans
El Segundo	Los Angeles, East	Rosecrans, East
Elizabeth Canyon	Lynch Canyon	Rosecrans, South
Elwood	Lyon Canyon	Rowland
Esperanza	Mahala	Russell Ranch
Eureka Canyon	McCool Ranch	Salt Lake

Salt Lake, South Wilmington
San Ardo
San Clemente
Yorba Linda
Zaca
San Miguelito
San Vicente
Sansinena
Santa Clara Avenue
Santa Fe Springs
Santa Maria Valley
Santa Paula
Santa Susana
Saticoy
Saugus
Sawtelle
Seal Beach
Sespe
Sherman
Shiells Canyon
Simi
Sisquoc Ranch
Somis
South Mountain
Summerland
Sunset Beach
Talbert
Tapia
Tapo, North
Tapo Canyon, South
Tapo Ridge
Taylor Canyon
Ventura
Temescal
Timber Canyon
Torrance
Torrey Canyon
Turnbull
Union Station
Venice Beach
Ventura
Walnut
Wayside Canyon
West Mountain
Whittier
Whittier Heights, North

Offshore

Federal Offshore
Beta Offshore
Dos Cuadras Offshore
Hondo Offshore
Hueneme Offshore
Pitas Point Offshore
Point Arguello Offshore
Point Perdernales
Offshore
Santa Clara Offshore
Sockeye Offshore
State Offshore
Alegria Offshore
Belmont Offshore
Caliente Offshore
Capitan Offshore
Carpenteria Offshore
Coal Oil Point Offshore
Conception Offshore
Cuarta Offshore
Elwood Offshore
Elwood, South, Offshore
Gaviota Offshore
Huntington Beach
Offshore
Molino Offshore Gas
Montalvo, West, Offshore
Naples Offshore Gas
West Newport Offshore
Point Conception Offshore
Rincon Offshore
Summerland Offshore
Torrance Offshore
Venice Beach Offshore
Wilmington Offshore

CALIFORNIA OIL AND GAS FIELDS

VOLUME II Southern, Central Coastal, and Offshore California

Sacramento

Third Edition 1991
Reprinted 1982
Second Edition 1974
First Edition 1960

Division of Oil and Gas

OIL AND GAS DISTRICT BOUNDARIES
 of the
 Division of Oil and Gas

DIVISION OF OIL AND GAS

M. G. MEFFERD, State Oil and Gas Supervisor

DATA SHEETS

Discovery Well and Deepest Well Data - The discovery well listed is the discovery well for the field or area. The total depth for the deepest well is the drilled depth. If the well is directional, the true vertical depth is given under the remarks section.

Pool or Zone Data - Pools are listed in stratigraphic sequence, from left to right. Properties that are not available on a pool basis are listed under the field or area column. The average depth means the average area or field depth to the top of the productive zone. The average net thickness means the average productive thickness of the zone and is only an approximation.

Reservoir Rock and Fluid Properties - Values calculated from logs are footnoted as such. Values without footnotes are derived from core or sidewall sample data. Ranges are given where applicable.

DATA SHEET ABBREVIATIONS

abd.	abandoned	Mio.	Miocene
B\&M	Base and Meridian	MSCF/ac.-ft.	1,000 standard cubic feet per acre-foot
bbl	barrel of oil (42 U.S. gallons)	N. A.	not available
Btu	British thermal unit		not avalable
Btu/cu. ft.	British thermal units per cubic foot		not applicable
cem.	cemented	ohm/m	ohm-meter
cp	centipoise	Olig.	Oligocene
	centois	Paleoc.	Paleocene
Cret.	Cretaceous		
E or e	early	Pleis.	Pleistocene
		Plio.	Pliocene
Eo.	Eocene	ppm	parts per million
${ }^{\circ} \mathrm{F}$	degrees Fahrenheit		
ft .		psig	pounds (gauge) per square inch
FVF	formation volume factor	R_{w}	water resistivity, ohm-meter
GOR	gas-oil ratio	RE3/STB	reservoir barrels per stock tank barrel
$\mathrm{gr} / \mathrm{gal}$	grains per gallon	SE3	San Bernardino
H	Humboldt		
Holo.	Holocene	SCF/STB	sarrel
in.	inch	Sg_{i}	initial gas saturation
Jur.	Jurassic	SO_{i}	initial oil saturation
L or I	late	STB/ac.-ft.	stock tank barrels per acrefoot
M or m	middle	Sw	initial water saturation
Mcf	1,000 cubic feet	undiff.	undifferentiated
md	millidarcies		
MD	Mount Diablo		

INDEX MAPS AND GENERALIZED CROSS SECTIONS, CENTRAL COASTAL CALIFORNIA

INDEX MAPS AND
 GENERALIZED CROSS SECTIONS, SOUTHERN CALIFORNIA

INDEX MAP D

SOUTHERN AND CENTRAL COASTAL CA. MAPS AND DATA SHEETS

ALEGRIA OIL FIELD

(Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Cal-L Exploration Corp. "Alegria" 3	L.E. Broadhurst "Mercedes-Fox" 2	31 5 N 32 W	SB	$\begin{gathered} 4,063 \\ \underline{a} / \end{gathered}$	Rincon	
Deepest well	Cal-L Exploration Corp. "Alegria' 2	Barnwell Drilling Co., Inc. "Hollister" 2	315 N 32 W	SB	6,974		Sacate Eocene

Base of fresh water (ft.): $\quad 100$
Remarks: Field was abandoned in December 1974. Cumulative production is 7,362 bbl of oil and 12,929 Mcf of gas. a/ Directional well; true vertical depth on present hole is unavailable; no survey on file.

Selected References: Barton, C.L., 1965, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 51, No. 2 Yerkes, R.F., Wagner, H.C., and Yenne, K.A., 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Porter" 1	Tidewater Associated Oil Co. "Porter" 1	27 3N 16W	SB	5,393	Porter Sesnon	
Deepest well	Southern California Gas Co. "SFZU" SS-17	Tidewater Associated 0il Co. "Standard Sesnon" 1-17	283 N 16 W	SB	12,417		undiff. Marine Cretaceous

ITEM	POOL DATA					$\begin{aligned} & \text { FIELD OR } \\ & \text { AREA DATA } \end{aligned}$
	ALISO	ALISO, WEST	PORTER- DEL ALISO A-36	PORTER, WEST	$\begin{gathered} \text { MISSION- } \\ \text { ADRIAN } \end{gathered}$	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation \qquad Geologic age \qquad Average depth (ft.) \qquad Average net thickness (ft.) Maximum productive area (acres) \qquad	April 1950 510 154 1,260 130 1,206 664 Pico Pliocene 4,150 .89	November 1950 \qquad	October 1938 700 200 1,795 144 1,160 1,040 Pliocene 5,050 160	1938 - - 1,780 145 - Pico Pliocene 5,673 150	Prior to 1950 $\begin{array}{r} - \\ - \\ \text { Pico } \\ \text { Pliocene } \\ 7,100 \\ 400 \end{array}$	
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad $\mathbf{S g i}$ (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 21.3-29.0 \\ 36 \\ 765 \end{array}$	-	$\begin{array}{r} 21.3-22.7 \\ 51 \\ 22 \\ 27 \\ 67-89 \end{array}$	$\begin{array}{r} 26.4 \\ 27 \\ 485 \end{array}$	- - -	
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ} \mathrm{API}$) \qquad Sulfur content (\% by wt.) \qquad Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB) \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value ($\mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$.) Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$		$\begin{array}{r} 11.0 \\ - \\ - \\ - \\ - \\ - \\ \hline \end{array}$	$\begin{gathered} 23.5 \\ - \\ 900 \star \star \\ 1.144 \\ 1,640 \\ 4.5 @ 144 \\ \\ 0.70 \\ 1,050 \\ \\ 14,000 \\ 15,000 \end{gathered}$	$\begin{array}{r} 1.1 \overline{3} \\ 7,644 \\ 4.5 \quad 144 \end{array}$ 0.70	29.0	
ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects Date started \qquad Date discontinued \qquad			$\begin{array}{r} \text { waterflood } \\ 1976 \\ \text { active } \end{array}$			
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year \qquad						$\begin{array}{r} 2,845,485 \\ 1955 \\ 9,162,055 \\ 1971 \end{array}$

Base of fresh water (ft.): 100-800
Remarks: Storage of gas in the Sesnon-Frew zones began in 1973.

Selected References: Hodges, F.C., and E.R. Murray-Aaron, 1943, Newhall-potrero, Aliso Canyon, Del Valle, and Oak Canyon Oil Fields: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil fields, Vol. 29, No.
Ingram, W.L., 1959, Aliso Canyon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 45, No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

ALONDRA OIL FIELD

CRET OR OLDER $\}$		tertiary				SYSTEM
		UPPER MIOCENE		LOWER PLIOCENE	UPPER PLIOCENE	SERIES
L MOHNIAN $\}$,	UPPER MOHNIAN	delmontian	REPETTIAN		Stage
CATALINA SCHIST	$\xrightarrow{\text { SCHIST }}$ CONGL			"REPETto"	"PICO"	FORMATION 8. MEMBER
	(1)					
	$\stackrel{\circ}{\circ}$	\%	هे	8	\square	

CONTOURS ON TOP OF SCHIST CONGLOMERATE
SCALE: $\left.\right|^{"=2400^{\prime}}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pauley Petroleum Inc. "Bodger" 1	The British-American $0 i 1$ Producing Co. "Bodger" 1	223514 W	SB	9,154	Schist conglomerate	
Deepest well	Pauley Petroleum Inc. "Village Community" 2	The British-American Oil Producing Co. "Village Conmunity" 2 a/	223514 W	SB	9,472		Catalina Schist Cret. or older

Base of fresh water (ft.): $\quad 2,250$
Remarks: $\quad \underline{a} /$ Directional well; true vertical depth is 9,295 feet.

Selected References: White, J.L., 1950, Lawndale 0il Field and Alondra Area: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 36 No. 2.

ANAHEIM OIL FIELD

(Abandoned)

ARROYO GRANDE OIL FIELD

COUNTY: SAN LUIS OBISPO

ARROYO GRANDE OIL FIELD

(SEE AREAS FOR ADDITIONAL INFORMATION)

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks: a/ Initial production unknown. First recorded production is 8 BOPD in January 1920.
Remarks: Adams, E.W. and W.E. Beatty, 1962, Bituminous Rocks in California; Calif. Div. of Mines and Geology, Vol. 15, No. 4, p. 1.
Arnold, R. and R. Anderson, 1907, Geology and Oil Resources of the Santa Maria Oil District, Santa Barbara County, Calif.: U.S Geological Survey Bull. 322, p. 107
Krueger, M.L., 1938, Arroyo Grande (Edna) Oil Field: Calif. Div. of Mines Bull. 118, p. 450.
Lawrence, E.D., 1958, Arroyo Grande (Edna) Oil Field: Calif. Div. of Oil and Gas, Summary of Ops.--Calif. 0il Fields, Vol. 44, No. 1 , p. 41 McLaughlin. R.P. and C.A. Waring, 1914, Petroleum Industry of California: Calif. Mining Bureau Bul1. 69, p. 430.
Page, B.M. and others, 1944 , Geology of the Bituminous Sandstone Deposits Near Edna, San Luis Obispo County, Calif.: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 16.
Shea, G.B. and R.V. Higgins, 1945, Laboratory Study of Hotwhater Process for Separating Hydrocarbons From Surface Deposits of
Bituminous Sandstones near Edna, California: U.S. Bur. Mines Rpt. Inv. 4246.
Vander Leck, L., 1921, Petroleum Resources of California: Calif. State Mining Bureau Bull. 89, p. 95.
county: SAN LUIS OBISPO
ARROYO GRANDE OIL FIELD OAK PARK AREA
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Deuel Petroleum Co., Inc. "Rauschenplat" 6	McKeon Drilling Co., Inc. "Elberta" 2	5 32S 13E	MD	3,586	Martin	
Deepest well	C.W. Colgrove "Elberta" 1-5	Same as present	5 32S 13E	MD	10,142		Monterey Miocene

Base of fresh water (ft.): $700-1,200$
Remarks: The water in the Elberta sand contains 26 ppm boron and is unsuitable for irrigation. a/ No early production recorded.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \end{aligned}$ (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Grace Petroleum Corp. "Tiber" 1	Tiber Pacific Oil Co. "Tiber" 1	6 32S 13E	MD	3,172	Dollie	
Deepest well	Taft Well Drilling Co. Well No. 4	Dollie Adams Well No. 4	$3131513 E$	MD	$\begin{array}{r} 4,297 \\ \underline{a} / 4 \end{array}$		Monterey Miocene

Base of fresh water (ft.): $\quad 700-1,200$
Remarks:
Monterey Fm. was used for water disposal purposes in this area
Produced water from the Dollie zone has a high concentration of sodium bicarbonate.
a/ Originally drilled to a total depth of 899 feet in 1934, and later deepened in 1939 (?).
$\bar{c} /$ Commingled with production from the Martin zone.

Selected References:

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth	
Discovery well								
Deepest well								

Base of fresh water (ft .): 1,100
Remarks: a/ Initial production commingled with Buckbee zone.

Selected References:

BARDSDALE OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Robertson" 2	Same as present	123 N 20 W	SB	685	Sespe	
Deepest well	Union Oil Co. of Calif. "IrwinBerylwood" 5	Same as present	13 N 20 W	SB	16,457		Pico Pliocene

Base of fresh water (ft.): None south of the Oakridge fault; 550 feet deep north of the Oakridge fault.
Remarks:

Selected References: Godde, H.A., 1924, Oil Fields of Ventura County: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 10 , No. 5.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Barham-Boyne 0 il Co., Inc. "Barham" 1	Whittier Associates "Barham" 1	117 N 32 W	SB	4,847	Monterey ${ }^{\text {a/ }}$	
Deepest well	Oryx Energy Co. "Blair" 5	Sun Exploration and Production Co. "Blair" 5	47 N 32 W	SB	$\begin{array}{r} 12,500 \\ b / \end{array}$		Monterey Miocene

Base of fresh water (ft.): None
Remarks: a/ Includes the Arenaceous and Cherty zones.
a/ Includes the Arenaceous and Cherty zones.

Selected References

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Triton 0il and Gas Corp. "B1air" 1	American Pacific Internationa1, Inc. "Blair" 1	37 N 32 W	SB	$\begin{array}{r} 5,187 \\ \underline{a} / \end{array}$	Monterey	
Deepest well	Oryx Energy Co. "Blair" 5	Sun Exploration and Production Co. "Blair" 5	47 N 32 W	SB	$\begin{array}{r} 12,500 \\ b / \end{array}$		Monterey Miocene

Base of fresh water (ft.): None
Remarks: a/Directional well; true vertical depth is 5,094 feet.
a/ Directional well; true vertical depth is 5,094 feet.
$\underline{\text { b/ }}$ Directional well; true vertical depth is 12,212 feet.

Selected References:

BEVERLY HILLS OIL FIELD
East Area

BEVERLY HILLS OIL FIELD EAST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Occidental Petroleum Corp. "West Pico" 7	Same as present	30 1S 14W	SB	8,467	$\begin{aligned} & \text { "Repetto" } \\ & \text { sands } \end{aligned}$	
Deepest well	Chevron U.S.A. Inc. "S-54"	Standard 0il Co. of Calif. "S-54"	29 1S 14W	SB	12,683		Modelo late Miocene

Base of fresh water (ft.): 500
Remarks: $\quad \alpha / D / M$ and Main zone production commingled.
All present drilling is done from sound-proofed urban drillsites.

Selected References:

BEVERLY HILLS OIL FIELD
 West Area

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	W.W. Orcutt, well number unknown	Same as present	$\begin{gathered} 25 \text { or } 26 \\ 1 \mathrm{~S} \text { 15W } \end{gathered}$	SB	unk.	Wolfskill	
Deepest well	Chevron U.S.A. Inc. "Twentieth Century Fox" 27-F	Gulf 0il Corp. of Calif. "Aladdin" 27 E		SB	12,000		Modelo late Miocene

Base of fresh water (ft.): $\quad 500$
Remarks: Nearly all recent wells have been directionally drilled from sound-proofed drillsites.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Union-Getty-Tapo-Simi" 2	Same as present	19 3N 18W	SB	6,997	Sespe	
Deepest well	Union Oil Co. of Calif. "Big Mountain A" 1-19	Same as present	19 3N 18W	SB	9,435		Llajas Eocene

Base of fresh water (ft.): None
Remarks:

Selected References:

countr: LOS ANGELES
BOUQUET CANYON OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Edward Lustgarten "Lucky Lusty" 1	Same as present	14 4N 16W	SB	2,982	Bouquet Canyon	
Deepest well	Edward Lustgarten "Lucky Lusty" 4	Same as present	14 4N 16W	SB	5,473		Mint Canyon late Miocene

Base of fresh water (ft.): 700
Remarks: Field abandoned in 1971. Cumulative production is 8,528 bbl of oil.

Selected References: Zulberti, J.L., 1967, Bouquet Canyon 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -. Calif. Oil Fields, Vol. 53, No. 2, Part 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	ARCO Oil and Gas Co. "Industrial Community" 1-1	Richfield Oil Corp. "Boyle Indistrial" 1	35 1S 13W	SB	3,492	Puente sands	
Deepest well	ARCO 011 and Gas Co. "Evergreen" 1	Richfield Oil Corp. "Industrial Community" 1A-1	35 IS 13W	SB	4,360		Puente late Miocene

Base of fresh water (ft.): 200
Remarks: Last production was in September 1973. The field was abandoned in December 1973. Cumulative production is 273,000 bbl of oil and 113,000 Mcf of gas.

Selected References: A.A.P.G.-S.E.P.M. Guidebook, 1958 Joint Annual Meeting, Los Angeles, Calif.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Operator and well number unknown	Puente 0il Co. and Rowlard \& Lacy well number unknown	35 2S 10W	SB	unk.	E, F	
Deepest well	Shell 0 il Co. "Menchego" 36	Same as present	13 S 10W	SB	12,012		Puente late Miocene

Base of fresh water (ft.): $0-1,300$
Remarks:

Selected References: Gaede, V.F., R.V. Rothermel, and L.H. Axtell, 1967, Brea-01inda 0il Field: Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 53, No. 2, Part 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Oil Corp. "Heath" 1	General Petroleum Corp. of California "Heath" 1	34 3S ITW	SB	11,422	Heath	Topanga middle Miocene
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water ($\mathbf{f t}$.): $\quad 3,100$
Remarks: Last production was in January 1950. The field was abandoned in November 1950. Cumulative production is 50,000 bbl of oil and 17,000 Mcf of gas. Well "Heath" 1 was the only well in the field.

Selected References:

CONTOURS ON L ELECTRIC LOG MARKER
SCALE $\left.\right|^{\prime \prime}=1050^{\circ}$

COUNTY: VENTURA
CANADA LARGA OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Estate of R.E. Barrett "A.C.L." 1	Bell and Burden "A.C.L." 1	$364 N 23 W$	SB	5,770	Q	Santa Margarita late Miocene
Deepest well	Same as above	"	"	"	"	"	${ }^{\prime \prime}$

Base of fresh water (ft.): 280
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery weil	International Oil \& Mining Co. "Engman" 14-2	Harold C. Morton \& H.S. Kohlbush "Engman" 1	145 N 18 W	SB	2,775	unnamed	Vaqueros Miocene
Deepest well	Same as above	"	"	"	"	"	${ }^{\prime}$

Base of fresh water (ft .): None
Remarks: The field was abandoned in 1961 and reactivated in 1964.

Selected References: Ledingham, G.W., 1968, Canton Creek Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 54, No. 2, Part 2 .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Erburu" 1	General Petroleum Corp. "Erburu" 1	54 N 30 W	SB	1,446	Vaqueros	
Deepest well	Shell Western Expl. \& Prod. Inc. "Covarrubias 1" 51	Shell 0 il Co. "Covarrubias 1" 51	325 N 30 W	SB	10,216		Sacate Eocene

Base of fresh water (ft.): See areas
Remarks:

> Selected References:
> Dolman, S.G., 1929, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 15, No. 3. Kribbs, G.R., 1943, Capitan Oil Field: Calif. Div. of Mines Bull. 118, p. 374-376.
> Yerkes, R.F., H.C. Wagner, and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

Sheet 2 of 2

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well		.					
Deepest well							

Base of fresh water (ft.):
Remarks: $\quad \underline{a} / W e l l$ drilled and open-hole tested in January 1945 at $1,620 \mathrm{bbl} /$ day of oil and 1,200 Mcf/day of gas. Perforated in April 1946 with no reported production, and later reperforated. First production reported in November 1946.

Selected References

CONTOURS ON TOP OF MONTEREY

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Kenneth H. Hunter, Jr. "Careaga" 1	Empire State 0il Co. "Careaga" 1	218 N 33 W	SB	9,641	Monterey	
Deepest well	Coastal 0 i1 \& Gas Corp. "Sharkey" 1	Same as present	138 N 34 W	SB	$\left.\begin{array}{r} 12,800 \\ a / \end{array} \right\rvert\,$		Lospe Miocene

POOL DATA

Base of fresh water (ft.): See areas
Remarks: a/ Directional well; true vertical depth is approximately 12,700 feet.

Selected References:

CAREAGA CANYON OIL FIELD OLD AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Kenneth H. Hunter, Jr. "Careaga" 1 Same as above	Empire State 0il Co. "Careaga" 1	$218 \mathrm{~N} \mathrm{33W}$	$\overline{S B}$	$9,641$	Monterey	Point Sal Miocene "

Base of fresh water (ft.): $\quad 1,350$
Remarks: The only producing well in area was drilled, tested, and suspended by Empire State 0il Co. in 1971-1972. Well was abandoned by Ashland 0il Co. in 1973. Well was reentered and completed by Teal Petroleum Co. in 1976.

Selected References:

CASCADE OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	MCOR 0il \& Gas Corp. "Mission-Visco" 1	C.W. Teater "Teater-Wadley" 1	25 3N 16W	SB	2,766	Cascade	
Deepest welf	MCOR Oil \& Gas Corp. "Mission0'Melveny" 12	Same as present	253 N 16 W	SB	10,026		Modelo late Miocene

Base of fresh water (ft.): 950
Remarks: The field name was derived from a nearby aerating spillway of the Los Angeles aqueduct.

[^16]

CONTOURS ON TOP OF MONTEREY

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Kern Trading \& 011 Co. "S.P." 1	Same as present	24 9N 35W	SB	2,750	Monterey	
Deepest well	Celeron 0il \& Gas Co. "Hartnell" 1-21	Northern Michigan Exploration Co. "Hartnel1" 1-21	21 9N 34W	SB	$\begin{array}{r} 10,700 \\ a / \end{array}$		Point Sal Miocene

Base of fresh water (ft.): None
Remarks: a/ Directional well, true vertical depth is 10,638 feet.
Arnold, R., and R. Anderson, 1907, Geology and 011 Resources of the Santa Maria District, Santa Barbara Co., Calif.: U.S. Geol. Survey Bull. 32, p. 98
Bell, H.W., 1920, Casmalia Oil Field: Calif. State Mining Bureau, Summary of Operations--Calif. 0il Fields, Vol. 5, No. 10 , p. 10
Bell, H.W., 1918, Santa Barbara, San Luis Obispo, Monterey and Santa Clara Counties: Calif. State Mining Bureau Bull. 84, p. 361.
Gore, F.D., 1922, Method of Handling Heavy Crude in the Casmalia Oil Field: Calif. State Mining Bureau, Summary of Operations-Calif.
Oil Fields, Vol
Hamilton, F., 1913, Petroleum in Southern California: Calif. State Mining Bureau, Bult. No. 63, p. 342.
Porter, W.W., II, 1941, Casmalia 0il Field: Calif. State Div. of Mines, Bull. 118, p. 430.
Regan, L.J., Jr., and A.W. Hughes, 1949, Fractured Reservoirs of Santa Maria District, Calif.: A.A.P.G. Bull. Vol. 33, No, 1, p. 32.
Woodring, W.P., and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria District, Calif.: U.S.G.S. Prof. Paper 222 , p.i21.

CASTAIC HILLS OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Decalta International Corp. "CHU" 1-35	Ted Sterling, Operator "Rynne-Fisher" 1	35 5N 17W	SB	4,742	$\begin{aligned} & \text { Sterling } \\ & \text { East } \end{aligned}$	
Deepest well	Decalta International Corp. "CHU" 75-35	Standard Oil Co. of Calif. "Golden" 75-2	35 5N 17W	SB	8,988		Modelo Miocene

Base of fresh water (ft.): $\quad 300-1,100$
Remarks: Castaic Hills was separated from Honor Rancho field and designated as a separate field on July $1,1953$.

Selected References: Matthews, J.F., Jr., 1953, The Honor Rancho Dil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 1.

CASTAIC JUNCTION OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	```Exxon Corp. "Newhall Land & Farming Co." }6```	Humble Oil \& Refining Co. "Newhall Land \& Farming Co." 1	23 4N 17W	SB	11,952	21 Main	
Deepest well	Exxon Corp. "Newhall Land \& Farming Co." 78	Same as present	23 4N 17W	SB	18,856		Modelo late Miocene

Base of fresh water (ft.): $\quad 400-800$
Remarks: For reservoir performance evaluations, the 10 zone is divided into two fault-block pools: 10-A and 10-B. Similarly, the 21 zone is broken into three block pools: 21 -North, 21 -Main, and 21 Del Valle. The 15 zone is not subdivided.

Selected References: Cordova, S., 1966, Castaic Junction Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 52, No. 2, Part 2.
Gaede, V.F., 1953, Castaic Junction Oil Field: Calif. Div. of $0 i l$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 39 , No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \hline \begin{array}{l} \text { otalal } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

CAT CANYON OIL FIELD East Area and Central Area

EAST AREA

OLIVERA CANYON AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \begin{array}{l} \text { cotalal } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union 0il Co. of Calif. "Palmer Stendel" (01d) 1	Palmer Union Oil Co. Well No. 1	26 9N 33W	SB	3,200	Sisquoc	
Deepest well	Shell Western Expl. \& Prod. Inc. "Studer" 45-17	Marathon 0il Co. "Studer" 45-17	179 N 33 W	SB	$\begin{gathered} 9,887 \\ a / \end{gathered}$		Monterey Miocene

Base of fresh water ($\mathbf{f t}$.): See areas
Remarks: Four Deer 0il Field was originally classified as an area of Cat Canyon 0il Field.
a/ Directional well; true vertical depth is 9,810 feet.

$$
\begin{array}{ll}
\text { Selected References: } & \begin{array}{l}
\text { Prutzman, P.W., 1912, Petroleum in Southern California: Calif. State Mining Bureau Bull. } 63 .
\end{array} \\
& \text { Woodring, W.P., and M.N. Bramiette, 1950, Geology and Paleontology of the Santa Maria District, California: U.S. Geol. Survey Prof. } \\
& \text { Paper 222, p. } 120 .
\end{array}
$$

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Field Fee" 1	Brooks Oil Co. Well No. 1	31 9N 32W	SB	3,098	Brooks	
Deepest well	Shell Western Expl. \& Prod. Inc. "Victory" 20	Palmer Union 0il Co. "Stendel" 20	30 NN 32 W	SB	7,200		Knoxville Cretaceous

Base of fresh water (ft.): $\quad 1,000$
Remarks: A portion of this area was formerly known as the Slick-Moorman area.
a/ Commingled with production from the Brooks Sand.
b/ Early production not broken down by area.
Bailey, Wm. C., 1953, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. 39 , No. 2. Cross, R.K., 1940, East Cat Canyon Area of the Cat Canyon Oil Field: Calif. State Div. of Mines Bull. 118, p. 435,
Prutzman, P.W., 1912, Petroleum in Southern California: Calif. State Mining Bureau Bull. 63 p. 379.
Selected References: Vonde, T.R., 1982, Specialized Pumping Techniques Applied to a Very Low Gravity Sand-Laden Crude, Cat Canyon Field, California:
SPE Journal of Petroleum Technology, Vol. 34, No. 9, p. 1951.
Woodring, W.P. and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria District, Calif.: U.S. Geol. Survey Prof. Paper 222, p. 121 .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Los Alamos" 32	Pacific Western Oil Corp. "Los Alamos" 32	68 N 32 W	SB	5,210	Sisquoc	Monterey Miocene
Deepest well	Same as above	"		"	"	"	${ }^{\prime \prime}$

Base of fresh water (ft.): $\quad 800-1,300$
Remarks: a/ Includes the S1b thru S9 sands.
a/ Includes the S1b thru $\$ 9$ sands.
B/ Early production not broken down by areas.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	B.E. Conway "Goodwin" 1	Union 0il Co. of Calif. "Santa Maria Realty" 1	$109 \mathrm{~N} \mathrm{33W}$	SB	$\begin{array}{r} 5,415 \\ a / \end{array}$	SisquocMonterey	
Deepest well	Chevron U.S.A. Inc. "Fugler" 4-10	Standard 0i1 Co. of Calif. "Fugler" 4-10	10 9N 33W	SB	7,934		Point Sal Miocene

POOL DATA

Base of fresh water (ft.): $1,000-1,400$
Remarks: A portion of this area was formerly known as the Bradley Canyon area.
a/ Original total depth. The well was subsequently redrilled to a total depth of 5,550 feet; true vertical depth is 5,534 feet. b/ Includes the S_{1} thru S_{18} sands.
c/ Commingled with production from the sisquoc.
d/ Commingled with production from the Monterey. e/ Early production not broken down by area.

$$
\begin{array}{ll}
\text { Selected References: } & \text { Angrove T.J., 1970, Optimizing High Temperature Steam Stimulation Operations, SPE Paper } 3178 \text {, presented at the California Regional } \\
& \text { Meeting of the Society of Petroleum Engineers of AlmE, Santa Barbara, Calif., Oct. } 28-30 \text {. }
\end{array}
$$

discovery well and deepest well

Base of fresh water (ft.): 1,000
Remarks: $\quad \frac{a}{c} /$ The zone was abandoned in 1978. Cumulative production is 310,000 Mcf of gas. Only one well, Mobil 0il Corp. "Los Flores" 109-21, produced from this zone. d/ Includes the S_{g} thru S_{10} sands. e/ Early production not broken down by area.

Huey, W.F., 1954, West Cat Canyon Area of Cat Canyon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Manlove, C., 1938, West Cat Canyon 0il Field: Calif. State Div. of Mines Bull. 118, p. 432.
Manlove, C., 1938, West ${ }^{\text {Prutzman, P.W., 1912, Petroleum in Southern California: Calif. State Mining Bureau Buil. 63, p. } 382 .}$
Selected References: Regan, L.J. Jr., and A.W. Hughes, 1949, Fractured Reservoirs of Santa Maria District, California: Am. Assoc. Petroleum Geologists Bull., Vol. ${ }^{33,}$ No. 1, p. 32. Bramlette, 1950, Geology and Paleontology of the Santa Maria District, California: U.S. Geol. Survey Prof. Paper 222, p. 120. .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pinal Dome Corp. Well No. T-2	Pinal Dome 0 il Co. Well No. T-2	158 N 32 W	SB	3,400	Monterey	
Deepest well	Gato Corp. "Tognazzini" 1	Barnsdall Oil Co. of Calif. "Tognazzini" 1	98 N 32 W	SB	6,510		Monterey Miocene

POOL DATA

Base of fresh water (ft.): 0-400
Remarks: Pinal Dome Corp. well No. T-2 produced a total of 8,062 bbl of
Commingled with production from the Monterey.
b/ Early production not broken down by area.

[^17]
CAT CANYON OIL FIELD TINAQUAIC AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Richards 0il Co. "Wickenden" 1	Four-Five-Six 011 Co. "Wickenden" 1	$33 \mathrm{gN} \mathrm{32W}$	SB	4,606	Monterey	
Deepest well	Richards Oil Co. "Wickenden" 5	Continental 0il Co. "Wickenden" 5	33 9N 32W	SB	5,250		Monterey Miocene

Base of fresh water (ft.): $\quad 300-600$
Remarks: a/ The heavy oil could not be produced efficiently using the techniques available at the time, and the well was abandoned in December 1945 . The well was reentered, deepened to 4,972 feet, and completed by Foxen Ridge Oil Company in June-July 1948.

Selected References: Dolman, S.G., 1945, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. 31, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.8M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "McNee" 2	Union Oil Co. of Calif. "McNee" 2	20 9n 32W	SB	4,034	Monterey	
Deepest well	Shell Western Expl. \& Prod. Inc. "McNee" 4	Union Oil Co. of Calif. "McNee" 4	209 N 32 W	SB	9,001		Rincon(?) Miocene

Base of fresh water (ft.): 600
Remarks: a/ Includes Cherty, Bentonitic Brown, and Buff \& Brown zones.

Selected References: Dolman, S.G., 1944, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 30, No. 2, p. 43.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Hunter"?	Gulf 0il Corp. "Hunter" 1	$63 \mathrm{~N} \mathrm{18W}$	SB	10,601	Eocene	Pico Pliocene
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water (ft.): 555
Remarks: The field was originally Chaffee Canyon Gas Field and was abandoned in August 1957. The field was reactivated in October 1980 as an oil field.

Selected References:

CHARLIE CANYON OIL FIELD (Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Philip L. Pike "Howell" 2	Vagabond 0il "Howell" 2	305 N 16 W	SB	647	unnamed	
Deepest well	Dutch 0il Co. "Howell" ?	Vagabond 0il "Howell" 1	305 N 16W	SB	1,830		Castaic Miocene

Base of fresh water (ft.): $\quad 600$
Remarks: Last production was in 1958. Field was abandoned in June 1963. Cumulative production is 195 bbl 0 il.

Selected References:

COUNTY: LOS ANGELES
CHEVIOT HILLS OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Hillcrest Beverly Oil Corp. "Rancho Park" 1	Signal 0il and Gas Co. "Signal-Richfield-Rancho" 1	36 IS 15W	SB	12,688	Rancho	Topanga middle Miocene
Deepest well	Same as above	"	${ }^{\prime}$	"	"	"	"

Base of fresh water (ft.): $\quad 300-700$
Remarks: All wells drilled from urban drill sites.
a/ Dates of recompletion. Commingled production test in February 1976 yielded 302 B/D oil (20.6 degree API gravity).

Selected References: Crowder, R.E., 1968, Cheviot Hills Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 54, No. 1.

SCALE: $\left.\right|^{\prime \prime}=400^{\prime}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chino Land and Water Co. No. 3	Jennings Bros. No. 3	$322 \mathrm{~S} 8 \mathrm{~W}$	SB	550	Upper MercuryCameron	
Deepest well	Pedersen, Pedersen, \& Riggs "Roy. Ser." M-8	L.H. Cameron M-8	322 SW	SB	2,463		Puente late Miocene

Base of fresh water (ft.): $\quad 700$
Remarks:

Selected References: Gaede, V., and M. Dosch, 1955, Oil and Gas Development in San Bernardino County: Calif. Div. of Oil and Gas, Summary of Operations -Calif. Oil Fields, Vol. 41, No. 2.

CONEJO OIL FIELD

(Abandoned)

discovery well and ideepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Anaheim" 1	Amalgamated 0il Co. "Anaheim" 1	13 3S 10W	SB	3,353	Hualde	
Deepest well	ARCO 0il and Gas Co. "Edwards" 1	Atlantic Richfield Co. "Edwards"]	15 3S 10W	SB	9,591		Puente Miocene

POOL DATA						FIELD OR AREA DATA
ITEM	HUALDE	IST ANAHEIM	2ND ANAHEIM	3RD ANAHEIM	DIVISION "A" SANDS	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation Geologic age \qquad Average depth (ft.) \qquad \qquad Average net thickness (ft .) \qquad Maximum productive area (acres) \qquad	November 1909 700a/ 115 "Repetto" early Pliocene $\begin{array}{r} 2,500 \\ 50 \end{array}$	November 1909 "Repetto" early Pliocene $\begin{array}{r} 3,100 \\ 200 \end{array}$	January 1913 "Repetto" early Pliocene $\begin{array}{r} 3,400 \\ 200 \end{array}$	November 1930 150 "Repetto" early Pliocene $\begin{array}{r} 4,000 \\ 250 \end{array}$	$\begin{array}{r} 1927 \\ 240 \\ 15,000 \\ \\ 160 \\ \\ \text { Puente } \\ \text { late Miocene } \\ 4,600 \\ 100 \end{array}$	
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 30 \\ 1,440 \end{array}$	28 840	26	24 71	22 52	
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ}$ AP1) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F. \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value ($\mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathrm{w}}(\mathrm{ohm} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$ \qquad	17-20 1.80 0.8 1.40	$\begin{array}{r} 16-25 \\ 0.95 \end{array}$ $7 @ 70$ 0.8 10,956 0.55	$\begin{array}{r} 16-25 \\ 0.95 \\ 5 @ 70 \\ \\ \\ \\ \\ \hline 10,956 \\ 0.47 \end{array}$	$\begin{array}{r} 17-27 \\ 0.95 \end{array}$ $5 @ 70$ 10,956 0.47	$\begin{array}{r} 25 \\ 5070 \\ \\ \\ - \\ 17,118 \\ 0.34 \end{array}$	
ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects. \qquad Date started \qquad Date discontinued \qquad	$\begin{array}{r} \text { waterflood } \\ 1975 \\ \text { active } \\ \text { WAG-CO } \\ 1983 \\ \text { active } \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1969 \\ \text { active } \\ \text { WAG-C0 } \\ 1983 \\ \text { active } \end{array}$				
Peak oil production (bb) Year \qquad Peak gas production, net (Mcf) Year \qquad						

Base of fresh water (ft.): $\quad 50-1,250$
Remarks: a/ Production commingled.

Selected References: Ybarra, R.A., M.W. Dosch and A.D. Stockton, 1960, East Coyote Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 46, No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Murphy-Coyote" 3	Murphy 0il Co. "Coyote" 3	17 3S 10W	SB	3,756	Main	
Deepest well	Chevron U.S.A. Inc. "Emery" 92	Standard Oil Co. of Calif. "Emery" 92	13 3S 11W	SB	12,048		Topanga middle Miocene

Base of fresh water (ft.): $\quad 150-350$

Remarks: a/ Production commingled.

Selected References: Mefferd, M.G., and S. Cordova, 1962, West Coyote Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 1.
countr: LOS ANGELES AND ORANGE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.Total depth (feet)	Pool (zone)	Strata \& age at total depth	
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Exxon Corp. "Roy Visbeek et al" 1	Humble 0il \& Refining Co. "Clarence C. Reed et al" 1	358 S 7 W	SB	7,992	Visbeek sand	Williams Late Cretaceous
Deepest well	Same as above	1	"	"	"	"	${ }^{\prime \prime}$

Base of fresh water (ft.): $\quad 900$
Remarks: Last production was in April 1960. The field was abandoned in 1960. Cumulative production is 3,000 bbl of oil and 11,000 Mcf of gas,

Selected References:

CENTRAL CUYAMA OIL FIELD

 (Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Steam Energy Inc. "S.C.U." 81-35	Richfield Oil Corp. "Homan A" 81-35	3510 N 27 W	SB	4,392	Dibblee	
Deepest well	ARCO Oil and Gas Co. "U.S. Miller" 1	Atlantic Richfield Co. "U.S. Miller" 1	4 9N 26W	SB	8,400		Painted Rock Miocene

Base of fresh water (ft.): See areas
Remarks:

Eaton, J.E., 1939, Geology and Oil Possibilities of Caliente Range, Cuyana Valley and Carrizo Plain, California, Calif. Jour. Mines and Geol., Vol. 35, No. 3 (July), p. 255-74.
Eckis, R.E., $1952,0 i l$ Fields in Cuyama Valley, AAPG-SEPM-SEG Guidebook, joint annual meeting, Los Angeles, California (March), p. 88-96. Selected References: English, W.A., 1916, Geology and Oil Prospects of Cuyama Valley, California, U.S. Geol. Survey Bull. 621-M, p. 191-214.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	ARCO Oil and Gas Co. "U.S. Miller" 1 Same as above	Atlantic Richfield Co. "U.S. Miller" 1	$4 \quad 9 \mathrm{~N} 26 \mathrm{~W}$	SB	$8,400$	Dibblee	Painted Rock Miocene "

Base of fresh water (ft.): $\quad 2,620$
Remarks: Only one well completed in this area. The area was abandoned in 1978. Cumulative production is 42,000 bbl of oil and 30,000 Mcf of gas. a/ Derived from open hole drill stem testing data.

Selected References:
county: SANTA BARBARA
CUYAMA, SOUTH, OIL FIELD MAIN AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Stream Energy Co. "S.C.U." 81-35	Richfield 0il Corp. "Homan A" 81-35	3510 N 27 W	SB	4,392	Dibblee	
Deepest well	Stream Energy Co. "S.C.U." 37-25	The Superior 0il Co. "Heath" 37-25	2510 N 27 W	SB	5,906		Vaqueros early Miocene

Base of fresh water (ft.): $\quad 2,000$
Remarks: $\quad \underline{a} /$ Also referred to as the Homan pool.

Selected References: Dolman, S.G., 1949, Operations in District No. 3: Calif. Div, of Dit and Gas, Summary of Operations-Calif. Oil Fields, Vol. 35, No. 2. Gefert, L.V., 1960, Waterflood Performance of the Hibberd Pool, Cuyama, Calif., API Paper No. 801-360, presented at the spring meeting of Gefert, Pacific Coast District, Division of Production, American Petroleum Institute, Los Angeles, Calif., May 12-13.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	ARCO 0il and Gas Co. "Cox" 35-5	Richfield 0i7 Corp. "Cox" 35-5	5 9N 26W	SB	$5,988$	Colgrove	
Deepest well	ARCO 011 and Gas Co. "Cox" 84-5	Richfieid 0il Corp. "Cox" 84-5	5 9N 26W	SB	8,208		Vaqueros early Miocene

Base of fresh water (ft.): $\quad 2,100$
Remarks: a/ Original hole. Redrilled to a total depth of 5,970 feet.
b/ Also referred to as the Cox pool.

Selected References: Dolman, S.G., 1951, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Vol. 37, No. 2.

countr: VENTURA AND LOS ANGELES
DEL VALLE OIL FIELD
(SEE AREAS FOR ADDITIONAL INFORMATION)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif., Opr. "Lincoln" 1	R.E. Havenstrite, Opr. "Lincoln" 1	16 4N 17W	SB	6,954	Del Valle	
Deepest well	Union Oil Co. of Calif., Opr. "Lincoln" 16	Havenstrite 0il Co. "Lincoln" 16	16 4N 17W	SB	13,035		Modelo late Miocene

Base of fresh water (ft.): See areas

Remarks:

Selected References: Lande, D., 1964, Del Valle Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 50, No. 2.
Winterer, E.L., and D.L. Durham, 1962, Geology of the Southeastern Ventura Basin, Los Angeles County, Calif.: U.S. Geol. Survey Prof. Paper $334-\mathrm{H}$.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif., Opr. "Lincoln"	R.E. Havenstrite, Opr. "Lincoln" 1	16 4N 17W	SB	6,954	Del Valle	
Deepest well	Union Oil Co. of Calif., Opr. "Lincoln" 16	Havenstrite 0il Co. "Lincoln" 16	16 4N 17W	SB	13,035		Modelo late Miocene

Base of fresh water (ft.): $\quad 300$
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.):
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Amax Petroleum Corp. "Kinler" 1	Southern Calif. Petroleum Corp., Opr., "Socalpete-Kinler" I	16 4N 17W	SB	7,653	Del Valle	
Deepest well	Chevron U.S.A. Inc. "Boobier" 1	Same as present	15 4N 17W	SB	8,855		Modelo late Miocene

POOL DATA

Base of fresh water (ft): $\quad 1,150$
Remarks: a/ The area was abandoned in March 1961. Last production was in January 1961. Cumulative production is 236,761 bbl of oil and 103 , 498 Mcf of gas.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Newhall Land \& Farming Co. $3^{1 "} 1$	Same as present	$204 N 17 W$	SB	7,636	Intermediate	
Deepest well	Mobil 0il Co. "N.L.\& F." 3	General Petroleum Corp. "N.L. \& F." 3	$204 N 17 \mathrm{~N}$	SB	11,497		Modelo late Miocene

Base of fresh water (ft.): 100
Remarks: a/ Commingled with Bering zone.

Selected References:

CONTOURS ON TOP OF $5^{\text {th }}$ CALLENDER ZONE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Callender" i	Same as present	33 3S 13W	SB	4,068	1st Callender	
Deepest well	Union Oil Co. of Calif. "Callender" 79	Same as present	$323513 W$	SB	12,720		Catalina Schist Cret. or older

POOL DATA

ITEM	POOL DATA					FIELD OR AREA DATA
	1St CALLender	2ND Callender	3RD Callender	4TH CALLENDER	5TH CALLender	
Discovery date \qquad Initial production rates Oil (bы/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad \qquad Initial oil content (STB/ac.-ft.)...... Initial gas content (MSCF/ac.-ft.)... Formation \qquad Average depth (ft.) Average net thickness (ft.) \qquad \qquad Maximum productive	September 1923 $1,193$ "Repetto" early Pliocene $\begin{array}{r}3,950 \\ \hline 200\end{array}$	April 1924 941 "Repetto" early Pliocene 4,250 110	July 1925 830 "Repetto" early PTiocene 4,530 230	September 1927 780 "Repetto" early Pliocene $\begin{array}{r}4,830 \\ \hline 170\end{array}$	November 1931 "Repetto" early Pliocene 5,300 340	
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad						
	reservoir fluid properties					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) Viscosity (cp) @ ${ }^{\circ}$ F \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$)........ Heating value ($\mathbf{B t u} / \mathbf{c u}$. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}$ (ohm/m)(77F) \qquad	$\begin{array}{r} 29-33 \\ 0.93 \\ 400 \\ 1.05 \\ 1,7000 \\ 1.765 \\ \\ \\ \\ \\ \hline 2,000 \end{array}$	29-33 $32,200$	$29-33$ 0.96 $31,300$	29-33 $30,500$	$\begin{array}{r} 29-33 \\ 0.96 \end{array}$ $32,400$	
	enhanced recoviery projects					
Enhanced recovery projects \qquad Date started \qquad Date discontinued \qquad	waterflood 1948 active gas injection 1935 1942	waterflood 1957 active gasinjection 1935 1942	waterflood al 1946 active gasinjection 1935 1941	$\begin{array}{r} \text { waterflood } \\ 1959 \\ \text { active } \\ \text { gas } \begin{array}{r} \text { injection } \\ 1935 \\ 1941 \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1958 \\ \text { active } \\ \text { gas injection } \\ 1935 \\ 1941 \end{array}$	

Base of fresh water (ft.): $\quad 1,500-2,600$
Remarks:

Selected References: Dodd, H.V., 1926, Dominguez Oil Field: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol 12 , No. 4. Graves, D.T., 1954, Geology of the Dominguez oil Field: Div. of Mines Bull. 170, Map Sheet 32.
Seigart, T.E., 1925, Efficiency of flowing wells in Dominguez Oil Field: Div. of Oil and Gas, Summary of Operations-Calif. 0il Fields, Vol. 10, No. 7.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

EL RIO OIL FIELD

CONTOURS ON CL ELECTRIC LOG MARKER

$$
A=B
$$

san pedro
Santa barbara

discovery well and ideepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \begin{array}{l} \text { Totalal } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "H.O. Borchard" 1	Standard Oil Co. of Calif. "H.0. Borchard" 1	21 2N 22W	SB	11,620	Borchard	
Deepest well	Chevron U.S.A. Inc. "N.M. Borchard" 3-1	Standard 0il Co. of Calif. "N.M. Borchard" 3-1	21 2N 22W	SB	15,022		Sespe Oligocene

Base of fresh water (ft.): $\quad 2,200$
Remarks: The field was abandoned in 1971. The fietd was reactivated in 1979 when field boundaries changed.

Selected References:

EL SEGUNDO OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pooll (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Block" 13	Republic Petroleum Co., Ltd. "Republic El Segundo" 1	183514 W	SB	7,405	Nodular shale	
Deepest well	Cooper and Brain, Inc. "Title Insurance and Trust Co." 3	Occidental Petroleum Corp. "Title Insurance and Trust Co." 3	113515 W	SB	9,008		Catalina Schist Cret. or older

Base of fresh water (ft.): $\quad \mathbf{1 , 4 0 0}-1,600$
Remarks: a/ Production for the Nodular shale, Schist Conglomerate and Fractured Schist zones were commingled.
Gas sands were used for L.P.G. Storage. The Pliocene Gas zone was abandoned in 1971. Cumulative dry gas production is $22,956,104$ Mcf; 20 wells were drilled and completed; maximum proved acreage was 80 acres.

Selected References: Cordova, S., 1963, El Segundo Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 2.

ELIZABETH CANYON OIL FIELD

(Abandoned)

COUNTY: SANTA BARBARA
ELWOOD OIL FIELD
(SEE AREAS FOR ADDITIONAL INFORMATION)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Sun Exploration and Production Co. "Luton-Bell" 1	Barnsdall 0il Co. of Calif. "Luton-Be11" 1	154 N 29 W	SB	3,208	Vaqueros	
Deepest well	ARCO Oil and Gas Co. "State 208" 29 X	Signal 0il \& Gas Co. "State" 208-29x	174 N 29 W	SB	$\begin{gathered} 9,986 \\ \underline{a} / \end{gathered}$		Cozy Dell Eocene

Base of fresh water (ft.): None
Remarks: $\underline{a} /$ Directional well; true vertical depth of original hole is 9,280 feet. b/ Not recorded.
ibblee, T.W., Jr., 1966, Geology of the Central Santa Ynez Mountains, Santa Barbara Co., California: Calif. Div. of Mines and Geology Bull. 186, p. 85.
Dolman, S.G., 1930, Elwood $0 i 1$ Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations-Calif. Oil Fields, Vol. 16, No. 3.
Dolman, S.G., 1930, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 15, No. 3
Hill, M.L., 1943, E1wood 0if Fie?d: State Div. of Mines Bull. 118, p. 380.
Selected References: Railroad Commission of the State of California, Elwood Oil Field: Case No. 459], p. 205 (1942).
Uren, L.C., 1930, 60-Foot Caissons Used for Rig Supports in Drilling Off-Shore Leases: Nationai Petroleum News, June 18 , p. 59
Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof Paper $679 \mathrm{~B}, \mathrm{p}$. 19 .

DISCOVERY WELL AND DEEPEST WELL.

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Oryx Energy Co. "Luton-Be11" 1	Barnsdall 0il Co. of Calif. "LutonBell" 1	15 4N 29W	SB	$\begin{gathered} 3,208 \\ a / \end{gathered}$	Vaqueros	
Deepest well	Oryx Energy Co. "Luton-Bel1" 12		15 4N 29W	SB	8,503		Cozy Dell Eocene

Base of fresh water (ft.): None
Remarks: The area was abandoned in 1972. Early production was not recorded. First recorded production for this area was 3,005 bbl/day of oil in 1928 .
Cumulative production is $26,874,000$ bbl of 011 and $30,512,000$ Mcf of gas.
a/ Original hole; subsequently deepened to 3,604 feet.
b/ Early production was not broken down by areas.

Selected References: McCabe, R.E., 1928, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Vol. 14 , No. 8.

countr: ORANGE
ESPERANZA OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Columbine Associates, Sherwin D. Yoetin Operator "Dometal" 1	Shelt Oit Co. "Dominguez" 24-19	19 3S 8W	SB	5,000	Kraemer	Puente late Miocene
Deepest well	Same as above	"	"	"	\cdots	"	"

Base of fresh water (ft.): $1,100-2,150$
Remarks:

Selected References: Gaede, V.F., 1959, Esperanza Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 45, No. 2.

MAP AND CROSS SECTION BASED ON DATA BY MERCURY OIL CO. - MODIFIED BY THE DIVISION OF OIL AND GAS

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Mercury Oil Co. No. 1	Eureka Oil Co. No. 1	324 N 18 W	SB	unk.	unnamed	
Deepest well	Petro-Lewis Corp. "Texaco Sloan" 1	The Texas Co. "Sloan" 1	324 N 18 W	SB	10,038		Pico Pliocene

Base of fresh water (ft.): $\quad 1,250$
Remarks:

Selected References

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "S" 1	Standard Oil Co. of Calif. "Sespe Ranch" 1	27 4N 20W	SB	14,503	Spalding	
Deepest well	Chevron U.S.A. Inc. "B" 1	Standard 0il Co. of Calif. "Burson" 1	20 4N 19W	SB	15,454		Pico Pliocene

Base of fresh water (ft.): $\quad 5,500$
Remarks: The field was abandoned in 1973 and was reactivated in 1982.

Selected References: Schultz, C.H., 1959, Fillmore Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 45, No. 1.

CONTOURS ON TOP OF MONTEREY

countr: SANTA BARBARA

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): 1,500
Remarks: Four Deer Oil Field was originally designated as an area of Cat Canyon $0 i 1$ Field.
a/ The Monterey includes the Arenaceous, Cherty, Bentonitic Brown, Buff and Brown, and Dark Brown zones.

Selected References: Dolman, S.G., 1947, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 33 , No. 2.

CONTOURS ON TOP OF B ELECTRIC LOG MARKER SCALE: $\left.\right|^{\prime \prime}=1200^{\circ}$

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water ($\mathbf{f t}$.): $\quad 600$
Remarks: Last production was in 1966. The field was abandoned in April 1967. Cumulative production is 10,000 bbl of oil and no gas.

Selected References:

GLEN ANNIE GAS FIELD

(A bandoned)

> CONTOURS ON TOP OF VAQUEROS
> SCALE $1^{\prime \prime}=500^{\prime}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Roy Eaton et al" 1	Standard Oil Co. of Calif. "Roy Eaton et al" 1	11 4N 29W	SB	3,598	Vaqueros	
Deepest well	Fire-Rice Drilling Co. "Harbel" 1	Same as present	13 4N 29W	SB	3,731		Sespe Oligocene

Base of fresh water ($\mathbf{f t}$.): $\quad 800$
Remarks: This one-well gas field was abandoned in 1962. Cumulative production is 490,983 Mcf of gas.

Selected References: Barton, C.L., Operations in District No. 3, 1958: California Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 44, No. 2 . Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Miley Petroleum Corp., Ltd. "Goleta" 2	Miley Oil Co. "Goleta" 2	3 4N 29W	SB	1,330	Sespe	
Deepest well	Miley Petroleum Corp., Ltd. "Goleta" 1	Miley Oil Co. No. 1	3 4N 29W	SB	5,664		Coldwater Eocene

Base of fresh water (ft.): $\quad 1,400$
Remarks: The field was abandoned in 1953. Cumulative production is 140,281 bbl of oil and about 56,000 Mcf of gas. Produced water has a high boron content.

Selected References:

Dolman, S., 1931, Goleta Oil Field: Unpublished report in the files of the Calif. Div. of Oil and Gas, District 3 (Santa Maria).
McCabe, R.E., 1927, Operations in District 3, Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 13, No. 8. Vickery, F.P., 1943, Goleta Oil Field: Calif. Div. of Mines Bull. 118, p. 377-379.
erkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679, p. 19.

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water ($\mathbf{f t}$.): $\quad 1,200$
Remarks: a/ Directional well; true vertical depth is 6,950 feet.
a/ Directional we 1 ; true vertical depth is 6,950
B/ Includes both "oil silt" and "oil sand" zones.
$\underline{\bar{c}} /$ These zones were tested in 1951 in Union 011 Co. of Calif. well "Union Sugar" 36 . However, production was not considered commercial at the time.

Selected References: Bailey, Wm. C., 1955, Operations in District No. 3: Calif. Div. of 0il and Gas, Resume of Operations-Calif. 0il Fields, Vol. 41 , No. 2.
Lawrence, E.D., 1964, Guadalupe Dil Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations--Calif. Oil Fields, Vol. 50 , No. 2.

NORTHWEST HARRIS CANYON OIL FIELD
 (Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Northern Michigan Exploration Co. "Vandenberg" 1	Same as present	3 8N 34W	SB	$\begin{array}{r} 5,900 \\ \underline{a} / \end{array}$	Pt. Sal	
Deepest well	Northern Michigan Exploration Co. "Vandenberg" 2	Same as present	38 Na 36	SB	$\begin{array}{r} 8,319 \\ \underline{b} / \end{array}$		Lospe Miocene

Base of fresh water (ft.): $\quad 350$
Remarks: The field was abandoned in 1987. Cumulative production is $9,914 \mathrm{bbl}$ of oil, including oil produced during the testing of two uncompleted wells. a/ Directional well; true vertical depth is 5,878 feet. b/ Directional well; true vertical depth is 7,934 feet.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Porsco Opr. Co. "Claiborne" 88-4	Shell 0il Co. "Claiborne" 88-4	4 4N 17W	SB	4,020	val Verde	
Deepest well	Petrominerals Corp. "Mabel Strawn" 1	Newhall Land \& Farming Co. "Mabel E. Strawn" 1	34 N 17 W	SB	6,722		Modelo Miocene

Base of fresh water (ft.): 1,500
Remarks:

Selected References:

SCALE $1^{\prime \prime}=1150^{\circ}$

HONOR RANCHO OIL FIELD
Southeast Area

county: LOS ANGELES

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "Honor Rancho 'A'(NCT-1)" 1	The Texas Co. "Honor Rancho 'A' (NCT-1)" 1	6 4N 16W	SB	6,038	Rancho	
Deepest well	Southern California Gas Co. "Wayside Unit" 28	Texaco Inc. "Honor Rancho 'A' (NCT-1)" 28	7 4N 16W	SB	11,747		Modelo Miocene

Base of fresh water (ft.): See areas
Remarks:

Selected References:
Herring, D.G., Jr., 1954, Geology of Honor Rancho 0 il Field, Los Angeles County, Geology of Southern California: Calif. Div. of Mines Bull. 170 Map Sheet 30 .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Southern Calif. Gas Co. "Wayside Unit" 13	The Texas Co. "Honor Rancho 'A'(NCT-2)" 13	84 N 16 W	SB	9,254	Wayside 13	
Deepest well	Southern Calif. Gas Co. "Wayside Unit" 28	Texaco Inc. "Honor Rancho 'A'(NCT-1)" 28	74 N 16 W	SB	11,747		Modelo late Miocene

Base of fresh water (ft.): $\quad 600$
Remarks: Storage of gas in the "Wayside 13" zone began in 1975.

Selected References: Ritzius, D.E., 1959, Southeast Area of Honor Rancho Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 2.

CONTOURS ON D MARKER SCALE $1^{\prime \prime}=1300^{\prime}$

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Argo Petroleum Corp. No. 1	Buckhorn 011 \& Transportation Co. No. 1	13 4N 19W	SB	unk.	I	
Deepest well	Fortune Petroleum Corp. "Hopper Canyon" 14	McCulloch Oil Co. of Calif. "McCulloch Hopper Canyon Deep Unit" 1A	13 4N 19W	SB	14,016		Saugus Pleis-Plio a/

Base of fresh water (ft.): See areas
Remarks: Formerly an area of Piru field, designated a separate field January 1, 1955.
a/ Well penetrated about 8,000 feet of the Modelo Formation (Miocene) before passing through the San Cayetano fault and into the Saugus Formation.
Dosch, M.W., 1968, Hopper Canyon Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 54, No. 1. Eldridge, G.H., and R. Arnold, 1907, The Santa Clara Valley, Puente Hills and Los Angeles Oil Districts, Southern California: U.S. Geol. Survey Bull. 309, pp. 68-72. 195, Geology of Southern Calif., Ventura Basin: Calif. Div. of Mines Bull. 170, p. 33.

Selected References:

 Kew, W.S.W., 1924, Geology and Oil Resources of a Part of Los Angeles and Ventura Counties: U.S. Geol. Survey Buil. 753, pp. 55-60, 128-129. Prutzman, P.W., 1913, Petroleum in Southern Calif.: Calif. State Mining Bureau Bull. 63, pp. 117-122. Gureau Bull. 11 Watts, W.L., 1897, Oil and Gas Yielding Formations of Los Angeles, Ventura and Santa Barbara Counties: Calif. State Mining Bureau Bull. Il,DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Argo Petrol eum Corp. "Hopper" 1	Commander Oil Co., Inc. No. 1-B	13 4N 19W	SB	2,534	II \& III	
Deepest well	Fortune Petroleum Corp. "Hopper Canyon" 14	McCulloch Oil Co. of Calif. "McCulloch Hopper Canyon Deep Unit" 1A	13 4N 19W	SB	14,016		Saugus Pleis-Plio a/

Selected References:

COUNTY: VENTURA

HOPPER CANYON OIL FIELD NORTH AREA (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. No. 2	Clark and Sherman Co. No. 2	$12 \mathrm{4N} \mathrm{19W}$	SB	unk.	unnamed	
Deepest well	Texaco Producing Inc. No. 4	Clark and Sherman Co. No. 4	12 4N 19W	SB	1,000		Mode 10 Miocene

Base of fresh water (ft.): $0-100$
Remarks: Wells drilled prior to 1911, and production ceased on October 1922. Cumulative production is 100,000 bbl of oil.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{aligned} & \hline \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Porter Sesnon et al "Horse Meadows" $2-47$	Union Oil Co. of Calif. "Porter Sesnon" l	4 2N 16W	SB	6,696	Horse Meadows	"Chico" Late Cretaceous
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water (ft.): $\quad 300$
Remarks: The field last produced in 1966. The field was abandoned in 1966. Cumulative production is 136,556 bbl of oil and 86,746 Mcf of gas.

Selected References: Cordova, S., 1965, Horse Meadows Oil Fields: Calif. Div. of 0il and Gas, Summary of Operations .- Calif. 0il Fields, Vol. 51, No. 1.

资原原

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): 2,000-2,400
Remarks: $\underline{a} /$ Production from 0^{\prime} Dea \& 8th are commingled.

Selected References: Matthews, J.F., Jr., 1954, Howard Townsite Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 40, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	$\begin{aligned} & \text { Texas-Pacific coal and 0il Co. } \\ & \text { "Trustee" } 1 \end{aligned}$	Trustees No. 1	2532 S 14 E	MD	3,945	Monterey	
Deepest well	N.B. Hunt "Tar Springs" ו	Same as present	25 32S 14E	MD	10,010		Vaqueros early Miocene

Base of fresh water (ft.): See areas
Remarks:
A.A.P.G.-SEPM, 1956, Spring Field Trip, Huasna Basin, San Luis Obispo County, Guidebook GB2-B.

Arnold, R. and R. Anderson, 1907, Geology and 0il Resources of the Santa Maria Oil District, Santa Barbara Co., Calif.: U.S. Geol. Survey Bull. 322, p. 109.
Hall, C.A., Jr., 1967, Stratigraphy and Structure of Mesozoic and Cenozoic Rocks, Nipomo Quadrangle, Southern Coast Ranges, California:
Geol. Soc. of America Bull., Vol. 78, Plates 1 and 2.
Econ. Paleontologists \& Mineralogists Pacific Section, p. 53-68.
King, V.L. 1943, Huasna Area Development: Calif. Div. Of Mines, Bul1. 118, p. 448-449.
Taliaferro, N.L., 1943, Geology of Huasna Area: Calif. Div. of Mines Bu11. 118, p. 443-447
Vander Leck, L., 1921, Petroleum Resources of California: Calif. State Mining Bureau Bull. 89, p. 96-98.

HUASNA OIL FIELD LAVOIE - HADLEY AREA
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Deuel Petroleum Co., Inc. "LaVoieHadley" 0-1	Home-Stake Production Co. "LaVoieHadley" 0-1	30 12N 33W	SB	2,986	Santa Margarita	
Deepest well	Verde Enterprises, Operator for Huasna Co. "Union-Dickes" 1	Same as present	$3012 N 33 W$	SB	7,753		Vaqueros-Sespe Mio-01igocene

Base of fresh water (ft.): 500
Remarks:

Selected References:

HUASNA OIL FIELD TAR SPRINGS AREA (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texas-Pacific Coal and Oil Company "Trustee" 1	Trustees No. 1	2532 S 14 E	MD	3,945	Monterey	
Deepest well	N.B. Hunt "Tar Springs" 1	Same as present	2532514 E	MD	10,010		Vaqueros early Miocene

Base of fresh water (ft.): 500
Remarks: This one-well area was abandoned in 1938. Cumulative production is 11,475 bbl of oil.

$$
\begin{array}{ll}
\text { Selected References: } \\
& \begin{array}{l}
\text { Bull, 322, p. 109. }
\end{array} \\
& \text { King, V.L., 1943, Huasna Area Development: Calif. Div. of Mines Bull. } 118 .
\end{array}
$$

McCabe, R.E., 1928, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. 14, No. 8. Taliaferro, N.L., 1943, Geology of Huasna Area: Calif. Div. of Mines Bull. 118.

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Huntington A" 1	Standard Oil Co. of Calif, "Huntington A " 1	36511 W	SB	2,381	$\begin{aligned} & \text { Middle Bolsa } \\ & \text { (Upper Tar) } \end{aligned}$	
Deepest well	Shell Western Expl. \& Prod. Inc. "State PRC 426 " 4143	Signal 0 il and Gas Co. "State 426" 143	33 5S 11W	SB	12,236		Puente late Miocene

Base of fresh water (ft.):
Remarks: See Onshore Area sheet for references.

Selected References:

HUNTINGTON BEACH OIL FIELD ONSHORE AREA

Sheet 1 of 2
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Huntington A" 1	Standard Oil Co. of California "Huntington $\mathrm{A}^{\text {" }} 1$	10 6S 11W	SB	2,381	Middle Bolsa (upper tar)	
Deepest well	Aminoil U.S.A. Inc. "South Bolsa" S-1-D	$\underset{\text { Si-l-D }}{\text { Signal }} 0 i 1$ and Gas Co. "Signal-Bolsa"	33 5S 11W	SB	11,669		Puente late Miocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline \& UPPER BOLSA (Garfield) \& MIDDLE BOLSA (Upper Tar) \& LOWER BOLSA (Lower Tar) \& UPPER ASHTON \& INTERMEDIATE ASHTON \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation. \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.)
\(\qquad\)
\(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
November 1926
\[
975
\]
\[
126
\] \\
469 \\
"Repetto" \\
early Pliocene \\
1,800
100
\end{tabular} \& \[
\begin{array}{r}
\text { May } 1920 \\
45 \underline{a} / \\
\\
975 \\
122 \\
1,800 \\
\text { "Repetto" } \\
\text { early Pliocene } \\
2,200 \\
150 \\
350
\end{array}
\] \& \[
\begin{array}{r}
\text { May } 1920 \\
\underline{a} / \\
\\
\\
975 \\
125 \\
1,800 \\
\text { "Repetto" } \\
\text { early Plicene } \\
2,300 \\
100 \\
350
\end{array}
\] \& \[
\begin{array}{r}
\text { July } 1920 \\
70 \\
1,550 \\
130 \\
- \\
\text { "Repetto" } \\
\text { "Rearly Plicene } \\
3,900 \\
100 \\
580
\end{array}
\] \& July 1926
472

-
-
-

"Repetto" \& Puente
e Plio-1 Mio
4,100
200 \&

\hline \& \multicolumn{6}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| Sgi (\%) \qquad |
| Permeability to air (md) \qquad | \& \[

$$
\begin{array}{r}
28.0-34.0 \\
75 \\
25 \\
330-3,220
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
28.0-38.0 \\
65 \\
35 \\
2,300
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
28.0-38.0 \\
65 \\
35 \\
2,300
\end{array}
$$
\] \& 26.5

65
35

- \& \&

\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline | Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Sulfur content (\% by wt.).......... Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). \qquad |
| Bubble point press. (psia) \qquad |
| Viscosity (cp) @ ${ }^{\circ}$ F. \qquad |
| Gas: |
| Specific gravity (air $=1.0$) \qquad |
| Heating value (Btu/cu. ft.) \qquad |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| $\mathbf{R}_{\mathbf{w}}$ (ohm/m)(70F) \qquad | \& \[

$$
\begin{array}{r}
11-24 \\
\\
1,000 \\
3.01 \\
60 \text { @ } 120 \\
\\
20,450
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
11-24 \\
1,000 \\
3.01 \\
940 @ 120
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
11-24 \\
1,000 \\
3.01 \\
3,700 @ 120 \\
20,450
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
14-31 \\
400 \\
1.27 \\
- \\
\\
23,300
\end{array}
$$
\] \& 14-31

$$
23,300
$$ \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects. \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& waterflood 1962 active waterflood 1964 active \& \& \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1971 \\
\text { active }
\end{array}
$$
\] \& \&

\hline | Peak oil production (bb) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \&

\hline
\end{tabular}

Base of fresh water ($\mathbf{f t}$.): $\quad 1,000-2,400$
Remarks:
A few geographically restricted, minor productive sands are not described. a/ Initial production from Middle and Lower Bolsa zones commingled.

Carls, J.M., 1944, Recent developments in the tar sands of Townlot Area, Huntington Beach Oil Field: Calif. Div. of Oil and Gas Summary Carriel, J. T., 1942, Huntington Beach Oil Field - Old Field Portion: Calif Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields,

Selected References:

 Case, J.B., 1921, Report on Huntington Beach 0il Field, Orange County, Calif., with special reference to lack of definite subsurface information after eighteen months of drilling activity: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. No. 5.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pauley Petroleum, Inc. "Loftus" 1	Edwin $W_{\text {, }}$, Pauley and Harold R. Pauley "Loftus"	113515 W	SB	7,356	Nodular shale	Puente late Miocene
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water (ft.): 840
Remarks: $\quad \underline{a} /$ Production commingled.

Selected References: Crowder, R.E., 1960, Hyperion Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 46, No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and welll designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "L.A. Investment" 1-1	Standard Oil Co. of Calif. "L.A. Investment" 1-1	$172514 W$	SB	2,134	Investment	
Deepest well	Chevron U.S.A. Inc. "Buckler" IA	Humble Oil and Refining Co. "Buckler Community" 1	$162 S 14 W$	SB	13,516		Topanga middle Miocene

Base of fresh water (ft.): 200-350
Remarks:

Selected References: Driver, H.L., 1943, Inglewood Oil Field: Calif. State Div. of Mines, Bull 118, P. 306-309.
Huguenin, E., 1926, Inglewood Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 11, No. 12.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

POOL DATA

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM \& MOYNIER \& BRADNA \& CITY OF INGLEWOOD \& SENTOUS \& \& FIELD OR AREA DATA \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\))
\(\qquad\)
\(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \\
Geologic age \(\qquad\)
\(\qquad\) \\
thicknes \\
Maximum productive \\
s..................... \\
area (acres) \(\qquad\)
\end{tabular} \& \& \& May 1960
396
422

4,275
11,700
8,750
Puente
1ate Miocene
9,000
125 \& September 1940
75
125

3,700
215
560
Topanga
middle Miocene
8,200
350 \& \& 1,215

\hline \& \multicolumn{6}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) |
| Sgi (\%) \qquad \qquad |
| Permeability to air (md) \qquad | \& \[

$$
\begin{array}{r}
23.0 \\
60 \\
31 \\
9 \\
60
\end{array}
$$

\] \& - \& \[

$$
\begin{array}{r}
15.8 \\
64 \\
36 \\
\hline \\
10
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
18.0 \\
56 \\
44 \\
\hline \\
34
\end{array}
$$
\] \& \&

\hline \& \multicolumn{6}{|c|}{reservoir fluid properties}

\hline | Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Initial content |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). \qquad |
| Bubble point press. (psia) |
| Viscosity (cp) @ ${ }^{\circ}$ F \qquad \qquad |
| Gas: |
| Specific gravity (air = 1.0) \qquad |
| Heating value ($\mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$.) \qquad |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| \mathbf{R}_{w} (ohm/m)(77$\left.{ }^{\circ} \mathrm{F}\right)$ \qquad | \& \[

$$
\begin{array}{r}
22 \\
1.150^{-} \\
14.00 @ 188 \\
34,200
\end{array}
$$

\] \& \[

34,200

\] \& \[

$$
\begin{array}{r}
27-32 \\
- \\
965 \\
1.633 \\
0.28 @ 255 \\
\\
\\
34,200
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
32 \\
1.00 \\
1,600 \\
1.400 \\
- \\
\\
\hline 34,200
\end{array}
$$
\] \& \&

\hline \& \multicolumn{6}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects |
| :--- |
| Date started. |
| Date discontinued | \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1966 \\
\text { active }
\end{array}
$$
\] \& \& \& \& \&

\hline | Peak oil production (bbl) |
| :--- |
| Year. \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \& \[

$$
\begin{aligned}
& 18,371,536 \\
& 1925
\end{aligned}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.):
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Jesus Maria" I	Same as present	349 N 35 W	SB	2,274	Monterey	
Deepest well	$\begin{aligned} & \text { Union } 0 i 1 \text { Co. of Calif. "Jesus Maria" } \\ & 22-11 \end{aligned}$	Same as present	11 8N 35W	SB	$\begin{array}{r} 4,596 \\ \underline{a} / \end{array}$		Pt. Sal Miocene

Base of fresh water (ft.): See areas
Remarks: Field shut in from 1958 to Apri1 1981
Field shut in from 1958 to April 1987 . D irectional well; true vertical depth is 4,400 feet.
a/ Directional well; true vertical depth is 4,40 feet.

Selected References: Bailey, W.C., 1952, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Vol. 38, No. 2.
countr: SANTA BARBARA
JESUS MARIA OIL FIELD EAST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Jesus Maria" S23-12	Same as present	128 N 35 W	SB	2,776	Monterey	Monterey Miocene
Deepest well	Same as above		"	"	"	*	"

POOL DATA

Base of fresh water (ft.): None
Remarks:

Selected References:

KING CITY OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	El Dorado Exploration Co. "Thomas Doud Estate" 2	Richard R. Thorup "Thomas Doud Estate" 2	32 20S 8E	MD	2,483	Thorup	
Deepest well	Texaco Inc. "Currell" 1	The Texas Co. "Currell" 1	42158 E	MD	3,280		Monterey Miocene

Base of fresh water (ft.): See areas
Remarks:

Selected References: Church, V.H., 1963, King City Oil Field: AAPG-SEPM Guidebook to the Geology of the Salinas Valley and the San Andreas Fault. Hart, E.W., 1963, Mines and Mineral Resources of Monterey County, Calif. Div. of Mines and Geology Report, No. 5.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B. \&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	El Dorado Exploration Co. "Doud Estate" 3-1-32	John H. Beach "Doud" 3-1-32	32 20S 8E	MD	1,899	Thorup	
Deepest well	John H. Beach "Doud" 4-2-32	Same as present	32 20S 8E	MD	2,142		Monterey Miocene

POOL DATA

Base of fresh water (ft.): $\quad 240$
Remarks:

Selected References:

```
COUNTY: MONTEREY
```


KING CITY OIL FIELD DOUD AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	El Dorado Exploration Co. "Thomas Doud Estate" 2	Richard R. Thorup "Thomas Doud Estate" 2	32 20S 8E	MD	2,483	Thorup	
Deepest well	Texaco Inc. "Currell" 1	The Texas Co. "Currell" 1	4 21S 8E	MD	3,280		Monterey Miocene

Base of fresh water (ft.): 225
Remarks:

Selected References: Barton, C.L., 1959, Operations in District No. 3: Calif. Div. of Dil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 45, No. 2.

COUNTY: MONTEREY
KING CITY OIL FIELD KENT - BASHAM AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	```Domestic 0il Corp. "B.C.B.-Kent- Basham" 1-31```	Pennant Operating Co. "B.C.B.-KentBasham" 1-31	3120 S 8 E	MD	2,455	Thorup	
Deepest well	Tri-Valley Oil and Gas Co. "Mozzini" 1-31	Same as present	312058 E	MD	3,046		Monterey Miocene

Base of fresh water (ft.): $\quad 200$
Remarks: Since October 1973, the area has been used exclusively for water disposal.

Selected References: Barton, C.L., 1961, Operations in District 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 47, No. 2.

KRAEMER OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Kraemer 1" 1	Standard 0il Co. of Calif. "Kraemer 1"1	36 3S 9W	SB	3,160	Kraemer	
Deepest well	Shell California Production Inc. "Shell Travis" 1	Shell 0 il Co. "Shell Travis" 1	36359 W	SB	6,185		Topanga middle Miocene

POOL DATA

Base of fresh water (ft.): $50-1,500$

Remarks: The Lower zone was of little economic importance. The two wells completed in that zone were subsequently recompleted in the Kraemer zone.

Selected References: Ingram, W.L., 1960, Kraemer Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 46, No. 1.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Patrick A. Doheny "Stern" 1	Same as present	35359 W	SB	3,300	Kraemer	
Deepest well	Patrick A. Doheny "Stern" 3	Same as present	35 3S 9W	SB	3,418		Soque 1 late Miocene

Base of fresh water (ft.): 1,250
Remarks: Last production was in February 1959. The field was abandoned in March 1959. Cumulative production is 9,583 bbl of oil and no gas.

Selected References:

LA GOLETA GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \begin{array}{l} \text { Totalal } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Southern Calif. Gas Co. "More" 1	General Petroleum Corp. of Calif. "More" 1	21 4N 28W	SB	4,533	vaqueros	
Deepest well	Southern Calif. Gas Co. "More" 3	General Petroleum Corp. of Calif. "More" 3	214 N 28 W	SB	6,912		Sespe 01igocene

POOL DATA

Base of fresh water (ft.): None
Remarks: The discovery well blew out in 1929 at a depth of 4,533 feet and flowed at an estimated rate of 60,000 Mcf per day
Remarks: The well was brought under control shortly thereafter. It was later redrilled and completed in 1932.
The field has al so been known as More Ranch and has been used for gas storage since 1941.
During 1972 and 1973, all gas withdrawn was charged to the reserve existing before gas storage commenced in 1941. a/ The peak gas production figure applies to production prior to gas storage
ibblee, T.W., Jr., 1966, Geology of the Central Santa Ynez mountains, Santa Barbara Co., Calif.: Calif. Div. Mines and Geol
olman, S.G., 1929, Operations in District No. 3: Calif. Div. of $0 i 1$ and Gas, Summary of Operations--Calif. Oil Fields, Vol. 15, No. 3 Railroad Commission of the State of Calif., 1941, La Goieta Gas Field: Casse No. 4591
swayze, R.O., 1943, La Goleta Gas Field: Calif. State Div. of Mines Bull 118.
erkes, R.F., H.C. Wagner, and K.A. Yenne, 1969, Petroleum Developnent in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

LA MIRADA OIL FIELD

(Abandoned)

$A \longrightarrow B$

SAN PEDRO
"PICO"
"REPETTO"

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Oil Corp. "Librown" 1	General Petroleum Corp. "L.ibrown" 1	$213511 W$	SB	12,600	Librown	Puente-Topanga Miocene
Deepest well	Same as above	${ }^{\prime}$	"	"	\cdots	"	-

Base of fresh water (ft.): $\quad 2,200$
Remarks: Last production was in July 1954. The field was abandoned in 1954. Cumulative production is $25,250 \mathrm{bbl}$ of oil and $10,425 \mathrm{Mcf}$ of gas.

Selected References:

LAPWORTH OIL FIELD
(Abandoned)

county: LOS ANGELES
LAPWORTH OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Flanders and Brown "Lapworth" 1	Woodward 0i1 Co. "Lapworth" 1	4 2S 11w	SB	3,224	Conglomerate	
Deepest well	Shell Oil Co. "Pellissier" 1	Same as present	42 S 11 W	SB	8,374		"Repetto" early Pliocene

Base of fresh water (ft.): $\quad 2,800$
Remarks: Last production was in July 1943. The field was abandoned in 1957. Cumulative production is $55,000 \mathrm{bbl}$ of oil and 429 Mcf of gas.

Selected References:

countr: LOS ANGELES

LAS CIENEGAS OIL FIELD GOOD SHEPHERD AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{array}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union 0il Co. of Calif. "Fourth Avenue" 5-A	$\begin{aligned} & \text { Union Oil Co. of Calif. "Union-Signal } \\ & \text { Fourth Avenue" } \\ & 5-A \end{aligned}$	35 1S 14W	SB	7,047	Pacific Electric	Puente late Miocene
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water (ft.): 400
Remarks: Both completed wells were drilled from the Fourth Avenue drillsite.

Selected References:

county: LOS ANGELES

LAS CIENEGAS OIL FIELD JEFFERSON AREA

Base of fresh water (ft.): $\quad 650$
Remarks: $\quad \underline{a} /$ Initial production from C and Pacific Electric zone was commingled.

Selected References:

LAS CIENEGAS OIL FIELD MURPHY AREA

Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.8M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Murphy" 4	Union Oil Co. of Calif. "Union-SignalMurphy" 4	2 2S 14W	SB	5,232	A	
Deepest well	Union 0il Co. of Calif. "Murphy" 6	Union Oil Co. of Calif. "Union-SignalMurphy" 6	22814 W	SB	8,802		Puente late Miocene

Base of fresh water (ft.): $\quad 800$
Remarks: a/ Initial production of A, B, C, D and E zones was commingled.

Selected References: Mefferd, M.G., 1970, Murphy Area of the Las Cienegas Oil Field: Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

LAS CIENEGAS OIL FIELD MURPHY AREA

Sheet 2 of 2
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water ($\mathbf{f t .}$):
Remarks: $\underline{a} /$ Production commingled.

LAS CIENEGAS OIL FIELD PACIFIC ELECTRIC AREA

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Pacific Electric" 1	Union Oil Co. of Calif. "Union-SignalPacific Electric" 1	27 1S 14W	SB	9,512	Pacific Electric	Puente late Miocene
Deepest well	Same as above	*	"	"	"	"	"

Base of fresh water (ft.): 400
Remarks: $\quad \underline{a} /$ Pacific Electric and D zone initial production was commingled.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Las Llajas" 5	Union Oil Co. of Calif. "Simi" 5	22 3N 17W	SB	1,040	Las Llajas	
Deepest well	Union Oil Co. of Calif. "Las Llajas" 9	Same as present	22 3N 17W	SB	4,572		Martinez Paleocene

county: VENTURA
LAS POSAS OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Hollis Cunningham "Berylwood" 1	Buttes Gas and 0il Co. "ButtesBerylwood" 1	172 N 20 W	SB	7,894	Sespe	Sespe Eocene
Deepest well	Same as above	"	"	"	$"$	"	${ }^{\prime \prime}$

Base of fresh water (ft.): $\quad 450$
Remarks: The field was abandoned in November 1971 and was reactivated in April 1977.
The field was abandoned in November 1971 and
Production in Section 30 is from the Miocene.

Selected References:

LAS VARAS CANYON OIL FIELD
 (Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Harry S. Rothschild "Barnsdall" 1	Barnsdall 0il Co. of Calif. "Edwards" 1	365 N 30 W	SB	2,720	Barnsdal 1	
Deepest well	Harry S. Rothschild "Edwards" 1	Same as present	$365 N 30 W$	SB	2,949		Coldwater Eocene

Base of fresh water (ft.): 250
Remarks: The field was abandoned in 1960. Cumulative production is 4,990 bbl of oil and 287,025 Mcf of gas. Early production was formerly included in Goleta oil field.

Selected References: Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "Pauley-Seaboard Peck" 1	San Clemente 0il Co. No. 1	20 3S 14W	SB	5,897	Upper	
Deepest well	Pauley Petroleum, Inc. "S.F.L.I." 83-20	Same as present	20 3S 14W	SB	8,213		Catalina Schist Cret. or older

Base of fresh water (ft.): $\quad 1,400$
Remarks: Most of the production was obtained from the Schist Conglomerate.

Selected References: White, J.L., 1950, Lawndale Oil Field and Alondra Area: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 36, No. 2.

LEFFINGWELL OIL FIELD
 (Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pyramid 0il Co. "K" 1	Standard Oil Co. of Calif. "Lewis Community" 1	11 3S 11W	SB	12,184	Upper Lewis	Sespe 01igocene
Deepest well	Same as above	"	"	n	"	"	"

POOL DATA						FIELD OR AREA DATA
ITEM	UPPER LEWIS	LOWER LEWIS	UPPER WOODWARD	$\begin{aligned} & \text { LOWER } \\ & \text { WOODWARD } \end{aligned}$		
Discovery date \qquad Initial production rates Oi (bl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation \qquad Geologic age \qquad Average depth (ft.) \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad	January 1946 162 33 "Repetto" early Pliocene 6,875 30	September 1946 145 150 "Repetto" early Pliocene 7,600 30	July 1953 104 47 Puente late Miocene 8,000 100	March 1953 196 800 Puente late Miocene $\begin{array}{r} 8,400 \\ 200 \end{array}$		125
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	19.0 70	21.0 100	17.6 30	17.6		
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB) \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ} \mathrm{F}$. \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value (Btu/cu. ft.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $R_{w}(\mathbf{o h m} / \mathrm{m})$ ($\left.\mathbf{7 7}^{\circ} \mathrm{F}\right)$ \qquad	34	32	31-42	28-30		
ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects............ Date started \qquad Date discontinued \qquad						.
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year \qquad						$\begin{array}{r} 109,347 \\ 1954 \\ 667,280 \\ 1954 \end{array}$

Base of fresh water (ft.): 850
Remarks: Only one well, the discovery well, produced from the Lewis zones. Last production was in October 1971. The field was abandoned in December 1973. Cumulative production is $763,000 \mathrm{bbl} 0 \mathrm{il}$ and $2,460,000 \mathrm{Mcf}$ gas.

[^18]
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Hill" 1	Same as present	17 N 34 W	SB	2,546	Monterey	
Deepest well	Conoco Inc. "N.L. \& F." 18-1	Same as present	18 8N 34W	SB	8,310		Monterey Miocene

Base of fresh water (ft.): See areas
Remarks:

Selected References: Am. Assoc. Petroleum Geologists, 1970, Petroleum Potential of the Santa Maria Province, California: Memoir 15, Vol. 1, p. 325.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Hill" l	Same as present	17 N 34 W	SB	2,546	Monterey	
Deepest well	Mobil Oil Corp. "Los Alamos" 3	General Petroleum Corp. of Calif. "Los Alamos" 3	318 N 33 W	SB	6,287		Franciscan Cretaceous

Base of fresh water (ft.): $\quad 400$
Remarks: Arnold, R., and R. Anderson, 1907, Geology and 0il Resources of the Santa Maria Oil District, Santa Barbara County, California: U.S. Geol. Survey Bull. 322, p. 104.
Dolman, S.G., 1932, Lompoc Oil Field, Santa Barbara County: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields,
Vol. 17 , No. 4.
Hodges, F.C., and A.M. Johnson, 1932, Subsurface Storage of $0 i 1$ and Gas in the Brea-01inda and Lompoc fields: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 17, No. 4.
Selected References:
Prutzman, P.W., 1913, Petroleum in Southern California: Calif. State Mining Bureau Bull. 63, p. 345.
Regan, L.J., Jr., and A.W. Hughes, 1949, Fractured Reservoirs of Santa Maria District, Calif.: Am. Assoc. Petroleum Geologists Bull.
Woodring, W.P., and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria Dist., Calif.:U.S.G.S. Prof. Paper 222, p. 119.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	$\begin{aligned} & \text { Union 0il Co. of Calif. "Jesus Maria" } \\ & \text { A83-19 } \end{aligned}$	Union 0il Co. of Calif. "Jesus Maria"	19 8N 34W	SB	$\begin{array}{r} 5,944 \\ \underline{a} / \end{array}$	Monterey	
Deepest well	Conoco Inc. "N.L.\& F." 18-1	Same as present	188 N 34 W	SB	8,310		Monterey Miocene

Base of fresh water (ft.): None
Remarks: a/ Directional well; true vertical depth is 5,870 feet.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Barto/Signal Petroleum, Inc. No. 149	Shell Oil Co. "Alamitos" 1	29 4S 12W	SB	3,114	Alamitos	
Deepest well	Shell 0 il Co. "Alamitos" 48-A	Same as present	29 4S 12W	SB	14,950		Catalina Schist Cret. or older

Base of fresh water (ft.): See areas
Remarks: See areas

Selected References: Ingram, W.L., 1968, Long Beach 0il Field: Calif, Div. of 0il and Gas, Summary of 0perations -- Calif. 0il Fields, Vol. 54, No. 1.

LONG BEACH OIL FIELD NORTHWEST EXTENSION AREA
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	ARCO Oil \& Gas Co. "Bixby" 3	The United 0il Co. "Bixby" 3	13 4S 13W	SB	4,402	Alamitos	
Deepest well	Berry-Loukonen, Ltd. "Jones" 1	General Petroleum Corp. "Los Cerritos" 1	13 4S 13W	SB	11,493		Puente late Miocene

Base of fresh water (ft.): $\quad 2,500$
Remarks:

Selected References

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

COUNTY: LOS ANGELES
LONG BEACH OIL FIELD RECREATION PARK AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Transpac Petroleum, Inc. "Recreation Park E" 1 Same as above	Richfield 0 il Corp. "Recreation Park E" 1	$334 S \quad 12 \mathrm{~W}$	SB	$9,781$	McGrath	Puente late Miocene

Base of fresh water (ft.): $\quad 2,400$
Remarks:

Selected References: Ingram, W.L., 1966, Recreation Park Area of Long Beach 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields,

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	```Texaco Inc. "Long Beach Airport (NCT-1)" 1```	The Texas Co. "Long Beach Airport (NCT-1)" 1	20 4S 12W	SB	13,016	Deep	Puente late Miocene
Deepest well	Same as above	"	$*$	"	"	"	"

Base of fresh water (ft.): 2,100
Remarks:

Selected References: Loken, K.P., 1964, Long Beach Airport Oil Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 50 , No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Royal American Petroleum Corp. "Lloyd Corp." W.S. 4	Lloyd Corp., Ltd. "Lloyd Corp." W.S. 4	213 N 22 W	SB	16,343	Pico	Santa Margarita late Miocene
Deepest well	Same as above	"	${ }^{\prime \prime}$	"	$"$	"	${ }^{\prime \prime}$

Base of fresh water (ft.): 1,000
Remarks: A one well field; last produced in June 1960.

Selected References: Jennings, C.W., and B.W. Troxel, 1954, Geologic Guide through the Ventura Basin and Adjacent Areas, Southern California: Calif. Div. of

CONTOURS ON TOP OF IDA B ZONE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Nord-Montara Petroleum Co. "Ferrero et al" 1-1	McCulloch Oil Corp. "Ferrero et al" 1-1	17 N 33 W	SB	$\begin{array}{r} 10,231 \\ \mathrm{a} / \end{array}$	Monterey	Monterey Miocene
Deepest well	Same as above	"	"	"	"	$"$	${ }^{\prime}$

Base of fresh water (ft.): None
Remarks: The field was abandoned in 1977 and reactivated in 1982.

$$
\begin{aligned}
& \text { The field was abandoned in } 1977 \text { and reactivated in } 1982 . \\
& \text { a/ Directional well; true vertical depth is } 10,019 \text { feet. }
\end{aligned}
$$

Selected References: Woodring, W.P., and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria District: U.S. Geol. Survey Prof. Paper 222, P. 125 .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Maltman Oil Co. "Maltman" 1	Same as present	19 1S 13W	SB	unknown	First	
Deepest well	Ventura 0il Co. "L.A. Brick" 1	Seaboard 0il Co, of Delaware "L.A. Brick" 1	21 1S 13W	SB	7,505		Topanga middle Miocene

Base of fresh water (ft.): $\quad 150$
Remarks: The first known well was dug by hand and was known locally as the Dryden well. It produced heavy oil for several years. Predating the arrival of the pioneers, Native Americans commonly made use of asphaltum to tar canoe bottoms and waterproof containers.

Crowder, R.E., 1961, Los Angeles City Oil Field: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields., Vol. 47, No. 1 Eldridge, G.H. and R. Arnold, 1907, U.S. Geological Survey Bull. 309
McLaughlin, R.P., 1914, Petroleum Industry of California: Calif. State Mining Bureau Bull. 69
Selected References: Soper, E.K., 1943, Los Angeles City Oil Field: Geologic Formations and Economic Development of California: State Div. of Mines Bull. ll8.
Watts, W.L., 1896, Calif. State Mining Bureau Bull. 11.
Watts, E.L., 1900, 0il and Gas Yielding Formations of California: Calif. State Mining Bureau Bull. 19.

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "LA Unit Venice Community" 1	Standard 0il Co. of Calif. "Venice Community" 1	32 1S 13W	SB	5,295	Lower Broadway	
Deepest well	Chevron U.S.A. Inc. "Spring" 2	Standard 0il Co. of Calif. "Spring" 2	321513 W	SB	8,510		Puente late Miocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{\begin{tabular}{l}
FIELD OR \\
AREA DATA
\end{tabular}} \\
\hline ITEM \& JEFFERSON (GAS) a/ \& UPPER BROADWAY \& MIDDLE BROADWAY \& LOWER BROADWAY \& MASSIVE \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bb/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
March 1969
\[
\begin{array}{r}
0 \\
1,169
\end{array}
\] \\
-
\(\square\) \\
"Repetto" early Pliocene
\[
\begin{array}{r}
2,000 \\
40
\end{array}
\]
\end{tabular} \& \[
\begin{array}{r}
\text { March } 1965 \\
106 \\
248 \\
\\
1,590 \mathrm{~b} / \\
139 \\
1,150 \mathrm{c} / \\
\text { Puente } \\
\text { 1ate Miocene } \\
2,900 \\
200
\end{array}
\] \& March 1965
\[
\begin{gathered}
141^{\underline{b} /} \\
\text { Puente } \\
\text { Tate Miocene } \\
3,100 \\
400
\end{gathered}
\] \& \[
\begin{array}{r}
\text { March } 1965 \\
320 \\
264 \\
\\
\text { b/ } 145 \\
\\
\mathrm{c} / \\
\text { Puente }^{-} \\
\text {late Miocene } \\
3,500 \\
1,300
\end{array}
\] \& May 1965
135
490

2,078
168
c/
Puente
1ate Miocene
4,800
1,100 \& 210

\hline \multicolumn{7}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| Sgi (\%) \qquad |
| Permeability to air (md) \qquad | \& - \& \[

$$
\begin{gathered}
30.00 \mathrm{~b} / \\
40.00 \mathrm{~b} / \\
179 \mathrm{c} /
\end{gathered}
$$

\] \& | b/ |
| :--- |
| b/ |
| c/ | \& | b/ |
| :--- |
| b/ |
| c/ | \& \[

$$
\begin{aligned}
& 0.23 \\
& 0.53 \\
& \quad \mathrm{c} /
\end{aligned}
$$
\] \&

\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline | Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Sulfur content (\% by wt.) \qquad |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB) \qquad |
| Bubble point press. (psia) \qquad |
| Viscosity (cp) @ ${ }^{\circ} \mathrm{F}$. \qquad |
| Gas: |
| Specific gravity (air $=1.0$) \qquad |
| Heating value ($\mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$.) \qquad |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| $\mathbf{R}_{\mathbf{w}}$ (ohm/m)(77 ${ }^{\circ}$) \qquad | \& \[

14,727

\] \& \[

$$
\begin{array}{r}
29 \\
- \\
1.394 \underline{c} / / \\
0.447 @ 128 \underline{c} / \\
0.7571 \mathrm{c} / \\
1,340 \underline{c} / \\
23,452
\end{array}
$$

\] \& | $\begin{array}{r} 34 \\ 1,578 \end{array}$ |
| :--- |
| $\frac{c}{c /}$ |
| c/ |
| $\frac{c}{c} /$ |
| 23,452 | \& | c/ |
| :--- |
| c/ |
| $\frac{c}{c} /$ $\begin{array}{r} 23,452 \\ 24,876 \\ 26.9 \end{array}$ | \& \[

$$
\begin{array}{r}
35 \\
1,578 \\
\frac{c}{c} / \\
\underline{c} / \\
\underline{c} / \\
\frac{c}{c} / \\
\underline{c} /
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects. \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1966 \\
1973
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1966 \\
1973
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1966 \\
1973
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1966 \\
1973
\end{array}
$$
\] \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \& \[

$$
\begin{array}{r}
1,687,957 \\
1967 \\
2,447,481 \\
1967
\end{array}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 300$
Remarks: a/Ceased production in 1981; cumulative dry gas production is $1,469,000$ Mcf; proved acreage (1973) 10 acres.
b/ Upper Broadway information includes the Middle \& Lower Broadway pools.
c/ Upper Broadway information includes the Middle \& Lower Broadway \& Massive pools.

Selected References

EAST LOS ANGELES OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Western Avenue Properties "U.P. Unit" 1 Same as above	Richfield Oil Corp. "U.P. Unit" 1	$92 S 12 \mathrm{~W}$	SB	9,629	U.P. ו	Puente 7ate Miocene

Base of fresh water (ft.): $\quad 2,000$
Remarks:

$$
\begin{aligned}
& \text { a/ U.P. } 3 \text { and } 8400 \text { production commingled. } \\
& \text { b/ Data include U.P. } 3,8400 \text {, \& U.P. } 1 \text { pools. }
\end{aligned}
$$

Selected References: Winterburn, R., 1952, East Los Angeles Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 38, No. 1.

LYNCH CANYON OIL FIELD

CONTOURS ON TOP OF LANIGAN "OIL" SAND AND EQUIVALENT HORIZON

discoverr well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil 0il Corp. "Lanigan" 172	Moriqui Exploration Co. "Lanigan" 172	24 22S 10E	MD	1,745	Lanigan	
Deepest well	Texaco Inc. "Lanigan Core Hole" 1	Same as present	2422810 E	MD	2,385		Santa Lucia granodiorite Cretaceous

POOL DATA

Base of fresh water (ft.): 400
Remarks: The field was abandoned in 1968 and reactivated in 1979. Last production was in 1979.

Selected References: Gribi, E.A., Jr., 1963, Lynch Canyon Oil Field, Monterey County, Calif.: A.A.P.G. - S.E.P.M. Guidebook to the Geology of the Salinas Valley and the San Andreas Fault, p. 73.
Hart, E.W., 1963, Mines and Mineral Resources of Monterey County, Calif.: Calif. Div. of Mines and Geology, County Report No. 5, p. 76. Wilkinson, E.R., 1964, Lynch Canyon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 50, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Lyon Canyon 0il Corporation 35X-4	Arrowhead Exploration Co. 35x-4	4 3N 16W	SB	10,930	Seventh	Modelo Miocene
Deepest well	Same as above	${ }^{\prime \prime}$	"	"	${ }^{\prime}$	"	"

Base of fresh water (ft.): $\quad 2,500$
Remarks: The field last produced in November 1985 and was abandoned in March 1986. Cumulative production is 314,719 bbl of oil and 334 , 121 Mcf of gas.

[^19]

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks: See areas

[^20]MAHALA OIL FIELD ABACHERLI AREA
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Hathaway Co. "Abacherli" 1	Western Gulf Oil Co. "Abacherli" 1	12358 W	SB	3,267	Abacherli	
Deepest well	Mahala 0il \& Gas Co. No. 2	same as present	13 3S 8W	SB	5,080		Topanga middle Miocene

Base of fresh water (ft.): 1,000-1,500
Remarks: A cyclic-steam project was initiated in 1964 and terminated in 1965 after injecting 10,279 bbl of water-converted-to-steam into three wells.

Selected References: Gaede, V.F., and M. Dosch, 1955, Oil and Gas Development in San Bernardino County: Calif. Div. of Oil and Gas, Summary of Operations -Calif. Oil Fields, Vol. 41, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	California-Time Petroleum, Inc. "Mahala" 1	Mahala 0il \& Gas Co. No. 1	13358 W	SB	4,217	Abacherli	
Deepest well	KMT 0il Co. Inc. "Franco-Langstaff" 57	$\underset{\substack{\text { Franco Western } \\ 57 \mathrm{~A}-13}}{\mathrm{ill} \text { Co. "Langstaff-Willis" }}$		SB	4,900		Puente late Miocene

POOL DATA

Base of fresh water (ft.): $\quad 2,300$
Remarks:

Selected References: 01 son, L.J., 1977, Mahala Oil Field and Vicinity, California Division of Oil and Gas publication No. TR18.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Casex Co. "Abacherli" 1	M.J. Castro "Abacherli" 1	13 3S 8S	SB	4,603	Willis	
Deepest well	Casex Co. "Abacherli" 5	Fleet Exploration, Ltd. "Abacherli" 5	13 3S 8S	SB	5,112		Topanga middle Miocene

Base of fresh water (ft.): $\quad 2,000$
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Macrate 0il Co. G-G 1	Lyle A. Garner "Gout. G-G" 1	20357 W	SB	3,613	Abacherli	
Deepest well	Jade 0il \& Gas Co. "Scott" 7	L.H. Scott Co., Inc. "Scott" 7	18357 W	SB	5,416		Topanga middle Miocene

Base of fresh water (ft.): $\quad 800-2,000$
Remarks:

COUNTY: MONTEREY
MC COOL RANCH OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Lombardi Oil Co., Inc. "Sinclair" 5	C.A. Luckey "Sinclair" 5	22 22S 10E	MD	2,193	Lombardi	
Deepest well	Texaco Inc. "Brinan" 2	Same as present	$1522 \mathrm{~S} \mathrm{10E}$	MD	2,332		Santa Lucia granodiorite Cretaceous

Base of fresh water (ft.): 800
Remarks:

Selected References: Wilkinson, E.R., 1965, McCool Ranch Oil Field: Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 51, No. 2.

MESA OIL FIELD

(Abandoned)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	C.C. Loftin "Lomas" 1	01ympic Refining Co. "Lomas" 1	29 4N 27W	SB	2,427	Vaqueros	
Deepest well	Trans-Oceanic 0il Corp. "Trans-Oceanic M'Divani" 8	Same as present	284 N 27W	SB	10,047		Sespe oligocene

Base of fresh water (ft.): None
Remarks: The field was abandoned in 1976. Cumulative production is $3,725,116$ bbl of oil and 7,547 Mcf of gas.

Dibblee, T.W., Jr., 1966, Geology of the Central Santa Ynez Mountains, Santa Barbara Co. Calif., Calif. Div. of Mines and Geology Dolman, S.G., 1938, Mesa 0il Field: Calif. Div. of Oil and Gas Summary of Operations--Calif. 0il Fields, Vol. 24 , No. 2 .
Volman, S.G., 1938, Mesa and K.A. Yenne, 1969, Petroleum Development in the Santa Barbara Channel Region: U.S. Geol. Survey Prof.
Yerkes, R.F., H.C. Wa
Paper 679 B, p. 18 .

COUNTY: SANTA BARBARA
MESA OIL FIELD PALISADES AREA (ABD)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	C.C. Loftin "Lomas" 1	Olympic Refining Co. "Lomas" 1	29 4N 27W	SB	2,424	Vaqueros	
Deepest well	Palisades Petroleum Corp. No. 1	Altadena 0il Co. No. 1	29 4N 27W	SB	4,270		Vaqueros early Miocene

Base of fresh water (ft.): None
Remarks: The area was abandoned in 1931. Cumulative production is $20,909 \mathrm{bbl}$ of oil

Selected References: Dibblee, T.W., Jr., 1966, Geology of the Central Santa Ynez Mountains, Santa Barbara Co., California: Calif. Div. of Mines and Geology Bull. 186, p. 88 .
Dolman, S.G., 1929, Operations in District No. 3: Calif. Div. of 011 and Gas, Summary of Operations--Calif. 0il Fields, Vol. 15, No. 3, p. 53.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Phillips Petroleum Co. "Doud A" 1	Same as present	1319 S 6E	MD	3,761	Luard	
Deepest well	W.W. Holmes, Operator "Doud" 1-13	Same as present	131986 E	MD	3,809		Monterey Miocene

Base of fresh water (ft.): $\quad 2,000$
Remarks: Only one well has been completed in the area to date.

Selected References

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "McGrath 4" 2	Standard Oil Co. of Calif. "McGrath 4" 2	25 2N 23W	SB	11,505	McGrath	
Deepest well	Chevron U.S.A. Inc. "McGrath 4" 1212	Standard Oil Co. of Calif. "McGrath 4" 1212	35 2N 23W	SB	17,422		Sespe Oligocene

Base of fresh water (ft.): See areas
Remarks: The first commercial dry gas reservoir in Ventura County was discovered in the McGrath Area of the West Montalvo field in 1953.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "McGrath 4" 2	Standard 0il Co. of Calif. "McGrath 4" 2	25 2N 23W	SB	11,505	McGrath	
Deepest well	Chevron U.S.A. Inc. "McGrath 4" 1212	Standard $0 i 1$ Co. of Calif. "McGrath 4" 1212	35 2N 23W	SB	17,422		Sespe oligocene

Base of fresh water (ft.): $\quad 2,000$

Remarks:

Selected References: Hardoin, J.L., 1961, McGrath Area of West Montalvo 0i1 Field: Caiif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields,

DISCOVERY WELL AND DEEPEST WELL.

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Baldwin" 1	Standard Oil Company "Baldwin" 1	$12 \mathrm{~S} \mathrm{12W}$	SB	2,395	1st	
Deepest well	Southern Calif. Gas Co. "Howard and Smith" 3	Union 011 Co. of Calif. "Howard and Smith" 3	2 2S 12W	SB	10,772		Puente late Miocene

ITEM	POOL DATA					FIELD OR AREA DATA
	IST	2No	3RD	4TH	5 TH	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) Flow pressure (psi) \qquad Bean size (in.). \qquad Initial reservoir pressure (psi) Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad \qquad Initial oil content (STB/ac.-ft.)...... Initial gas content (MSCF/ac.-ft.)... Formation... Geologic age \qquad \qquad Average deph (t.) Average net thickness (ft.) \qquad area (acres) \qquad \qquad	$\begin{array}{r} \text { February } 1917 \\ 345 \\ - \\ - \\ 1,100 \\ 110 \\ \\ \text { "Repetto" } \\ \text { early Pliocene } \\ 2,200 \\ 350 \\ 770 \end{array}$	February 1917 $\begin{array}{r} 1,550 \\ 130 \\ \\ \text { "Repetto" } \\ \text { early } \begin{array}{r} \text { Pliocene } \\ 3,500 \\ 200 \\ 760 \end{array} \\ \hline \end{array}$	February 1917 \square - - - - - - "Repetto" early Pliocene 4,500	June 1927 "Repetto"	Apri1 19382,8453,1771375$11 / 2$--Puente-"Repetto"e Plio.Miocene 5,700 300-	
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 29 \\ 70 \\ 30 \\ 700 \end{array}$	27 70 30 50	$\begin{array}{r} 27 \\ 70 \\ 30 \\ 260 \end{array}$	$\overline{-}$	$\begin{array}{r} 27 \\ - \\ - \\ 400 \end{array}$	
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{w}(\mathrm{ohm} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$	$\begin{array}{r} 20 \\ \\ 140 \\ 1, .07 \\ 1,700 \\ 50 \\ \\ \\ \hline 14,037 \end{array}$	$\begin{array}{r} 25 \\ 300 \\ 1.15 \\ 1,550 \\ 50 \\ \\ \\ \hline 14,037 \end{array}$	$\begin{array}{r} 30 \\ \\ 410 \\ 1.22 \\ 1,800 \\ - \\ \\ \hline 14,037 \end{array}$	$\begin{array}{r} 20 \\ \\ = \\ - \\ \\ \\ \\ \text { 14,550 } \end{array}$	$\begin{array}{r} 36 \\ \\ - \\ - \\ 14,550 \end{array}$	
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery project \qquad Date started \qquad Date discontinued \qquad		$\begin{array}{r} \text { waterflood } \\ 1962 \\ \text { active } \end{array}$				

Base of fresh water (ft.): $\quad 1,600$
Remarks: The 8th zone is being used for gas storage.

Selected References: McLaughlin, R.P., 1920, Montebello 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 5, No. 11. Stolz, H.P., 1939, West Montebello 0 il Field and Application of the State Gas Law: Calif. Div. of Oil and Gas, Summary of Operations --
Calif. Oil Fields, Vol. 25.

county: LOS ANGELES

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Baldwin" 1	Standard Oil Company "Baldwin" 1	1 2S 12W	SB	2,395	1st	"Repetto" early Pliocene
Deepest well	Same as above	${ }^{\prime \prime}$	"	"	${ }^{\prime \prime}$	"	"

Base of fresh water (ft.): $\quad 1,600$
Remarks:
$\begin{array}{ll}\text { Selected References: McLaughlin, R.P., 1929, Montebello 0il Field, Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 15. No. } 11 \text {. } \\ & \text { Stolz, H.P., } 1939 \text {, West Montebello 0il Field and Application of the State Gas Law: Calif. Div. of Oil and Gas, Summary of Operations -- }\end{array}$ Stolz, H.P., 1939, West Monte
Calif. Oif Fields, Vol. 25.

MOORPARK OIL FIELD

(Abandoned)

T3N RI9W
33

CONTOURS ON TOP OF OIL SAND
SCALE: $I^{\prime \prime}=400^{\circ}$

$$
A \longrightarrow B
$$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	E.H. Williams "Williams" 1-A	Robert S. Lytle "Williams" 1	33 3N 19W	SB	8,500	unnamed	Llajas Eocene
Deepest well	Same as above	"	"	*	"	"	"

Base of fresh water (ft.): 600
Remarks: The field was abandoned in 1989. Cumulative production is 29,118 bbl of oil and no gas.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): 600
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total $\begin{array}{c}\text { depth } \\ \text { (feet) }\end{array}$	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Expl. and Prod. N.A., Inc. "Government" 18-2	The Superior 0il Co. "Government" 18-2	2 11N 28W	SB	6,128	Government 18	
Deepest well	Mobil Expl. and Prod. N.A., Inc. "Government" 28-2	The Superior 0il Co. "Government" 28-2	211 N 28 K	SB	7,576		granitic basement Jurassic (?)

Base of fresh water (ft.): See areas
Remarks: The field was originally called Morales 0il Field.

$$
\begin{array}{ll}
\text { Selected References: } & \text { Dolman, S.G., 1950, Operations in District 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 36, No. 2. } \\
& \text { Hill, M.L., S.A. Carlson and T.W. Dibblee, Jr., } 1958 \text {, Stratigraphy of Cuyama Valley - Caliente Range Area, California: Am. Assoc. } \\
& \text { Petroleum Geologists Bull., Voi. 42, No. } 12, \text { p. 2973. } \\
& \text { Lawrence, E.D., 1960, Morales Oil Field: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. } 46, \text { No. } 2 .
\end{array}
$$

countr: SAN LUIS OBISPO
MORALES CANYON OIL FIELD
CLAYTON AREA (ABD)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Alfred M. Hammerslough "HancockOceanic" 65-10	The Hancock Oil Co. of Calif. "HancockOceanic" 65-10	1011 N 28 W	SB	2,492	Clayton	
Deepest well	Chevron U.S.A. Inc. "Shlaudeman" 1-10	Southern California Petroleum Co. "Shlaudeman" 1-10	1011 N 28 W	SB	2,577		Morales early Pliocene

Base of fresh water (ft.): $\quad 0-200$
Remarks: The area was abandoned in 1977 and reactivated in 1990.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{array}{\|l\|l} \hline \hline \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{array}$	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Expl. and Prod. N.A., Inc. "Government" 18-2	The Superior 0il Co. "Government" 18-2	211 N 28 W	SB	6,128	Government 18	
Deepest well	Mobil Expl. and Prod. N.A., Inc. "Government" 28-2	The Superior Oil Co. "Government" 28-2	2 1/N 28W	SB	7,576		granitic basement Jurassic (?)

Base of fresh water (ft.): $\quad 0-200$
Remarks: The Government 18 zone was originally referred to as the Superior zone.

Selected References:

UNDIFF MARINE a NON MARINE STRATA

countr: LOS ANGELES
NEWGATE OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Deuel Petroleum Inc. "Newgate Unit A" 1	Western Gulf 0il Co. "Newgate Unit A" 1	9 3S 11W	SB	9,556	Santa Fe	Puente late Miocene
Deepest well	Same as above	"	"	*	"	"	"

Base of fresh water (ft.): $\quad 1,700$
Remarks: $\underline{a} /$ Initial production from Clark and Hathaway zones was commingled.

Selected References:

$$
\begin{aligned}
& \text { DEFINITIVE SUB SURFACE DATA AVAILABLE } \\
& \text { ONLY FOR THE TOWSLEY CANYON AREA. }
\end{aligned}
$$

T3NR16W SEC 8

TOWSLEY CANYON AREA \& CONTOURS ON D ELECTRIC LOG MARKER SCALE : $1^{\prime \prime}=800^{\prime}$

NEWHALL OIL FIELD

generalized cross sections of some areas
 OTHER THAN TOWSLEY CANYON AREA

(TOWSLEY CANYON AREA IS SHOWN ON PRECEDING PAGE)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Cherron U.S.A. Inc. "C.S.O." 4	California Star Oil Works Co. "Pico" 4	23 N 17W	SB	1,400	Top	
Deepest well	Sun Expl. \& Prod. Co. "Limbocker" 1	Barnsdall Oil Co. "Limbocker" 1	17 3N 16W	SB	7,056		Modelo late Miocene

Base of fresh water ($\mathbf{f t}$.): See areas
Remarks:

Eldridge, G.H., and R. Arnold, 1907, The Santa Clara Valley, Puente Hills, and Los Angeles Oil Districts, Southern California: U.S. Geol. Survey Bulletin 309 pp $90-101$

Selected References:

Kew, W.S.W., 1924, Geology and 0il Resources of a Part of Los Angeles and Ventura Counties, California: U.S. Geol. Survey Bulletin 753,
Welling, R.W., 1934, Report on Newhall Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 20, No. 2. Winterer, E.L., and D.L. Durham, 1962, Geology of Southeastern Ventura Basin, Los Angeles County, California: U.S. Geol. Survey Prof. Winterer,
Paper $334-H$.

COUNTY: LOS ANGELES
NEWHALL OIL FIELD DE WITT CANYON AREA (ABD)

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pacific Coast Oil Co. No. I	Hardison and Stewart No. 1	7 3N 16W	SB	1,320	unnamed sands \& fractured	
Deepest well	Pacific Coast Oil Co. No. 3	Hardison and Stewart No. 3	7 3N 16W	SB	1,600	shales	Modelo late Miocene

Base of fresh water (ft.): 0-100
Remarks: The area was abandoned prior to 1900. $0 i 1$ was mined from two placer mining claims in 1890. Cumulative production is unknown.

Selected References: Walling, R.W., 1934, Report on Newhall Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 20, No. 2.

COUNTY: LOS ANGELES

NEWHALL OIL FIELD ELSMERE AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "El smere" 2	Pacific Coast Oil Co. "Elsmere" 2	7 3N 15W	SB	1,226	unnamed	
Deepest well	Chevron U.S.A. Inc. "E1 smere" 23	Standard 0i1 Co. of Calif. "El smere" 23	7 3N 15W	SB	2,821		Llajas Eocene

Base of fresh water (ft.): 100-500
Remarks: There has been no production from the Elsmere Canyon Area since 1955. The area was abandoned in 1987. Cumulative production is $1,064,589 \mathrm{bbl}$ of oil and 785 Mcf of gas.

Selected References: Walling, R.W., 1934, Report on Newhall 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 20, No. 2.

DISCOVERY WELL AND DEEPEST WELL
trata 2 age

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "C.S.O." 4	California Star Oil Works Co. "Pico" 4	23 N 17 W	SB	1,400	Top	
Deepest well	Chevron U.S.A. Inc. "C.S.0." 32	Pacific Coast 0il Co. "C.S.O.W." 32	23 N 17 W	SB	3,445		Modelo late Miocene

Base of fresh water (ft.): None
Remarks: Seepage oil was collected in Pico Canyon in 1850 by Andreas Pico and used by the San Fernando Mission for illumination. $0 i l$ was mined at five placer claims from 1865-1890.
a/ Water was injected into all three zones: Top, Central, and Lower.

Selected References: Walling, R.W., 1934, Report on Newhall Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 20, No. 2.

```
COUNTY: LOS ANGELES
```


NEWHALL OIL FIELD RICE CANYON AREA (ABD)

DISCOVERY WELL AND DEEPEST WELI

Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
$223 N \quad 16 \mathrm{~W}$	SB	550	1 st	
223 3N 16W	SB	1,580		Mode10 1ate Miocene

Base of fresh water (ft.): $0-100$
Remarks: There has been no production from the Rice Canyon Area since 1935. The area was abandoned in 1972. Cumulative production is 111,175 bbl of oif and 120,000 Mcf of gas.

Selected References: Walling, R.W., 1934, Report on Newhall $0 i 1$ Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 20, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Southwest Oil Co. "Braille" 1	Talisman Oil Co. "Braille" 1	13 N 16W	SB	3,196	Braille	
Deepest well	Conoco Inc. "Braille" 3	Continental Oil Co. "Braille" 3	13 N 16W	SB	3,835		Modelo Miocene

Selected References:

NEWHALL OIL FIELD TOWSLEY CANYON AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Estate of Welburn Mayock "Climax" 1	Temple 0il Co.	83 N 16 W	SB	970	unnamed	
Deepest well	Sun Expl. \& Prod. Co. "Limbocker" 1	Barnsdall Oil Company "Limbocker" 1	17 3N 16W	SB	7,056		Modelo Miocene

Base of fresh water (ft.): $0-100$
first gathered petroleum here by soaking blankets in the oil from the seeps located in this canyon. 0il was mined from oil seeps prior to 1876 . Thomas L., 1957, Geology of Towsley Canyon 0il Field: Manuscript prepared for the Waterflood 0il Company, on file in the office of Bailey, Thomas L, 1957, Geology of Towsley
Lewis A. Bond in San Marino, California.
Prutzman, Paul W., 1913, Petroleum in Southern California: California State Mining Bureau Bulletin 63, p. 167. Stanley and Stolz, 1951, Towsley Canyon Properties: Manuscript on file in the office of Welburn Mayock.
Walling, R.W., 1934, Report on Newhall Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 20, No. 2 (Reprint No. 2).
Selected References: Wents, John H. Jr., 1948, The Oil Possibilities of Towsley Canyon Area on the Pico Anticline Newhall Dist. Los Angeles County, Calif: Manuscript on file in the office of Welburn Mayock.
Zuiberti, J.L., 1966, Towsley Canyon Area of Newhall $0 i 1$ Field: Calif. Div. of $0 i l$ and Gas, Summary of Operations -. Calif. $0 i 1$ Fields, Vol. 52, No. 1.
countr: LOS ANGELES

NEWHALL OIL FIELD TUNNEL AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Eureka Crude Oil Co. No. 1	Same as present	13 3N 16W	SB	800	unnamed	
Deepest well	Morton and Dolley "Needham" 5	Union Oil Co. of Calif., Opr. "Needham" 3	12 3N 16W	SB	4,037		Llajas Eocene

Base of fresh water (ft.): 100-500
Remarks:

Selected References: Walling, W.R., 1934, Report on Newhall 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 20 , No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Tosco Enhanced 011 Recovery Corp. "Banner" 1	Banner 0il Co. "Banner" 1	6 3N 15W	SB	2,117	unnamed	
Deepest well	Occidental Petroleum Corp. "Price" 4	Southern Production Co., Ltd. No. 1	63 N 15 W	SB	2,842		Llajas Eocene

Base of fresh water (ft.): $100-500$
Remarks:
(ABD)

Base of fresh water (ft.): $0-100$
Remarks: The Wiley Canyon area has not produced since 1940. The area was abandoned in 1978. Cumulative production is 510,249 bbl of oil and $1,020,498$ Mcf of gas.
Seepage oil was collected and sold to the Metropolitan Gas Works in San Francisco as early as 1868 . Two tunnels were dug 300 to 400 feet into the canyon's side in unsuccessful attempts to increase seepage. In 1869, a dry hole was drilled using the spring pole method a/ Generally credited with the first commercial production from this area.

Selected References: Walling, R.W., 1934, Report on Newhall Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 20, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References

countr: ORANGE
NEWPORT OIL FIELD BEACH AREA (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Gilbert H. Bessemyer "Steel Rig" 1	Mitchell, Bouer, \& Fulkerson No. 1	286S 10W	SB	1,750	C Shale	Puente late Miocene
Deepest well	Same as above	"	"	"	"	"	${ }^{\prime}$

Base of fresh water (ft.): None
Remarks: Area was abandoned in 1921. Cumulative production is unknown.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Costa Mesa Oil Co. "Tedesco" 1	Barnett Rosenberg "Mesa" 1	21 6S 10W	SB	643	Mesa	
Deepest well	Ajax Petroleum Co., Ltd. "Mesa" 1	Same as present	$216 \mathrm{~S} \mathrm{10W}$	SB	7,253		Topanga middle Miocene

Base of fresh water (ft.): None
Remarks: Area was abandoned in 1945. Cumulative production is unknown.

Selected References:

WEST NEWPORT OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Oil Corp. "Banning" 1	D.W. Elliott "Townsend Land Co." 1	20 6S 10W	SB	2,424	B	
Deepest well	Exxon Corp. "State 1549" 2	Monterey 0il Co. "State 1549" 2	19 6S 10W	SB	10,896		Topanga middle Miocene

Base of fresh water (ft.): See Areas
Remarks: See Areas

[^21]

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	George M. Lechler "Geo. M. Lechler" 1	Western Gu]f 0i1 Co. "Lechler" 1	$315 \mathrm{~N} \mathrm{17W}$	SB	2,442	1 A	
Deepest well	Chevron U.S.A. Inc. "USL-G" 6	Western Gulf 0il Co. "L.W. Gilmour, U.S." 3	32 5N 17W	SB	10,816		Modelo Miocene

POOL DATA

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \& \& \& \& \& \multirow[b]{2}{*}{FIELD OR
AREA DATA} \\
\hline \& 1 A \& 3A \& зв \& 3 C \& 30 \& \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bl/day)
Gas (Mcf/day) \\
Flow pressure (psi)
\(\qquad\)
\(\qquad\) \\
Bean size (in \(\qquad\) \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (a) \(\square\) \\
Initial gas content (MSCF/ac.-ft.)... Formation \\
Average depth (ft.) \\
Maximum productive \\
area (acres)
\end{tabular}} \& February 1941 \& January 1944 \& January 1944 \& 1980 \& 1980 \& \\
\hline \& \(\stackrel{56}{2}\) \& 194
44 \& 194
44 \& - \& - \& \\
\hline \& 1,043** \& 1,830** \& 1,830** \& 1,830** \& 1,830** \& \\
\hline \& Mode \({ }^{\text {M }}\) \& Modelo \& Mode 10 \& Mode 10 \& Mode 10 \& \\
\hline \& 2,750
85 \& 5,160
50 \& 5,225
60 \& 5,395 \& 5,445 \& \\
\hline \& \multicolumn{6}{|c|}{Reservoir rock properties} \\
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{} \& 28.8
64.5 \& 22.9
55.0 \& 22.9
55.0 \& 22.9
55.0 \& 22.9
55.0 \& \\
\hline \& 35.5 \& 35.00 \& 35.0

0 \& ${ }^{35.0}$ \& ${ }^{35.0}$ \&

\hline \& 177 \& 262 \& 262 \& 262 \& 262 \&

\hline \& \multicolumn{6}{|c|}{Reservoir fluid properties}

\hline \multirow[t]{5}{*}{| ii: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.) Initial solution |
| GOR (SCF/STB) |
| Initial oil FVF (RB/STB) \qquad \qquad |
| Bubble point press. |
| Viscosity (cp) @ ${ }^{\circ}$ F \qquad \qquad |} \& \multirow[t]{2}{*}{24} \& \multirow[t]{2}{*}{30

1.03} \& \multirow[t]{2}{*}{30
1.03} \& \multirow[b]{2}{*}{24
1.03} \& \multirow[t]{2}{*}{24
1.03} \&

\hline \& \& \& \& \& \&

\hline \& \multirow[t]{2}{*}{142
1.081} \& \& \multirow[t]{2}{*}{260
1.136} \& \multirow[t]{2}{*}{260
1.136} \& \multirow[b]{2}{*}{1.136} \&

\hline \& \& 1.136 \& \& \& \&

\hline \& 8 ¢ 132 \& 4 @ 148 \& 4 ¢ 148 \& 4 © 148 \& 40148 \&

\hline \multirow[t]{2}{*}{| Gas: |
| :--- |
| Specific gravity ((air $=1.0$) Heating value (Btu/cu. ft.) |} \& \& \& \& \& \&

\hline \& $$
\begin{aligned}
& 0.605 \\
& 1,050
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.605 \\
& 1,050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.605 \\
& 1,050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.605 \\
& 1,050
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.605 \\
& 1,050
\end{aligned}
$$
\] \&

\hline \multirow[t]{3}{*}{| Water: Salinity, NaCl (ppm) \qquad |
| :--- |
| T.D.S. (ppm) |
| $\mathbf{R}_{\mathbf{w}}$ (ohm/m) ($\mathbf{7 7}^{\circ} \mathrm{F}$) \qquad |} \& \multirow[b]{3}{*}{\[

$$
\begin{aligned}
& 8,242 \\
& 9,510 \\
& 0.54
\end{aligned}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{array}{r}
8,465 \\
10,010 \\
0.51
\end{array}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{array}{r}
8,465 \\
10,010 \\
0.51
\end{array}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{array}{r}
8,465 \\
10,010 \\
0.51 \\
0.51
\end{array}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{array}{r}
8,465 \\
10,010 \\
0.51 \\
0.51
\end{array}
$$
\]} \&

\hline \& \& \& \& \& \&

\hline \& \& \& \& \& \&

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 2,500$

Remarks:

Selected References: Ybarra, R.A., and A.D. Stockton, 1958, Oak Canyon Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.Total depth (feet)	Pool (zone)	Strata \& age at total depth	
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water ($\mathbf{f t}$.):
Remarks:

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Oak Park" 1	Union Oil Co. of Calif. "Union-KayInvestments" 24-1	36 3N 19W	SB	4,100	Sespe	
Deepest well	Union 0 il Co. of Calif. "Simi" 14	Same as present	36 3N 19W	SB	5,240		Sespe 01igocene

Base of fresh water (ft.): $\quad 400$
Remarks:

Selected References: Bright, L.S., 1973, Oak Park Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 59, No. I.

discovery well and deepest well

Base of fresh water (ft.): None
Remarks: Zone water contains a high concentration of bicarbonates.

Selected References: Schultz, C.H., 1955, Oakridge Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 41, No. I.

Base of fresh water (ft.): 200
Remarks: One-well field, which was abandoned in September 1955. Cumulative production is 726 bbl of oil and no gas.

Selected References:

COUNTY: LOS ANGELES

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): 1,500
Remarks: Previously, this field was an area of Aliso Canyon Field. It was designated as a field in 1980.
a/ Above the Torrey fault, the zone lies at a depth ranging from 5,350 to 5,870 feet.

Selected References:

OJAI OIL FIELD
Index Map

OJAI OIL FIELD Lion Mountain Area

OJAI OIL FIELD
North Sulphur Mountain Area
 SCALE $1^{\prime \prime}=1600^{\circ}$

OJAI OIL FIELD

Oakview Area (Abandoned)

SESPE

OJAI OIL FIELD
Silverthread Area

OJAI OIL FIELD
Sisar Creek Area

STRUCTURE CONTOURS ON UPPER SISAR FAULT

OJAI OIL FIELD Sulphur Mountain Area

OJAI OIL FIELD
Tip Top Area (Abandoned) \& Weldon Canyon Area

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Philadelphia Calif. Petroleum Co. "Ojai" 6	Same as present	184 N 21 W	SB	unk.	unnamed	
Deepest well	Argo Petroleum Corp. "Hillside" 3	Richfield 0il Corp. "Hillside" I	8 4N 21W	SB	9,221		Rincon Miocene

Base of fresh water (ft.): See areas
Remarks: Bramlett, M.N., 1946, The Monterey Formation of California and the Origin of its Siliceous Rocks: U.S. Geol. Survey, Prof. Paper 212 Cenozoic Correlation Section, 1952, Western Ventura Basin: in A.A.P.G.-S.E.P.M.-S.E.G. Guidebook, Joint Ann. Mtg., Los Angeles, CA. Carey, W.H., 1954, Tertiary Basin of Southern California: Geology of Southern California, Calif. Div. of Mines Bull ${ }^{\text {F }}$,
Calif. Div. of Mines Bul1. 170, Map Sheet 28.
Kleinpell, R.W., l943, Miocene Stratigraphy of California, Geologic Formations and Economic Development of $0 i 1$ and Gas Fields of
California: Calif. Div. of Mines, Bull. 118.
Selected References: Div. of Mines, Buil. 170, Chap. III, Plate I.

Putnam, W.C., 1942, Geology of the Ventura Region, California: Geological Society of America Bulletin 53.
Reed, R.D., 1943, California Record in the Geologic History of the World: Calif. Div. of Mines, Bull 118, Chap. V.

county: VENTURA
OJAI OIL FIELD SILVERTHREAD AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	$\begin{aligned} & \text { Philadelphia Calif. Petroteum Co. } \\ & \text { "Ojai" } 6 \end{aligned}$	Same as present	18 4N 21W	SB	unk.	unnamed	
Deepest well	Argo Petroleum Corp. "Hillside" 3	Richfield Oil Corp. "Hillside" 1	8 4N 21W	SB	9,221		Rincon Miocene

Base of fresh water (ft.): $\quad 600$
Remarks: The productive portion of the Miocene includes several separate pools in the area.

Selected References: Mitchell, W.S., 1968, Silverthread Area of Ojai Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 54 ,

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	ARCO Oil and Gas Co. "Vogel" 3	Whidden Double Oil Co. No. 2	114 N 22 W	SB	160	Saugus	
Deepest well	ARCO 0 il and Gas Co. "0jai" 404	Atlantic Richfield Co. "0jai" 404	114 N 22 W	SB	9,077		Miocene

Base of fresh water (ft.): 0-200
Remarks: All zones pooled together.
All zones pooled together.
The Sisar Creek area now includes the former "Vogel" area in Section 11.

Bailey, T.L., 1954, Geology of Western Ventura Basin, Santa Barbara, Ventura and Los Angeles Counties, Calif.: Calif. Div. of Mines
Bulletin 170, Map Sheet 4, Uper 0jai Valley, Ventura County, Calif.: unpublished thesis, University of Calif., Los Angeles
Bush, G.L., 1956, Geology of Upper
Selected References
Mitchell. W. S 1954, The Marine Cenozoic of No. 2.

COUNTY: VENTURA
OJAI OIL FIELD SULPHUR MOUNTAIN AREA
dISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M	$\begin{aligned} & \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Bradford \& Geis "S.M.P. ${ }^{\text {K }} 1$	Bradford \& Geis Trustees No. 1	21 4N 22W	SB	2,400	Miocene	
Deepest well	Conoco Inc. "S.M.P." 3	Continental Oil co. "S.M.P." 3	21 4N 22W	SB	6,569		Sespe 01igocene

Base of fresh water (ft.): $\quad 730$
Remarks:

Selected References:

OJAI OIL FIELD WELDON CANYON AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Paol (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Weldon Canyon" 2	Union Oil Co. of Calif. "Ex-Mission Weldon Canyon Core Hole ${ }^{\text {" }} 2$	3 3N 23W	SB	3,171	unnamed	
Deepest well	Union Oil Co. of Calif. "Weldon Canyon" 1	Union 0il Co. of Calif. "Weldon Canyon Core Hole" I	3 3N 23W	SB	4,816		Pico Pliocene

POOL DATA

Base of fresh water (ft.): None
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "01ive Unit One" 1	The Texas Co. "Dinkler" 1	74 S 9W	SB	7,392	Dinkler	
Deepest well	Texaco Inc. "Ruff" 1	The Texas Co. "Ruff" 1	14 S 10W	SB	8,497		Puente-Topanga Miocene

Base of fresh water (ft.): 1,700
Remarks:

Selected References: Gaede, V.F., 1958, 01ive 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 44, No. 2.

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks: Field name was changed from Santa Maria to Orcutt in January 1947.

Selected References: See areas

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	E.C. Arnold Oil Corp. "ArnoldApache" 2	Same as present	88 N 33 W	SB	6,373	Monterey	
Deepest well	GEO Petroleum Inc. "Long Canyon" 1	Coastal 0 il and Gas Corp. "Long Canyon" 1	78 N 33 W	SB	9,912		Lospe Miocene

Base of fresh water (ft.): 1,250
Remarks: The area was abandoned in 1954 and reactivated in 1982.

Selected References: Dolman, S.G., 1937, Operations in District No. 3, Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 23 , No. 3.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Vaca 0il Exploration Co., Inc. No. 1	Same as present	6 1N 21W	SB	2,822	Pliocene Tar	
Deepest well	Lloyd Corp. Ltd. "Lloyd Corp. W.R. Livingston" 4	Same as present	312 N 21 W	SB	12,460		Llajas Eocene

ITEM	POOL DATA					FIELD OR AREA DATA
	$\begin{gathered} \text { PLIOCENE } \\ \text { TAR } \end{gathered}$	$\begin{gathered} \text { MIOCENE } \\ \text { TAR } \end{gathered}$	MCINNES	LUCAS	LIVINGSTON	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Geologic age Average depth (ft.) \qquad Average net thickness (ft.) \qquad area (acres). \qquad \qquad	January 1937	May 1937 90 20 102 \qquad Monterey Miocene 2,951 400	July 1953 112 27 2,770 165 1,405 Sespe 01 gocene 6,500 300	May 1954	March 1954 610 663 - - Sespe Eocene 9,31 450	1,350
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%). \qquad Permeability to air (md) \qquad	$\begin{array}{r} 35 \\ 76 \\ 24 \\ 5,000-6,000 \end{array}$	5-30 10 90 -	$\begin{aligned} & 28 \\ & 70 \\ & 24 \end{aligned}$	-	$\begin{array}{r}15 \\ 50 \\ \hline\end{array}$	
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\text {APPI) }}$ \qquad Sulfur content (\% by wt.)......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Gas: Specific gravity (air = 1.0) \qquad Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) \qquad $\left.\underset{R_{w}}{\text { T.Dhm }} \mathbf{(\mathrm { ohm }}\right)(\mathrm{ppm})$ \qquad	$\begin{array}{r} 5.00-7.00 \\ 75 \\ 1.04 \\ 33,000.0 @ 160 \\ 0.8 \\ \\ \\ 5,400 \\ 5,000 * * \\ 2.0 * * \end{array}$	$\begin{array}{r} 7.47 \\ - \\ - \\ 28,000.0 @ 150 \\ - \\ 22,200 \\ - \end{array}$	24 - 425 1.18 $4.6 @ 165$ - 23,900 -		$\begin{array}{r} 25-38 \\ - \\ 806 \\ 1.20 \\ - \\ - \\ 23,900 \end{array}$	
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects. \qquad Date started \qquad Date discontinued \qquad	$\begin{array}{r} \text { cyclic steam } 1964 \\ 196 t i v e \end{array}$		$\begin{array}{r} \text { waterflood } \\ 1963 \\ 1966 \end{array}$			

Base of fresh water (ft.): 1,800
Remarks:

[^22]DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

PACOIMA OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T \& \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Tidelands Oil Prod. Co. "Pacoima" 1	Chevron U.S.A. Inc. "Pacoima" 1	11 2N 15W	SB	9,995	Oil Zone	
Deepest well	Tidelands Oil Prod. Co. "Pacoima" 9	Chevron U.S.A. Inc. "Pacoima" 9	15 2N 15W	SB	10,284		Modelo upper Miocene

Base of fresh water (ft.): 500-700
Remarks:

Selected References: Schnurr, P.E., \& C.E. Kock, 1989, Pacoima Field, Pacific Section AAPG Field Summaries.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	$\begin{aligned} & \hline \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "Biaggi" 2	The Texas Co. "Paris Valley Anticline Core Hole" 1-12	122259 E	MD	1,159	$\begin{aligned} & \text { Basa } \\ & \text { Ansberry } \end{aligned}$	
Deepest well	Petroleum Securities Co. "Anoitzbehere" 1	Same as present	222595	MD	2,655		Pre-Miocene

Base of fresh water (ft.): See areas
Remarks:

Selected References: See areas

COUNTY: MONTEREY

PARIS VALLEY OIL FIELD BIAGGI AREA (ABD)

discovery well and deepest well

Base of fresh water (ft.): None
Remarks: The area was abandoned in 1954. Cumulative production is 316 bbl of oil and no gas.

Selected References: Hallmark, F.0., 1971, Paris Valley and Biaggi Oil Fields: Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields Vol. 57, No. 1.
Hart, E.W., 1963 , Mines and Mineral Resources of Monterey County, Calif.: Calif. Div. of Mines and Geology County Report No. 5 .

COUNTY: MONTEREY

PARIS VALLEY OIL FIELD MAIN AREA

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Concord 0il Co. "M-A" 1	W. Frank Jones, Opr. "M-A" 1	$222 \mathrm{~S} \mathrm{9E}$	MD	785	Basal Ansberry	
Deepest well	```Petroleum Securities Co. "Aniotzbehere" 1```	Same as present	$222 \mathrm{~S} \mathrm{9E}$	MD	2,655		Pre-Miocene

Base of fresh water (ft.): 300
Remarks: $\quad \underline{a} /$ The oil in the upper lobe averages $227,000 \mathrm{cp}$ @ 87 degrees F whereas the lower lobe averages $23,000 \mathrm{cp}$ @ 87 degrees F .

Selected References: Hallmark, F.O., 1971, Paris Valley and Biaggi Oil Fields: Calif. Div. of Oil and Gas, Summary of Operations--Calif. Oil Fields, Vol. 57, No. 1
Hart, E.W., 1963, Mines and Mineral Resources of Monterey County, Calif: Calif. Div. of Mines and Geology County Report No. 5 . Smith, F.E., Jr., 1963, Paris Valley 0il Field: A.A.P.G.-S.E.P.M. Guidebook to the Geology of Salinas Valley and the San Andreas Fault.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Crocker Fee" 1	Modelo Oil Co. No. 1	84 N 18 W	SB	605	Modelo	
Deepest well	Texaco Producing Inc. "Crocker Fee" 1-D	Pacific Western 0 il Co. "Crocker Fee" 1-D	$7 \mathrm{4N} 18 \mathrm{~W}$	SB	10,504		Mode 10 Miocene

Base of fresh water (ft.): See areas
Remarks:

Selected References: Cordova, S., 1956, Geology of the Piru Area, Ventura County, Calif., unpublished thesis, University of Calif. at Los Angeles. Eldridge, G.H., and R. Arnold, 1907, Santa Clara, Puente Hills and Los Angeles Dil Districts, Southern Calif.: U.S. Geol. Survey Bulletin 309.
Kew, W.S.W., 1924, Geology and 0il Resources of a Part of Los Angeles and Ventura Counties, Calif.: U.S. Geol. Survey Bulletin 753.
county: VENTURA
PIRU OIL FIELD MODELO AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Crocker Fee" 1	Modelo Oil Co. No. 1	84 N 18 W	SB	605	Modelo	
Deepest well	Texaco Producing Inc. "Crocker Fee" 1-D	Pacific Western 0 il Co. "Crocker Fee" 1-D	$7 \mathrm{4N} 18 \mathrm{~W}$	SB	10,504		Modelo Miocene

Base of fresh water (ft.): $\quad 1,550$
Remarks: Zone waters are exceptionally high in bicarbonate concentration.

Selected References:

PIRU CREEK OIL FIELD

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Temescal" 33	Same as present	15 4N 18W	SB	7,002	unnamed	Mode 10 Miocene
Deepest well	Same as above	"	"	"	${ }^{\prime \prime}$	"	"

Base of fresh water (ft.): $\quad 810$
Remarks:

Selected References: Cordova, S., 1956, Geology of the Piru Area, Ventura County, Calif., unpublished thesis, University of Calif. at Los Angeles Kew, W.S.W., 1924, Geology and 0il Resources of a Part of Los Angeles and Ventura Counties, Calif., U.S. Geol. Survey Bulletin 753. Robinson, B.B., 1956, Geology of the Holser Canyon Area, Ventura County, Calif., unpublished thesis.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Grace Petroleum Corp. "York" 1	Equity Oil Co. "Daisy" 1	6 3N 15W	SB	1,394	Upper Kraft	
Deepest well	Grace Petroleum Corp. "PRI FEE" WD 2	Same as present	13 N 16 W	SB	4,466		Modelo

Base of fresh water (ft.): $\quad 100-500$
Remarks: Barton, C.L., and N.N. Sampson, 1949, Placerita 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 35, Now, W.S.W., 1943, Newhall 0il Field: Geologic Formations and Economic Development of the Oil and Gas Fields of California, State Div. of Mines Bulije Oakeshott, G.B., 1950, Geology of Placerita Oil Field, Los Angeles County, California: California Journal of Mines and Geology Vol. 46, No. 1, pp. 43-80. Tudor, R.B., 1962, Recent Developments in Kraft-York Area of Placerita $0 i 1$ Field: Calif. Div. of 0il and Gas, Summary of Operations -Lalling, R.W., 1934, Report on Newhall 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0 il Fields, Vol. 20 No 2 Winterer, E.L., and D.L. Durham, 1962, Geology of Southeastern Ventura Basin, Los Angeles County, Calif.: U.S. Geol. Survey Professional Paper 334-H.

PLAYA DEL REY OIL FIELD

$$
A-
$$

\qquad

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	County of Los Angeles "Ohio RGC" 1	The Ohio 0il Co. "Recreation Gun Club" 1	21 2S 15W	SB	6,202	Lower	
Deepest well	Edwin W. Pauley \& Donald Frankel "Hughes" 1	Same as present	$22 \quad 2 \mathrm{~S} 15 \mathrm{~W}$	SB	8,725		Catalina Schist Cret. or older

Base of fresh water (ft.): See areas
Remarks: See areas

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. $\mathcal{E M}$.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Southern Calif. Gas Co. "Vidor" 1	Union Oil Co. of Calif. "King Vidor" 1	27 2S 15W	SB	5,991	Lower	
Deepest well	Southern Calif. Gas Co. "Rite Lube" 1	Raymond J. Rassmussen "Ray" ?	27 2S 15W	SB	7,054		Puente late Miocene

Base of fresh water (ft.): 700
Remarks: The Lower zone is being used by Southern Calif. Gas Co. for gas storage.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Donald Frankel, Opr. "Kidson" 1-1	Bolsa Chica Oil Corp. "Kidson" 1-1	22 2S 15W	SB	7,418	Lower	
Deepest well	Edwin W. Pauley \& Donald Frankel "Hughes"]	Same as present	22 2S 15W	SB	8,725		Catalina Schist Cret. or older

Base of fresh water (ft.): 700
Remarks: Area was abandoned in 1956. Cumulative production is $17,434 \mathrm{bbl}$ of oil and $37,250 \mathrm{Mcf}$ of gas.

Selected References

county: LOS ANGELES

PLAYA DEL REY OIL FIELD VENICE AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	County of Los Angeles "Ohio RGC" 1	The Ohio Oil Co. "Recreation Gun Club" 1	212515 W	SB	6,202	Lower	
Deepest well	Calstar Petroleum Co. "V" 2	Star Petroleum Co. "V" 2	21 2S 15W	SB	6,778		Puente late Miocene

Base of fresh water (ft.): 700
Remarks:
Barton, Cecil L., 1931-1932, Report of Playa Del Rey Oil Field: Calif. Div, of Oil and Gas, Summary of Operations -- Calif. Oil Fields. Hodges, F.C., 1944, Gas Storage and Recent Developments in the Playa Del Rey 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -Calif. Oil Fields.
Metzner, L.H., 1935-1936, The Del Rey Hills of the Playa Del Rey 0il Field: Calif. Div of 0il and Gas, Summary of Operations -- Calif. Oil Fields.
Selected References:
Riegle, John Jr., 1952, Petroleum Transactions, A.I.M.E.
Riegle, John Jr., 1953, Gas Storage in the Playa Del Rey 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields,
Riegle, John Jr., 1966, Underground Storage at Playa Del Rey, Southern Calif. Gas Co.

POINT CONCEPTION OIL FIELD

discovery well and deepest well

Present operator and well designation		Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Union Oi1 Co "State 2879 Deepest well Union $0 i 1 \quad$ Co "State 2879 	Union Oil Co. of Calif. "State 2879" 10-6 Union Oil Co. of Calif. "State 2879" 5-6	Same as present Same as present	$\begin{aligned} & 84 N 34 W \\ & 164 N 34 W \end{aligned}$	SB SB	$\begin{array}{r} 7,497 \\ \underline{a} / \\ 8,780 \\ \underline{b} / \end{array}$	Sacate	Matilija Eocene
POOL DATA							
ITEM	SACATE						FIELD OR AREA DATA
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) Initial reservoir \qquad pressure (psi) Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation. Geologic age \qquad (ft.) \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad	February 1965 $\begin{array}{r} 169 \\ 60 \\ 40 \\ 1 \\ 890-1,470 \\ 110 \end{array}$ Sacate Eocene 2,800 500	.					80
RESERVOIR ROCK PROPERYIES							
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 25-29 \\ 22-38 \\ 62-78 \\ 210 \end{array}$						
RESERVOIR FLUID PROPERTIES							
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air $=1.0$) \qquad Heating value (Btu/cu. ft.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad \mathbf{R}_{w} ($\mathrm{ohm} / \mathrm{m}$) (77 F) \qquad	$\begin{array}{r} 30-33 \\ \\ 375 \\ 1.10 \\ \\ \\ \\ 16,743 \\ 18,340 \end{array}$						
ENHANCED RECOVI:RY PROJECTS							
Enhanced recovery projects........... Date started. Date discontinued \qquad \qquad							
Peak oil production (bb) Year \qquad Peak gas production, net (Mcf) Year. \qquad							$\begin{array}{r} 175,235 \\ 1972 \\ 73,842 \\ 1972 \end{array}$

Base of fresh water (ft.): See areas
Remarks: a/Directional well; true vertical depth is 7,104 feet. b/ Directional well; true vertical depth is 8,202 feet.

Selected References: Curran, J.F., K.B. Hall, and R.F. Herron, 1971, Geology, 0 il Fields, and Future Petroleum Potential of Santa Barbara Channel Area, California: Am. Assoc. Petroleum Geologists'Memoir 15, p. 192.
Yerkes, R.F., H.C. Wagner, and K.A. Yenne, 1969, Petroleum Developinent in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper $679-\mathrm{B}$, p. 20.

COUNTY: SANTA BARBARA

POINT CONCEPTION OIL FIELD ONSHORE AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Coast Guard" 7	Same as present	8 4N 34W	SB	$\begin{array}{r} 4,121 \\ a / \end{array}$	GaviotaSacate	
Deepest well	Union Oil Co. of Calif. "Coast Guard" 2	Same as present	8 4N 34W	SB	Conf.		Confidential

Base of fresh water (ft.): None
Remarks: a/ Directional well; true vertical depth is confidential.
b/ Commingled with production from the Gaviota zone.

Selected References: Zulberti, J.L., 1972, Operations in District No. 3: Calif. Div. of 0il and Gas--Summary of Operations, Vol. 58, No. 2.

COUNTY: LOS ANGELES

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Cypress" 1	Associated 0il Co. "Cypress" 1	342514 W	SB	5,408	$\begin{aligned} & 5,200 \text {-foot } \\ & \text { zone } \end{aligned}$	
Deepest well	Chevron U.S.A. Inc. "Hardy Community" 3	Standard Oil Co. of Calif. "Hardy Community" 3	342 S 14W	SB	12,932		Topanga middle Miocene

Base of fresh water (ft.): See areas
Remarks: See areas

Selected References: See areas

POTRERO OIL FIELD
 EAST AREA
 Sheet 1 of 2

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Cypress" 1	Associated 0il Co. "Cypress" 1	34 2S 14W	SB	5,408	$\begin{aligned} & 5,200-\text { foot } \\ & \text { zone } \end{aligned}$	
Deepest well	Chevron U.S.A. Inc. "Hardy Community" 3	Standard 0il Co. of Calif. "Hardy Community" 3	342 S 14 W	SB	12,932		Topanga middle Miocene

Base of fresh water (ft.): 1,500
Remarks: All wells are abandoned, except those in Section 34.

Selected References: Johnson, R.A., 1961, East Area of Potrero Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 47, No. 2.

COUNTY: LOS ANGELES

POTRERO OIL FIELD EAST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.): 1,500
Remarks: $\underline{a} /$ Production commingled.

Selected References:

COUNTY: LOS ANGELES
POTRERO OIL FIELD INGLEWOOD CITY AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.8M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Oil Corp. "Standard Brick" 10	Basin Oil Co. of Calif. "Standard Brick" 1	282514 W	SB	10,418	City	
Deepest well	Mobil Oil Corp. "Community" 12	Basin Oil Co. of Calif. "Inglewood Community" 1-2	282514 W	SB	11,263		Topanga middle Miocene

Base of fresh water (ft.): $\quad 1,500$
Remarks: Wells are drilled directionally a/ Production commingled.

Selected References:
Crowder, R.E., 1958, Inglewood City Area of Potrero Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 7.

PRADO - CORONA OIL FIELD

COUNTY: RIVERSIDE
PRADO - CORONA OIL FIELD
(SEE AREAS FOR ADDITIONAL INFORMATION)
DISCOVERY WELL AND DEEPEST WELL

	Present operaior and well designation	Original operator and weil designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Prado Petroleum Co. "Sardco" 1	Prado Corona Co. and Dorial Corp. "Sardco" 1	173576	SB	2,740	Upper Hunter	
Deepest well	Prado Petrofeum Co. "Gov." 165-1	Santa Fe Minerals, Inc. "Gov." 165-1	173576	SB	5,991		$\begin{aligned} & \text { Ladd } \\ & \text { Cretaceous } \end{aligned}$

Base of fresh water (ft.): See areas
Remarks: Most easterly production in the Los Angeles Basin.
a/ Initial production was commingled.

Selected References: Durham, D.L., and R.F. Yerkes, 1964, Geology and Oil Resources of the Eastern Puente Hills Area, Southern California: U.S. Geol. Survey Prof. Gaede, V.F., 1969, Prado-Corona Oil Field: Calif. Div. of $0 i 1$ and Gas, Sunmary of Operations -- Calif. 0il Fields, Vol. 55 , No. 1.

COUNTY: RIVERSIDE

PRADO - CORONA OIL FIELD GOEDHART AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Hampton 0il Co. "Goedhart" 1	Pacific Drilling Co. "Goedhart" 1	283 S 7 W	SB	2,302	Upper Hunter (Gas)	
Deepest well	C.D. Draucker "Draucker" 1	Same as present	28357 W	SB	4,858		Puente late Miocene

Selected References:

PRADO - CORONA OIL FIELD SARDCO AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Prado Petroleum Co. "Sardco" 1	Prado-Corona and Dorial Corp. "Sardco" 1	17 3S 7W	SB	2,740	Upper Hunter	
Deepest well	Prado Petroleum Co. "Gov." 165-1	Santa Fe Minerals, Inc. "Gov." 165-1	$17357 W$	SB	5,991		Ladd? Cretaceous

Base of fresh water ($\mathbf{f t}$.): $\quad 2,000$
Remarks: \quad a/ Production commingled with Upper Hunter zone.

Selected References:

contours on top of gamboa kelly sand
SCALE $I^{\prime \prime}=650^{\circ}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	R.H. Beel Development Co. "GamboaKelly" 1	Barron Kidd "Gamboa-Kelly" 1	17 21S 8E	MD	$\begin{array}{r} 2,197 \\ \underline{a} / \end{array}$	GamboaKelly	
Deepest well	Barron Kidd "Gamboa-Kelly" 3	Same as present	17 21S 8 E	MD	3,004		Monterey Miocene

Base of fresh water (ft.): $\quad 1,800$
Remarks: a/Well was deepened to 2,255 feet in July 1963.
Only one well produced in this field. The field was abandoned in 1988. Cumulative production is 9,705 bbl of oil and 2,571 Mcf of gas.

Selected References:

RAMONA OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& Present operator and well designation \& \multicolumn{3}{|c|}{Original operator and well designation} \& Sec. T. \& R. \& B.\&M. \& Total depth (feet) \& Pool (zone) \& Strata \& age at total depth \\
\hline \begin{tabular}{l|l}
\hline Discovery well \& Herley Kell \\
Deepest well \& The Superio
\end{tabular} \& \begin{tabular}{l}
Herley Kelley Co. "Orduno" 1 \\
The Superior Oil Co. "Black" 15
\end{tabular} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Jack Herley and Paul C. Kelley "Orduno" ו \\
Same as present
\end{tabular}} \& \begin{tabular}{l}
\[
184 \mathrm{~N} 17 \mathrm{~W}
\] \\
134 N 18 W
\end{tabular} \& \begin{tabular}{l}
SB \\
SB
\end{tabular} \& \[
\begin{aligned}
\& 6,366 \\
\& 9,323
\end{aligned}
\] \& Del Valle \& \begin{tabular}{l}
Modelo \\
late Miocene
\end{tabular} \\
\hline \multicolumn{10}{|c|}{POOL DATA} \\
\hline ITEM \& BLACK \& KERN \& DEL VALLE \& \& BERING \& \multicolumn{3}{|r|}{LOWER} \& FIELD OR AREA DATA \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\))
\(\qquad\)
\(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
initial gas content (MSCF/ac.-ft.)... \\
Formation.. \\
Geologic age
\(\qquad\)
\(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular}} \& June 1946 120
70

978
Modelo
1ate Miocene
2,498
116
16 \& April 1945
209
85

953
Modelo
late Miocene
3,500
197

131 \& October 1943 \& \& \begin{tabular}{l}
March 1974

120

Modelo ate Miocene 6,500
550
$$
550
$$

 \& \& Decem \&

ber 1951

195

Modelo

Miocene 7, 150 150
\end{tabular} \& 540

\hline \& \multicolumn{9}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline \multirow[t]{2}{*}{| Porosity (\%) \qquad |
| :--- |
| Soj (\%) \qquad |
| Swi (\%) \qquad |
| Sgi (\%) \qquad |
| Permeability to air (md) |} \& \[

$$
\begin{array}{r}
27.0 \\
63 \\
30 \\
100.0
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
15.4-26.6 \\
62 \\
25 \\
165.0
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
11.8-23.3 \\
48 \\
35 \\
42.0^{*}
\end{array}
$$

\] \& \& \[

$$
\begin{gathered}
\overline{-} \\
\overline{-} \\
\text { 1.5-15.0** }
\end{gathered}
$$
\] \& \& \& -

-
- \&

\hline \& \multicolumn{9}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline \multirow[t]{2}{*}{| Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| ulifur content (\% by wt.) |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). |
| Bubble point press. (psia) \qquad \qquad |
| Gas: |
| Specific gravity (air $=1.0$) \qquad |
| Heating value (Btu/cu. ft.) |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) $\mathbf{R}_{w}(\mathbf{o h m} / \mathrm{m})$ $\left(77^{\circ} \mathrm{F}\right)$ \qquad |} \& 23-30

$$
17,800
$$ \& \[

16-30
\]

$$
2.45
$$

\[
16,900

\] \& | 15-20 |
| :--- |
| 2.45 |
| 9,700 | \& \& 19 \& \& \& 14-20

$$
9,400
$$ \&

\hline \& \multicolumn{9}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects. |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& \& \& \& \& \& \& \[

$$
\begin{array}{r}
\text { ic steam } \\
1965 \\
1965
\end{array}
$$
\] \&

\hline | Peak oil production (bbl) |
| :--- |
| Year. |
| Peak gas production, net (Mci................... |
| Year. \qquad | \& \& \& \& \& \& \& \& \& \[

$$
\begin{array}{r}
2,048,370 \\
1949 \\
2,892,951 \\
1952
\end{array}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.): $100-350$
Remarks: Only one well produced from the Bering zone, and only two wells produced from the Lower zone.

Selected References: Driggs, J.L., and N.N. Sampson, 1951, Ramona Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 37, No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "Deaton" 1	The Texas Co. "Deaton" 1	74 N 17 W	SB	4,802	Deaton	
Deepest well	Benteley-Simonson Partnership "North Ramona" 1-7	Nahama \& Weagant Energy Co. "North Ramona" 1-7	7 4N 17W	SB	5,483a		Modelo Miocene

POOL DATA

Base of fresh water (ft.): None
Remarks: Field was abandoned in March 1947 and reactivated in May 1984. a/Directional well.

Selected References:

REFUGIO COVE GAS FIELD (Abandoned)

COUNTY: SANTA BARBARA
REFUGIO COVE GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Rothschild 0il Co. "Orella" 1	Same as present	315 N 30 W	SB	3,130	Covarrubias	
Deepest well	Texaco Inc. "State 2955" 2	Same as present	315 N 30 W	SB	$\begin{array}{r} 7,020 \\ \underline{a} / \end{array}$		Gaviota Eocene

Base of fresh water (ft.): $\quad 0-300$
Remarks: The eastern productive area was formerly known as the Refugio Area. The field was abandoned in 1964, reactivated in 1984 , and reabandoned in 1990. Cumulative production is $3,199 \mathrm{bbl}$ of oil and $1,034,366 \mathrm{Mcf}$ of gas.
a/ Directional well; true vertical depth is 6,264 feet
$\overline{\mathrm{b}}$ / Consists of several different sands within the Sespe Formation.

Selected References: Dolman, S.G., 1947, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif, Oil Fields, Vol. 33, No. 2. Kribbs, G.R., 1943, Capitan Oil Field, Cross Section of Coastal Fault Block: Calif. Div. of Mines Bull. 118, p. 374.
Yerkes, R.F., H.C. Wagner, and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

RICHFIELD OIL FIELD

COUNTY: ORANGE
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union 0il Co. of Calif. "Chapman" 1	Same as present	29 3S 9W	SB	3,085	Chapman	
Deepest well	Union 0il Co. of Calif. "Chapman" 29	Same as present		SB	10,496		Vaqueros-Sespe 01igocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline ITEM \& TAR SAND \& CHAPMAN \& BREEN \& KRAEMER \& DOWL ING \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
\text { July } 1957 \\
20 \\
- \\
- \\
115 \\
445 \\
-\overline{2} \\
\text { "Repetto" } \\
\text { early Pliocene } \\
2,000 \\
80
\end{array}
\] \& March 1919
1,732
-
1,371
1,524
345
Puente
late Miocene
2,900
500 \& July 1933
650
3,500
-
1,559
125
1,247
328
Puente
late Miocene
3,500
250 \& June 1920
675
-
-
1,863
138
1,267
465
Puente
late Miocene
3,800
600 \& August 1956
162
16
312
186
-
Puente
late Miocene
7,950
250 \& 1,610 \\
\hline \multicolumn{7}{|c|}{RESERVOIR ROCIK PROPERTIES} \\
\hline \begin{tabular}{l}
Porosity (\%) \(\qquad\) \\
Soi (\%) \(\qquad\) \\
Swi (\%) \(\qquad\) \\
Sgi (\%) \(\qquad\) \\
Permeability to air (md) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
22.7 \\
22.5 \\
49.4 \\
1,200
\end{array}
\] \& \[
\begin{array}{r}
30.0 \\
75.0 \\
25.0 \\
1,000
\end{array}
\] \& \begin{tabular}{l}
27.4 \\
67.0 \\
33.0 \\
537
\end{tabular} \& \[
\begin{array}{r}
25.0 \\
77.0 \\
23.0 \\
1,095
\end{array}
\] \& - \& \\
\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES} \\
\hline \begin{tabular}{l}
Oil: \\
Oil gravity (\({ }^{\circ}\) API) \(\qquad\) \\
Sulfur content (\% by wt.) \(\qquad\) \\
Initial solution \\
GOR (SCF/STB) \(\qquad\) \\
Initial oil FVF (RB/STB) \(\qquad\) \\
Bubble point press. (psia) \(\qquad\) \\
Viscosity (cp) @ \({ }^{\circ}\) F \(\qquad\) \\
Gas: \\
Specific gravity (air \(=\mathbf{1 . 0}\)) \(\qquad\) \\
Heating value (Btu/cu. ft.) \(\qquad\) \\
Water: \\
Salinity, NaCl (ppm) \(\qquad\) \\
T.D.S. (ppm) \(\qquad\) \\
\(\mathbf{R}_{\mathbf{w}}\) (ohm/m)(77 \({ }^{\circ}\)) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
12-14 \\
1.110
\end{array}
\] \& \(16-20\)
1.38
226
1.118
5.70117

6,567
6,609

0.683 \& | $16-19$ $\begin{array}{r} 263 \\ 1.142 \end{array}$ |
| :--- |
| $4.7 @ 125$ $\begin{aligned} & 6,306 \\ & 6,850 \\ & 0.640 \end{aligned}$ | \& \[

$$
\begin{array}{r}
21-25 \\
1.74 \\
367 \\
1.202 \\
4.5 @ 130 \\
\\
\\
\\
\\
6,044 \\
10,926 \\
0.570
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
21 \\
\\
\hline \\
\hline
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects. \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& waterflood

1944
active
cyclic steam
1964
1965 \& \& waterflood 1973 active \& \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \& \[

$$
\begin{array}{r}
8,182,668 \\
1922 \\
14,000,000 \\
1921
\end{array}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 800-3,200$
Remarks: This was the first field in California to use waterflooding for secondary recovery. Union 0il Co. of Calif. started waterflooding in the Chapman zone on March 29, 1944. A cyclic-steam project was started in 1964 and was terminated in 1965 after injecting 29,950 bbl of water-converted to-steam into three wells.

Selected References: Ingram, W.L., 1961, Richfield Oil field: Calif. Div. of 0il and Gas, Sumnary of Operations -- Calif. Oil Fields, Vol. 47, No. 2.

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks: Some operators report injection data by fault block designation.
a/ Production commingled.

Selected References

COUNTY: VENTURA

RINCON OIL FIELD MAIN AREA

Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total deth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	ARCO Oil and Gas Co. "Hobson Fee" 3	Pan American Pet. Co. "Hobson Fee" 3	17 3N 24W	SB	7,449	Shallow	
Deepest well	Santa Fe Energy Operating Partners, L.P. "Hobson" C-11	Chanslor-Canfield Midway 0il Co. "Hobson" C-11	17 3N 24W	SB	14,155		Santa Margarita late Miocene

ITEM	POOL DATA					FIELD OR AREA DATA
	SHALLOW	TOP	INTERMEDIATE	MILEY	UPPER DEEP	
Discovery date \qquad Initial production rates Oil (bb/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Initial reservoir pressure (psi) Reservoir temperature (${ }^{\circ} \mathbf{F}$) \qquad \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.).... Formation...................................... Geologic as \qquad Average depth (ft.) Average net thickness (ft.) \qquad \qquad	December 1927 328 1,500 930 Pico Pliocene 3,400 140 140	December 1927 328 1,780 125 868 Pico Pliocene 4,100 120	November 1929 418 1,900 129 723 Pico Pliocene 4,390 140 140	June 1928 107 2,060 648 Pico Pliocene 4,750 640	July 1929	
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{gathered} 24 \star \\ 60 \\ 40 \\ 0 \\ 277 \end{gathered}$	$\begin{array}{r} 22 \star \\ 60 \\ 40 \\ 0 \\ 50-200 \end{array}$	$\begin{array}{r} 20 * \\ 55 \\ 45 \\ \sim \\ 40-100 \end{array}$	$\begin{aligned} & 19 * \\ & 55 \\ & 45 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 15 * \\ 52 \\ 48 \\ 0 \\ 30^{*} \end{gathered}$	
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). Bubble point press. (psia) \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value (Btu/cu. ft.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) $\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$ \qquad \qquad	$\begin{array}{r} 30 \\ - \\ 160 \\ 1,20 \\ 1,500 \\ \\ 0.70 \\ \\ 25,000 \end{array}$	29 - 460 1,18 1,780 0.70 25,000 0.125150	29 - 460 7.98 1,900 0.70 25,000 $0.126 @ 150$	$\begin{array}{r} 30 \\ 1.08 \\ 460 \\ 1.25 \\ 2,060 \\ \\ 0.70 \\ \\ 25,000 \\ 1.250 @ 150 \end{array}$	$\begin{array}{r} 30 \\ 1.30 \\ - \\ 0.70 \\ 25,000 \\ 1.250 @ 150 \end{array}$	
ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects. Date started \qquad Date discontinued \qquad	$\begin{array}{r} \text { waterflood } \\ 1961 \\ \text { active } \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1963 \\ 1976 \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1963 \\ \text { active } \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1963 \\ \text { active } \end{array}$		

Base of fresh water (ft.): None
Remarks:

Selected References: Bailey, W.C., 1941, Rincon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil and Gas Fields, Vol. 27, No. 1.

county: VENTURA
RINCON OIL FIELD OAK GROVE AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

COUNTY: VENTURA
RINCON OIL FIELD PADRE CANYON AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Conoco Inc. "Hobson" 7	Continental 0il Co. "Hobson" 1	153 N 24 W	SB	6,390	Shallow	
Deepest well	Conoco Inc. "Conoco-M.P." 1	Continental Oil Co. "Conoco-M.P." 1	153 N 24 W	SB	15,336		Santa Margarita Tate Miocene

POOL DATA

Base of fresh water (ft.): None
Remarks:

Selected References: Bailey, W.C., 1941, Rincon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil and Gas Fields, Vol. 27, No. 1.

COUNTY: VENTURA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Rincon 0 il Co. "Del Mar" 32-35	Energetics Inc. "Del Mar" 32-35	354 N 25 W	SB	8,590a	Sespe	Sespe 0ligocene
Deepest well	Same as above	"	"	"	"	"	"

Base of fresh water ($\mathbf{f t}$.):
Remarks: a/ Directional well.

Selected References:

ROSECRANS OIL FIELD

county: LOS ANGELES
ROSECRANS OIL FIELD
Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL

Base of fresh water ($\mathbf{f t}$.): $\quad 2,000-2,400$
Remarks:

Selected References: Foster, J.F., 1954, Rosecrans and So. Rosecrans 0il Fields: Calif. Div. of 0il and Gas, Summary of Operations -.. Calif. Oil Fields Vol. 40, No. 2 Musser, E.H., 1925, The Rosecrans Oil Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 11 , No. 5.
dISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks:

Selected References:

discovery well and deepest well

	Present operator and well designation		Original operator and well designation		Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Gardena Oil Co. "Bucher" 1 Same as above		G.R. Nance "Bucher" 1 II		$203 S 13 \mathrm{~W}$	SB	$8,200$	Zins	Puente late Miocene
POOL DATA									
ITEM		ZINS	0'DEA	8th					FIELD OR AREA DATA
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation. \qquad Geologic age \qquad Average depth (ft.) \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad		February 1959 $\begin{aligned} & 373 \mathrm{a} / \\ & 500 \mathrm{a} / \end{aligned}$ "Repetto" early Pliocene $\begin{array}{r} 5,800 \\ 350 \end{array}$	February 1959 Puente late Miocene $\begin{array}{r} 6,800 \\ 550 \end{array}$	February 1959 $\frac{\mathrm{a}}{\mathrm{a}} /$ Puente late Miocene $\begin{array}{r} 7,500 \\ 180 \end{array}$					20
		RESERVOIR ROCK PROPERTIES							
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad $\mathbf{S g i}$ (\%) \qquad Permeability to air (md)		23**	23-28**	20-21**					
		RESERVOIR FLUID PROPERTIES							
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value (Btu/cu. ft.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(\mathbf{7 7}^{\circ} \mathrm{F}\right)$ \qquad		30	30	30					
		ENHANCED RECOVERY PROJECTS							
Enhanced recovery projects. Date started \qquad Date discontinued \qquad									
Peak oil produ Year \qquad Peak gas prod Year \qquad	(bbl) net (Mcf)								$\begin{array}{r} 23,635 \\ 1959 \end{array}$

Base of fresh water (ft.): $\quad 2,000-2,400$
Remarks: a/Production was commingled in the Zins, 0'Dea \& 8th zones.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Belmont 0il Co. "Averill" 1	Howard 0il Associates "H.0." 1	20 3S 13W	SB	7,644	0'Dea	
Deepest well	American Titan 0il Co. "Hatfield" 1	Apex Petroleum Corp., L.td. "Hatfield" ?	203513 W	SB	9,214		Puente late Miocene

Base of fresh water (ft.): $\quad 2,000-2,400$
Remarks: The 9 th zone has doubtful commercial value. It is only open to production in the field in one well, which also produces from the 8 th zone.

Selected References:' Foster, J.F., 1954, Rosecrans and South Rosecrans 0il Field: Calif. Div. of Oil and Gas, Summary of Operations -.. Calif. Oil Fields, Vol. 40, No. 2.

ROWLAND OIL FIELD

(Abandoned)
MIDDLE MIOCENE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	J.W. Dietzel "Rowland" 1	Western American Petroleum Co. 1	142510 W	SB	4,908	unnamed	Puente late Miocene
Deepest well	Same as above	"	"	"	"	"	

Base of fresh water (ft.): $\quad 300$
Remarks: Last production was in 1945. The field was abandoned in 1946. Cumulative production is 1,885 bbl of oil and no gas.

Selected References:

RUSSELL RANCH OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks:

Selected References: Barger, R.M., and J.L. Zulberti, 1952, Russell Ranch 0il Field: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Hill, M.L. S.A. Carlson, and T.W. Dibblee, Jr., 1958, Stratigraphy of Cuyama Valley - Caliente Range Areas, California: Am. Assoc. of Petroleum Geologists Bull., Vol. 42, No. 12, p. 2973.

RUSSELL RANCH OIL FIELD MAIN AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	West America Resources "G.D.U." 2-25A	Norris Oil Co. "Cuyama" 2	$2511 N 28 W$	SB	1,973	Santa Margarita	
Deepest well	West America Resources "F.R. Anderson" 73-36	Richfield 0il Corp. "F.R. Anderson" 73-36	36 N 28W	SB	5,636		marine Mio-01igocene(?)

ITEM	POOL DATA					FIELD OR AREA DATA
	SANTA MARGARITA	dibblee	GRIGGSDIBBLEE	COLGROVE		
Discovery date \qquad Initial production rates Oil (bbl/day) Gas (Mcf/day) \qquad \qquad Flow pressure (psi) \qquad Initial reservoir pressure (psi) Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) \qquad Initial gas content (MSCF/ac.-ft.)... Formation Geologic age \qquad \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad	January 1948 190 100 $220-250$ $18 / 64$ 850 - - Santa Margarita 1ate Miocene 2,500 $50-200$	June 1948 351 181 150 - 1,285 1407 1,097 Vaqueros Variy M iocene $2,800-3,200$ $120-160$	October 1949 240 - - - 150 - Vaqueros early Miocene 3,400 150	February 1949		1,410
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 32 \\ - \\ \hline \\ 1,330 \end{array}$	$\begin{array}{r} 23-25 \\ 25-40 \\ 40-55 \\ 10-20 \\ 102-350 \end{array}$	$\begin{array}{r} 25 \\ 44 \\ 34 \\ 22 \\ 237 \end{array}$	-		
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). Bubble point press. (psia) \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) Heating value (Btu/cu. ft.) \qquad \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}(\mathrm{ohm} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$ \qquad	$\begin{array}{r} 25-26 \\ 0.26-0.45 \end{array}$ $\begin{aligned} & 13,700-18,000 \\ & 15,000-21,000 \end{aligned}$	$\begin{array}{r} 30-38 \\ 0.26-0.45 \\ 273 \\ 1.16 \\ 1,085 \\ 0.99-1.43 \Leftrightarrow 140 \end{array}$ $\begin{array}{r} 7,960-9,075 \\ 9,978-14,500 \end{array}$	$\begin{array}{r} 38 \\ 0.26-0.45 \\ - \\ - \\ - \\ \\ \\ 19,688-22,427 \\ 22,005 \\ 0.33 \end{array}$	$\begin{array}{r} 35-40 \\ 0.26-0.45 \end{array}$ $9,159-24,825$		
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects Date started \qquad Date discontinued \qquad		waterflood 1953 active pressure maintenance 1949 active air injection 1971 1973	$\begin{array}{r} \text { waterflood } \\ 1976 \\ 1982 \end{array}$			$\begin{array}{r} \text { cyclic steam } \\ 1966 \\ 1968 \end{array}$
						$\begin{array}{r} 7,929,497 \\ 9,950 \\ 4,218,503 \\ 1958 \end{array}$

Base of fresh water (ft.): 1,000
Remarks:

Selected References: Dolman, S.G., 1948, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 34, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	West America Resources "Russell A" 15-9	Richfield 0il Corp. "Russell A" 15-9	910 N 27 W	SB	4,190	Dibblee	
Deepest well	West America Resources "Russell A" 23-9	Richfield 0il Corp. "Russell A" 23-9	9 10N 27W	SB	5,085		Vaqueros Miocene

Base of fresh water (ft.): 1,100
Remarks:

Selected References: Bailey, Wm. C., 1952, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Vol. 38, No. 2.

SALT LAKE OIL FIELD

COUNTY: LOS ANGELES

SALT LAKE OIL FIELD

dISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. well number unknown	Salt Lake Oil Co. of Calif. well number unknown	unknown	SB	unk.	A	
Deepest well	McFarland Energy, Inc. "U-93" 5	Jade 0il and Gas Co. "U-93" 5	21 1S 14W	SB	10,446		Puente late Miocene

ITEM	POOL DATA					FIELD OR AREA DATA
	A	B	C	D	E	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation \qquad Geologic age \qquad Average depth (ft.) \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad	1902	unknown	August 1904	May 1960	May 1960	
			250			
	-	-	250	$\begin{aligned} & 75 \mathrm{a} / \\ & 33 \mathrm{a} / \end{aligned}$	$\frac{a}{a} /$	
	-	-	880	123	25	
	-	-	120	123	125	
	"Repetto"	Puente	Puente	Puente	Puente	
	early Pliocene	late Miocene	late Miocene	late Miocene	late Miocene	
	200	250	275	200	100	
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Sof (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	-	-		62	-	
	-	-	69 31	-	-	
	-	-	0.0	-	-	
	-	-	311	-	-	
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.) \qquad Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB).. \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air = 1.0) \qquad Heating value (Btu/cu. ft.) \qquad Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad \qquad		18	9-22	14	18	
	2.73	2.73	2.73	2.73	2.73	
	-	-	65	-	-	
	-	-	1.045	-	-	
	7.7 @ 108	-	3.0 @ 108	-	-	-
	-	-	0.69	-	-	
	-	-	7,190	-	-	
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects \qquad Date started \qquad Date discontinued \qquad						
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year \qquad						

Base of fresh water (ft.): 250
Remarks: $\quad \underline{a} / D, E, \& F$ production commingled.

Selected References: Crowder, R.E., and R.A. Johnson, 1963, Recent Developments in Jade-Buttran Area of Salt Lake Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1.
county: LOS ANGELES
SALT LAKE OIL FIELD Sheet 2 of 2

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

Base of fresh water (ft.):
Remarks: a/ D, E, \& F production commingled.

Selected References:

SOUTH SALT LAKE OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. P-60	Standard 0il Co. of Calif. P-60	29 1S 14W	SB	5,247	Dunsmuir sands	
Deepest well	Chevron U.S.A. Inc. "Seibu Corehole" 1	```Standard Oil Co. of Calif. "Seibu Corehole" I```	29 1S 14W	SB	7,467		Puente late Miocene

POOL DATA

Base of fresh water (ft.): 250
Remarks: All wells directionally drilled from urban drillsites.
a/ Production was commingled.

Selected References: Samuelian, R.H., 1984, South Salt Lake 0il Field, Calif. Div. of 0il and Gas publication No. TR 32.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "N.L.U." 1	The Texas Co. "Lombardi" 1	27 22S 10E	MD	2,158	Lombardi	
Deepest well	Texaco Inc. "Labarere" 3-15	Same as present	1523510 E	MD	$\begin{array}{r} 5,004 \\ \underline{a} / \end{array}$		Monterey Miocene

Base of fresh water (ft.): See areas

> Remarks:
> Barger, R.M., and J.L. Zulberti, 1949, San Ardo $0 i 1$ Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations--Calif. Oil Fields, Vol. 35, No. 2.
> Bradford, W.C., and E.D. Lawrence, 1956, San Ardo Oil Field: Calif. Div. of 0il and Gas, Summary of Operations--Calif. Oil Fields, Bramlette, M.N., and S.N. Daviess, 1944, Geology and Oil Possibilities of the Salinas Valley, California: U.S. Geol. Survey Oil and Gas Investigations, Preliminary Map 24.
> Colvin, R.G., 1963, San Ardo Dil Field, Monterey County, Calif.: A.A.P.G.-S.E.P.M. Guidebook to the Geology of Salinas Valley and the Davis, F.F., 1966, Economic Mineral Deposits in the Coast Ranges: U.S. Geol. Survey Bull. 190, p. 321.
> Hart, E.W., 1963, Mines and Mineral Resources of Monterey County, Calif.: Div. of Mines and Geology, County Report No. 5, p. 77. Vander Leck, L., 1921, Petroleum Resources of California: Calif. State Mining Bureau Bul1. 89, p. 90.

Base of fresh water (ft.): 1,000
Remarks: The zone underlying the Lombardi in the eastern portion of the area was originally named Orradre. Subsequent development work showed Aurignac The zone underlying the Lombardi in the eastern portion of the area was originally named Orradre. Subsequent development work showed Aurignac
and Orradre to be the same zone. The main area was originally divided into the "Aurignac" area to the west, the "Campbell" area and the "Superior" area to the east. Santa Margarita zone pressure exceeds normal hydrostatic pressure in portions of this area.
a/ Directional weli; true vertical depth is 4,953 feet.

[^23]

SAN CLEMENTE OIL FIELD
(Abandoned)

SAN CLEMENTE OIL FIELD
(ABD)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "0'Neill Estate (NCT-1)" 1	The Texas Co. "0'Neill Estate (NCT..1)" 1	228 S 7 W	SB	7,044	Schultz	Williams Late Cretaceous
Deepest well	Same as above	"	"	$"$	"	"	"

Base of fresh water (ft.): $\quad 300$
Remarks: Last production was in 1954. The field was abandoned in 1955. Cumulative production is 1,452 bbl of oil and 446 Mcf of gas.

Selected References: Lang, H.R., 1972, San Clemente Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 58, No. 1.

SAN MIGUELITO OIL FIELD

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Conoco Inc. "Grubb" 1	Continental Oil Co. "Grubb" 1	23 3N 24W	SB	7,623	1 st Grubb	
Deepest well	Conoco Inc. "Grubb" 370	Same as present	26 3N 24W	SB	14,752		Santa Margarita late Miocene

ITEM	POOL DATA					FIELD OR AREA DATA
	IST GRUBB	2ND GRUBB	3RD GRUBB	4TH GRUBB	5TH GRUB8	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) \qquad Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Formation. \qquad Geologic age \qquad Average depth (ft.) \qquad Average net thickness (ft.) \qquad Maximum productive area (acres) \qquad	$\begin{array}{r} \text { November } 1931 \\ 616 \\ 506 \\ - \\ 3,200 \\ 160 \\ 685 \\ 534 \\ \text { pico } \\ \text { Pliocene } \\ 6,803 \\ 427 \end{array}$	Apri1 1944	November 1950 $\begin{array}{r} 1,311 \\ 1,157 \\ - \\ 5,000 \\ 205 \\ 440 \\ 88 \\ P i c o \\ \text { P1iocene } \\ B, 600 \\ 173 \end{array}$	February 1970 610 303 - - - - Pico-Santa Margarita Pliocene-Miocene 12,300 800	November 1979 212 137 $6 / 64$ - - - Santa Margarita Miocene 14,257 473	940
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Sof (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	$\begin{array}{r} 10.0-25.0 \\ 66.0 \\ 34.0 \\ 0.0 \\ 32.4 \end{array}$	$\begin{array}{r} 15.0-20.0 \\ 62.3 \\ 37.7 \\ 0.0 \\ 29.0 \end{array}$	15.1 36.0 42.7 21.0 33.0	-	-	
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.). \qquad Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) \qquad Viscosity (cp) @ ${ }^{\circ}$ F \qquad Gas: Specific gravity (air $=1.0$) \qquad Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathrm{w}}(\mathrm{ohm} / \mathrm{m})\left(\mathbf{7 7}^{\circ} \mathrm{F}\right)$ \qquad	$\begin{array}{r} 31 \\ 0.93 \\ 780 \\ 1.390 \\ 3,000 \\ - \\ \\ 0.75 \\ 1,300 \\ \\ 24,500 \\ 27,200 \\ 25 @ 75 \end{array}$	$\begin{array}{r} 31 \\ 0.87 \\ 850 \\ 1.440 \\ 3,200 \\ - \\ \\ 0.75 \\ 1,300 \\ \\ 24,500 \\ 27,200 \\ 25075 \end{array}$	$\begin{array}{r} 31 \\ - \\ 800 \\ \vdots .526 \\ 4,000 \\ 0.70205 \\ \\ 0.75 \\ 1,300 \\ \\ 24,500 \\ 27,200 \\ 25 @ 75 \end{array}$	$24,500$	25 - - - - - - - -	
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects \qquad Date started Date discontinued \qquad \qquad	waterflood 1968 active pressure maintenance 1940 1949	$\begin{array}{r} \text { waterflood } \\ 1961 \\ \text { active } \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1955 \\ \text { active } \end{array}$		ษ	
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year \qquad						$\begin{array}{r} 4,464,109 \\ 1951 \\ 15,614,359 \\ 1952 \end{array}$

Base of fresh water (ft.): 200
Remarks: In the eastern part of the field, Conoco Inc. has waterflood projects in the 2nd and 3rd Grubb zones, designated in the annual report of the Division of $0 i 1$ and Gas as D-5 and D-6, respectively, in conjunction with waterflood projects by Shell California Production Inc. in Ventura Field

Glenn, W.E., 1950, A Study of Reservoir Performance of the First Grubb Pool, San Miguelito field, Ventura County, California: Am. Inst. Min. Met. Eng., Petroleum Trans., Vol Maplow, E.j., 1953, San Miguelito Oil Field, Calif. Div. of 0 il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 2. McClellan, H.W, and R.R. Haines, 1951, San Miguelito Oil Field, Ventura County, California: Am. Assoc. Petroleum Geologists Bulletin Vo1. 35, pp. 2542-2560.
Natland, M.L., 1953, Pleistocene and Pliocene Stratigraphy of Southern California: Paper read before the Am. Assoc. Petroleum Geologists,
Selected References:

Los Angeles, California, March 24-27, 1952. Also, see chart in Pacific Petroleum Geologist, Vol. 7, No. 2, p. 2.

COUNTY: LOS ANGELES
SANSINENA OIL FIELD
(SEE AREAS FOR ADDITIONAL INFORMATION)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	McFarland Energy, Inc. "Sansinena" 4	Union Oil Co. of Calif. "Sansinena" 4	30 2S 10W	SB	1,295	2nd Whittier	
Deepest well	Union Oil Co. of Calif. "Sansinena" 10 A 3	Same as present	32 2S 10W	SB	9,586		Puente-Topanga (Undiff) it to middle Miocene

Base of fresh water (ft.): See areas
Remarks: See areas

Selected References: See areas
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Rothschild 0il Co. "Nuckols" 1	Same as present	30 2S 10W	SB	5,526	Pliocene	
Deepest well	Southern California Gas Co. "Sansinena So. Pool" 12-G-3	Union Oil Co. of Calif. "Sansinena" 12-G-1	$31 \quad 2 \mathrm{~S} \mathrm{10W}$	SB	6,181		Puente late Miocene

Base of fresh water (ft.): 600
Remarks: $\underline{a} /$ Production from all zones commingled.

Selected References:

SANSINENA OIL FIELD CENTRAL AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union 0il Co. of Calif. "Sansinena" 3 3	Union 0il Co. of Calif. "Sansinena" 41	29 2S 10W	SB	5,188	C-1	
Deepest well	Unjon Oil Co. of Calif. "Sansinena" 11 B 6	Same as present	$33 \quad 2 \mathrm{~S} \mathrm{10W}$	SB	5,500		Puente late Miocene

Base of fresh water (ft.): $\quad 600$
Remarks:

Selected References:

countr: LOS ANGELES
SANSINENA OIL FIELD CURTIS AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	McFarland Energy, Inc. "Sansinena" 11	Union Oil Co. of Calif. "Sansinena" 11	30 2S 10W	SB	5,200	D-1	
Deepest well	$\underset{5-A_{-} 74}{\text { Union } 0 i l}$ Co. of Calif. "Sansinena"	Union Oil Co. of Calif. "Sansinena" 74	$30 \quad 2 \mathrm{~S} \mathrm{10W}$	SB	6,418		Puente late Miocene

Base of fresh water (ft.): $\quad 600$
Remarks: $\quad \underline{a} /$ Production from both zones is commingled.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Sansinena" 9 B 1	Union 0il Co. of Calif. "Naranjal" 46-33	33 2S 10W	SB	7,468	A-10	
Deepest well	Union 0il Co. of Calif. "Sansinena" $10 \mathrm{Al}_{3}$	Same as present	322810 W	SB	9,586		Puente-Topanga (Undiff) 1ate-mid Miocene

Base of fresh water (ft.): 600
Remarks: A waterflood project was started in 1964 and terminated in 1967 after injecting 3,328,991 bbl of water into three wells.

Selected References: Ledingham, G.W., Jr., 1974, East Area of Sansinena 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- California Oil Fields,

Base of fresh water (ft.):

Remarks: a/ Initial production from D-1, D-2, D-3, and D-4 zones was commingled.

Selected References:

COUNTY: LOS ANGELES

SANSINENA OIL FIELD WEST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	McFarland Energy, Inc. "Sansinena" 4	Union Oil Co. of Calif. "Sansinena" 4	302 S 10W	SB	1,295	2nd Whittier	
Deepest well	$\mathrm{Union}_{3 \text { B } 65} \text { Oil Co. of Calif. "Sansinena" }$	Union 0il co. of Calif. "Sansinena" 65	29 2S 10W	SB	8,357		Puente late Miocene

POOL DATA						FIELD OR AREA DATA
ITEM	2ND WHITTIER	C-3	D-1	D-2	D-3	
Discovery date	May 1898	November 1951	May 1945	September 1945	April 1949	
Initial production rates Oil (bbl/day)	3	140	102	156	1	
Gas (Mcf/day) \qquad Flow pressure (psi) \qquad						
Bean size (in.) Initial reservoir pressure (psi) \qquad						
Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)...			Puente	Puente	Puente	
Formation Geologic age \qquad \qquad	early Pliocene	1ate Miocene	late Miocene	late Miocene	late Miocene	
Average depth (ft.) Average net thickness (ft)	1,300 100	2,100 100	2,900 300	3,600 475	$\begin{array}{r} 4,500 \\ 120 \end{array}$	
	RESERVOIR ROCK PROPERTIES					
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	-	$30-33$ 50	$\stackrel{32}{-}$	${ }^{26}$	23 34	
	-	20	-	-	47	
		280-300	390	320-280	300-450	
	RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by w.)........... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB). \qquad Bubble point press. (psia) Viscosity (cp) @ ${ }^{\circ}$ F. \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$)........ Heating value (Btu/cu. ft.) \square Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad \mathbf{R}_{w} ($\mathrm{ohm} / \mathrm{m}$) ($\mathbf{7 T}^{\circ} \mathrm{F}$) \qquad	17	14	22	19-26	20	
			-	-	1.15	
		-				
	-	-	-	21,900	-	
				22,500		
	ENHANCED RECOVIERY PROJECTS					
Enhanced recovery projects Date started \qquad Date discontinued \qquad						
Peak oil production (bы) Year. \qquad Peak gas production, net (Mcf) Year ..						

Base of fresh water (ft.): 600
Remarks: 6-A Area was merged with the West Area in 1974.

Selected References:

santa clara avenue oil field

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \hline \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Concordia Resources, Inc. "Friedrich Unit 1" 1	McCulloch Oil Corp. "Friedrich Unit 1" 1	25 2N 22W	SB	8,567	Sespe	
Deepest well	Concordia Resources, Inc. "Friedrich Unit $3^{\prime \prime} 2$	Hunnicutt and Camp Drilling Co. "Friedrich Unit 3" 2	25 2N 22W	SB	11,065		Sespe 0ligocene

Base of fresh water (ft.): 1,750
Remarks:

Selected References:

COUNTY: LOS ANGELES
SANTA FE SPRINGS OIL FIELD
Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Meyer" 3	Same as present	4 3S 11W	SB	4,736	Meyer	
Deepest well	Mobil 0 il Corp. 428-F	Union 0il Co. of Calif. "Bell" 107	635116	SB	13,541		Puente late Miocene

ITEM	POOL DATA					FIELD OR AREA DATA
	gas zone	FOIX	BELL	MEYER	NORDSTROM	
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) \qquad Flow pressure (psi) Bean size (in.) \qquad \qquad Initial reservoir pressure (psi) Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad \qquad Initial oil content (STB/ac..ft.) Initial gas content (MSCF/ac.-ft.)... Formation.. Geologic age \qquad (ft.) Average net thickness (ft .) \qquad Maximum productive \qquad	July 1922 700,000 "Pico" 1ate Pliocene 2,000 35	$\begin{array}{r} \text { May } 1922 \\ 575 \\ - \\ \\ 1,480 \\ 1,60 \\ 1,620 \\ \text { "Repetto" } \\ \text { early Pliocene } \\ 3,580 \\ 180 \end{array}$	November 1921 2,588 1,700 140 1,620 "Repetto" early Pliocene 3,900 300	Oc tober 1919 $\begin{array}{r} 1,900 \\ 150 \\ 1,576 \end{array}$ "Repetto" early Pliocene 4,600 700	$\begin{array}{r} \text { November } 1928 \\ 2,560 \\ 35 \\ \\ 2,200 \\ 160 \\ 1,481 \\ \text { "Repetto" } \\ \text { early Pliocene } \\ 5,400 \\ 500 \end{array}$	
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) Swi (\%) \qquad Sgi (\%) \qquad Permeability to air (md) \qquad	-	$\begin{array}{r} 31.7 \\ 78 \\ 22 \\ 820 \end{array}$	$\begin{array}{r} 30.0 \\ 79 \\ 21 \\ - \\ 945 \end{array}$	$\begin{array}{r} 32.3 \\ 78 \\ 22 \\ 36 \\ 720 \end{array}$	31.4 76 24 - 650	
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.).......... Initial solution GOR (SCF/STB) \qquad Initial oil FVF (RB/STB) \qquad Bubble point press. (psia) Viscosity (cp) @ ${ }^{\circ} \mathrm{F}$ \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}$ (ohm/m)(770F) \qquad	$3,420$	$\begin{array}{r} 28 \\ - \\ 1.18 \\ - \\ - \\ - \\ \\ \\ 4,275 \\ 7,500 \\ 0.075 \end{array}$	$\begin{array}{r} 31 \\ - \\ 370 \\ 1.21 \\ 1,700 \\ 1.78140 \\ \\ 0.8 \\ \\ 7,500 \\ 9,000 \\ 1.770 \end{array}$	$\begin{array}{r} 35 \\ 0.44 \\ 1.24 \\ 2.7 @ 150 \\ \\ - \\ \\ \\ 12,600 \\ 14,300 \\ 0.310 \end{array}$	$\begin{array}{r} 35 \\ - \\ 1.25 \\ - \\ - \\ - \\ \\ \\ 11,800 \\ 12,700 \\ 0.290 \end{array}$;
ENHANCED RECOVERY PROIECTS						
Enhanced recovery projects \qquad Date started \qquad Date discontinued \qquad				$\begin{array}{r} \text { waterflood } \\ 1971 \\ \text { active } \end{array}$		
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year ... \qquad						

Base of fresh water (ft.): $\quad 1,000$

Remarks:

Selected References: Ybarra, R.A., 1957, Recent Developments in the Santa Fe Springs 0il Field: Calif. Div. of 0 il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43 , No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well							
Deepest well							

POOL DATA						
ITEM	BUCKBEE	O'CONNELL.	CLARK-HATHAWAY	SANTA FE	BELL 100	$\begin{aligned} & \text { FIELD OR } \\ & \text { AREA DATA } \end{aligned}$
Discovery date \qquad Initial production rates Oil (bbl/day) \qquad Gas (Mcf/day) Flow pressure (psi) Bean size (in.) \qquad Initial reservoir pressure (psi) \qquad Reservoir temperature (${ }^{\circ} \mathrm{F}$) \qquad Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.)... Geologic \qquad Average depth (ft.) \qquad Maximum productive area (acres) \qquad	July 1928 2,000 - 2,520 1,277 1,276 "Repetto" early Plocene 6,000 400	February 1929 1,300 2,870 188 1,070 "Repetto"-Puente e Plio./1 Miocene 6,700 700	June 1929 1,114 - 3,200 210 871 Puente late Miocene 7,400 600	$\begin{array}{r} \text { February } 1956 \\ 1,187 \\ 1,240 \\ \\ 3,600 \\ 220 \\ 779 \\ \text { Puente } \\ \text { late Miocene } \\ 8,200 \\ 900 \end{array}$	March 1938	1,480
RESERVOIR ROCK PROPERTIES						
Porosity (\%) \qquad Soi (\%) \qquad Swi (\%) Sgi (\%) \qquad \qquad Permeability to air (md) \qquad	$\begin{array}{r} 28.9 \\ 74.0 \\ 26.0 \\ 320 \end{array}$	$\begin{array}{r} 28.7 \\ 73.0 \\ 27.0 \\ 318 \end{array}$	$\begin{array}{r} 21.2 \\ 69.4 \\ 30.6 \\ 131 \end{array}$	$\begin{array}{r} 21.0 \\ 65.0 \\ 35.0 \\ 30 \end{array}$	$\begin{array}{r} \text { 17.0-22.0 } \\ - \\ 16 \end{array}$	
RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (${ }^{\circ}$ API) \qquad Sulfur content (\% by wt.) \qquad Initial solution GOR (SCF/STB \qquad Initial oil FVF (RB/STB). Bubble point press. (psia) \qquad \qquad Gas: Specific gravity (air $=\mathbf{1 . 0}$) \qquad Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) \qquad T.D.S. (ppm) \qquad $\mathbf{R}_{\mathbf{w}}(\mathrm{ohm} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$ \qquad	$\begin{array}{r} 35 \\ - \\ 1.30 \\ \\ \\ \\ 13,000 \\ 14,300 \\ 0.20 \end{array}$	$\begin{array}{r} 34 \\ \\ 1.31 \\ \\ \\ \\ \\ 28,500 \\ 31,200 \\ 0.14 \end{array}$	$\begin{array}{r} 33 \\ 0.26 \\ \\ 1.31 \\ \\ \\ \\ \\ 17,700 \\ 20,550 \\ 0.13 \end{array}$	$\begin{array}{r} 34 \\ \\ 1.36 \\ \\ \\ \\ \\ 15,700 \\ 18,900 \\ 0.13 \end{array}$	$17,118$	
ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects \qquad Date started Date discontinued \qquad \qquad			$\begin{array}{r} \text { waterflood } \\ 1973 \\ \text { active } \end{array}$	$\begin{array}{r} \text { waterflood } \\ 1961 \\ 1979 \end{array}$		
Peak oil production (bbl) Year \qquad Peak gas production, net (Mcf) Year \qquad						$\begin{array}{r} 81,464,415 \\ 134,792,406 \\ 1929 \end{array}$

Base of fresh water (ft .):

Remarks:

Selected References:

COUNTY: SANTA BARBARA
SANTA MARIA VALLEY OIL FIELD
(SEE AREAS FOR ADDITIONAL INFORMATION)

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): See areas
Remarks: Shell Western Exploration \& Production Inc. "Lakeview" 1, originally 0. C. Field Gasoline Corp., "Norswing" 1, Sec. 8, T. 9 N., R. 33 W., produced only 1,520 bbl of oil in April 1932 from a 100 -foot sand at 5,035 , probably Basal Sisquoc. The well remained idie for several years thereafter. Subsequent attempts to produce it were unsuccessful and it was abandoned
a/ Commingled production from the Foxen, Sisquoc, \& Monterey zones.
Arnold, R., and R. Anderson, 1907, Geo. and 0il Res. of the Santa Maria 0il Dist., Santa Barbara Co., Calif.: U.S.G.S. Bull. 322, p. 1-161. McLaughin, R.P., and C.A. Waring, Petroleum Industry of California: Calif. Mining Bureau Bull. 69, p. 403.
Wissler, S.G., and F.E. Dreyer, 1941, Correlation of the Oil Fields of the Santa Maria District: Calif. Div. Mines Bull. 118, pt. 2, (preprint) p. 236-239.
Woodring, W.P., and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria District, California: U.S. Geol. Prof. Paper 222. Woodring, W.P., M.N. Bramlette, and K.E. Lohman, 1943, Strat. and Paleo. of Santa Maria Dist., Calif.: A.A.P.G. Bull. Vol. 27, p. 1335-1360

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Originat operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Bradley Consolidated" $3-1$	Shell ${ }^{0 i 1}{ }^{\mathrm{Co}}{ }^{\mathrm{Co}}$ "Shel1-Standard-Brad7ey Land Co." ${ }_{3-1}$	69 N 33 W	SB	$\begin{gathered} 8,040 \\ \underline{a} / \end{gathered}$	Monterey	
Deepest well	Shell Western Expl. \& Prod. Inc. "Shell-Standard-Payne" 21-7	$\underset{21-7}{ }$ Shell 0 Co. "Shell-Standard-Payne"	$79 \times 33 \mathrm{~N}$	SB	$\begin{array}{r} 9,015 \\ \underline{b} / \end{array}$		Pt. Sal Miocene

Base of fresh water (ft.): 2,100
Remarks: Most completed wells have been directionally drilled from selected drillsites. In this area, Basal sisquoc is sometimes referred to as
a/ Directional well; true vertical depth is 8,013 feet.
b/ Directional well; true vertical depth is 8,982 feet.

Selected References: Zulberti, J.L., 1973, Operations in District No. 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. 59, No. 2.

SANTA MARIA VALLEY OIL FIELD CLARK AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Lakeview" 76A-8	Standard Oil Co. of Calif. "Lakeview Unit" IA	89 NaW	SB	$\begin{array}{r} 7,320 \\ \mathrm{a} / \end{array}$	Monterey	
Deepest well	$\underset{38-8}{\text { Union Oil Co. of Calif. "Gilliland" }}$	Same as present	89 N 33 W	SB	10,055		Knoxville Cretaceous

Base of fresh water (ft.): 1,850
Remarks: The Clark area was formerly included in Cat Canyon field.
In January 1975, the Foxen zone was shutin. feet

Selected References: Barton, C.L., 1968, Operations in District No. 3, Calif. Div. of 0 il and Gas, Summary of Operations--Calif. Oil Fields, Vol. 54,

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Phillips 0il Co. "Souza" 1	Signal Oil \& Gas Co. "Souza" 1	710 N 34 W	SB	2,954	Foxen	Foxen Pliocene
Deepest well	Same as above	"	"	${ }^{\prime \prime}$	"	"	${ }^{\prime \prime}$

Base of fresh water (ft.): 1,450
Remarks: The area was abandoned in 1966. Cumulative production is 904 bbl of oil.

SANTA MARIA VALLEY OIL FIELD SOUTHEAST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Kemp" 6	Rock Island 0il Co. "Kemp" 1	$3110 \mathrm{~N} \mathrm{33W}$	SB	4,585	Basal Sisquoc	
Deepest well	Gilliland 0il \& Land Co. "Bradley" 5-2	Western Gulf 0i1 Co. "Bradley B" 1	5 9N 33W	SB	10,296		Knoxville Cretaceous

Base of fresh water (ft.): $\quad 1,800$
Remarks:

Selected References: Baitey, W.C., 1952, Operations in District No. 3, Calif. Div. of 0il and Gas, Summary of Operations-Calif. 0il Fields, Vol. 38, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Mobil Oil Corp. "Mahoney" ?	General Petroleum Corp. "Mahoney" 1	910 N 35 W	SB	4,501	FoxenFranciscan	
Deepest well	Union 0il Co. of Calif. "Leroy" 1-18	Same as present	18 10N 35W	SB	$\begin{array}{r} 5,392 \\ \underline{a} / \end{array}$		Franciscan Cretaceous

Base of fresh water (ft.): 1,750
Remarks: $\quad \frac{a}{b} /$ Directional well; true vertical depth is 5,249 feet.
b/ After initial test of the Franciscan zone, shallower zones were added and production was commingled. Initial production figure is for all four zones commingled in December 1953.
c/ Initial injection was for water disposal purposes.

Selected References: Bailey, W.C., 1954, Operations in District No. 3, Calif. Div. of Oil and Gas, Summary of Operations~-Calif. Oil Fields, Vol. 40, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif.	Wheeler, Trask and Coleman Tunnel	25 4N 22W	SB	unk.	unnamed	
Deepest well	$\underset{X-7}{\text { Union Oil Co, of Calif. "Ex-Mission" }}$	Same as present	33 4N 22W	SB	9,327		Monterey Miocene

POOL DATA

Base of fresh water (ft.): $0-1,000$
Remarks: About 45 tunnels were dug in this field, a few of which are still capable of production. Most wells were drilled with cable tools a/ Thin sand stringers and fractured shale.

Selected References: Fine, S.F., 1954, Geology and Occurrence of 0il in the 0jai-Santa Paula Area, Ventura, Calif, in Geol. of Southern Calif.: Div. of Mines

COUNTOURS ON 2-15 ELECTRIC
LOG MARKER
SCALE $1^{\prime \prime}=1420^{\circ}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) }\end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Broadoaks" 101	Union Oil Co. of Calif. "Simi" 30	123 N 18 N	SB	9,800	$\begin{aligned} & \text { 2nd \& 3rd } \\ & \text { Sespe } \end{aligned}$	
Deepest well	Union Oil Co. of Calif. "Broadoaks" 119	Same as present	7 3N 17W	SB	11,414		undiff. Marine strata, Paleocene

Base of fresh water (ft.): None
Remarks:

Selected References: Mitchell, W.S. and M. Wolf, 197l, Santa Susana Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 57 ,
No. 1.

SATICOY OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Whiting Petroleum Corp. "S.P.S." 2	Shell 0 il Co. "S.P.S." 2	29 3N 21W	SB	12,020	J	
Deepest well	Sage-California "Edwards" 13	Shell Oil Co. "Edwards" 13	30 3N 21W	SB	12,275		Santa Margarita late Miocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline \& UPPER F \& LOWER F \& G \& H \& I \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& August 1956
883
440
2,800
160
1,040
Santa Barbara-Pico
Pleistocene-Pliocene
6,350
450 \& \begin{tabular}{l}
August 1956
\[
\begin{aligned}
\& 883 \text { a/ } \\
\& 440
\end{aligned}
\] \\
2,800 160 \\
1,040 \\
Pico Pliocene
\end{tabular} \& \[
\begin{array}{r}
\text { September } 1955 \\
516 \\
150 \\
\\
3,200 \\
165 \\
800 \\
\text { Pico } \\
\text { Pliocene } \\
7,300 \\
250
\end{array}
\] \& \[
\begin{array}{r}
\text { September } 1955 \\
516 \mathrm{~b} / \\
150 \\
\\
3,450 \\
170 \\
750 \\
\\
\text { Pico } \\
\text { Pliocene } \\
7,830 \\
785
\end{array}
\] \& January 1956 325
190

3,630
175
610
Pico
Pliocene
8,250
110 \& 390

\hline \& \multicolumn{6}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| $\mathrm{Sgi}_{\mathrm{gi}}$ (\%) \qquad |
| Permeability to air (md) \qquad | \& \[

$$
\begin{array}{r}
25.0 \\
71.0 \\
29.0 \\
200
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
25.0 \\
71.0 \\
29.0 \\
200
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
21.0-23.0 \\
62.5 \\
37.5 \\
128
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
18.0-23.0 \\
59.5 \\
40.5 \\
131
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
16.6-21.0 \\
56.0 \\
44.0 \\
58^{\star}
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline | Ois: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Sulfur content (\% by wt.) \qquad |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB) \qquad |
| Bubble point press. (psia) \qquad |
| Viscosity (cp) @ ${ }^{\circ} \mathrm{F}$. \qquad |
| Gas: |
| Specific gravity (air $=1.0$) \qquad |
| Heating value (Btu/cu. ft.) |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| R_{w} (ohm/m) (770F) \qquad | \& \[

$$
\begin{array}{r}
35 \\
1.33 \\
1,950 \\
0.7 @ 160 \\
\\
\\
17,100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1.33 \\
1,950 \\
0.7 @ 160
\end{array}
$$
\]

$$
17,100
$$ \& \[

$$
\begin{array}{r}
1.33 \\
1,950 \\
0.7 @ 160
\end{array}
$$
\]

$$
17,100
$$ \& \[

$$
\begin{array}{r}
1.33 \\
1,950 \\
0.7160
\end{array}
$$
\]

$$
17,100
$$ \& \[

$$
\begin{array}{r}
1.33 \\
1,950 \\
0.7 \xlongequal{9} 760
\end{array}
$$
\]

$$
17,100
$$ \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVIERY PROJECTS}

\hline | Enhanced recovery projects \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1963 \\
1968
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1963 \\
1968
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1963 \\
1968
\end{array}
$$
\] \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \&

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 400-1,500$
Remarks: $\quad a /$ Production from the Upper and Lower F zones was commingled.
b/ Production from the G and H zones was commingled.

Selected References: Schultz, C.H., 1960, Saticoy Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 46 , No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	James C. Thomas III "N.L.\& F." B-1	Union Oil Co. of Calif. "N.L.\& F." 4	15 4N 16W	SB	11,545	15	Modelo late Miocene
Deepest well	Same as above	"	"	${ }^{\prime \prime}$	${ }^{\prime}$	"	"

Base of fresh water (ft.): $\quad 600$
Remarks: Field was abandoned in 1989. Cumulative production is $571,027 \mathrm{bbl}$ of oil and 783,626 Mcf of gas.

Selected References: Cordova, S., 1962, Saugus Oil Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

discovery well and deepest well

Base of fresh water (ft.): 550
Remarks: a/ Directional well, true vertical depth 10,061 feet. b/ Directional well, true vertical depth 11,203 feet.

Selected References:

SEAL BEACH OIL FIELD

discovery well and deepest well

Base of fresh water (ft.): See areas
Remarks:

Selected References: Barnes, R.M., and G.H. Bowes, 1930, Seal Beach Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 16, No. 2.
Copp, W.W., and G.H. Bowes, 1927, Seal Beach 0il Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 13,
No. 3. No. 3.
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Pan Western Petroleum Co. "Naples" 1	Petroleum Securities Co. "Naples" 1	35512 W	SB	4,757	Selover	
Deepest well	Texaco Producing Inc. "Bryant" 8-A	Pacific Western 0il Corp. "Bryant" 8-A	3 5S 12W	SB	9,942		Puente late Miocene

Base of fresh water (ft.): $\quad 1,800$
Remarks:

Selected References: Hesson, B.H., \& H. Olilang, 1990, Seal Beach Oil Field, Alamitos and Marine Areas: Calif. Div. of 0il and Gas Publication TR39.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Elliot \& Ten Eyck "ET" 1	Same as present	$35 S 12 \mathrm{~W}$	SB	8,700	Wasem and Lower McGrath	
Deepest well	Elliot \& Ten Eyck "ET" 6	Same as present	35 S 12 W	SB	9,934		Lane, Capitol Miocene

Base of fresh water (ft.): 1,800

Remarks:

Selected References: Hesson, B.H., \& H. Olilang, 1990, Seal Beach 0il Field, Alamitos and Marine Areas: Calif. Div. of 0il and Gas publication TR39
county: LOS ANGELES AND ORANGE
SEAL BEACH OIL FIELD NORTH BLOCK AREA

Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation		Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell 0 il Co. "Bryant" 1	Same a	as present	115 S 12 W	SB	4,620	San Gabriel	
Deepest well	Shell 0il Co. "Bryant Four" 1	Same a	as present	115512 W	SB	10,992		Puente late Miocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline \& B GAS \& SAN GABRIEL \& BIXBY \& SELOVER \& WASEM \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& January 1969
\[
\begin{array}{r}
1,060 \\
- \\
- \\
- \\
\text { "Repetto" } \\
\text { early Pliocene } \\
3,900 \\
120
\end{array}
\] \& \[
\begin{array}{r}
\text { September } 1924 \\
67 \\
- \\
1,850 \\
125 \\
1,050 \\
315 \\
\text { "Repetto" } \\
\text { early Pliocene } \\
2,610 \\
40
\end{array}
\] \& August 1927
1,110
\(1,515-1,950\)
135
1,400
450
"Repetto"
early Pliocene
4,350
171 \& \[
\begin{array}{r}
\text { May } 1927 \\
1,170 \\
- \\
1,600 \\
152 \\
1,230 \\
- \\
\text { "Repetto" } \\
\text { early Pliocene } \\
3,470 \\
120
\end{array}
\] \& May 1927
\(\underline{a} /\)

2,200
180
1,020
-
"Repetto"-Puente
e Plio./1 Miocene
3,820
350 \&

\hline \multicolumn{7}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| S_{gi} (\%) \qquad |
| Permeability to air (md) \qquad | \& | - |
| :--- |
| - | \& 34

40
60
0

- \& $$
\begin{array}{r}
28-37 \\
50-77 \\
23-50 \\
200
\end{array}
$$ \& \[

$$
\begin{array}{r}
29 \\
77 \\
23 \\
600
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
24 \\
53 \\
45 \\
- \\
175
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline | Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Sulfur content (\% by wt.).......... |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). \qquad |
| Bubble point press. (psia) \qquad |
| Viscosity (cp) @ ${ }^{\circ}$ F. \qquad |
| Gas: |
| Specific gravity (air $=\mathbf{1 . 0}$) \qquad |
| Heating value (Btu/cu. ft.) |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| $\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)$ \qquad | \& -

-

0.89 \& $$
\begin{array}{r}
20-27 \\
\\
300 \\
1.200 \\
1,550 \\
3.60130 \\
\\
0.90 \\
\\
\\
31,100 \\
31,645 \\
0.20
\end{array}
$$ \& \[

$$
\begin{array}{r}
330 \\
1.220 \\
1,600 \\
3.6 \mathrm{O} 130 \\
\\
0.89 \\
\\
28,000 \\
31,000 \\
0.20
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
27 \\
\\
\\
3.6 @ 130 \\
\\
\\
\\
\\
0.89 \\
\\
\\
28,000 \\
26,600 \\
0.20
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
20-28 \\
400 \\
1.225 \\
3.60130 \\
\\
0.89 \\
\\
\\
28,000 \\
27,800 \\
0.20
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& \& \& \& waterflood 1974 active \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \&

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 1,800$
Remarks: $\underline{\alpha}$ /Selover and Wasem commingled.

Selected References:

countr: LOS ANGELES AND ORANGE

SEAL BEACH OIL FIELD SOUTH BLOCK AREA

dISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Origirial operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery weil	McFarland Energy, Inc. "Bixby A" 2	Marland 0il Co. of Calif. "Bixby" 2	115 l 12W	SB	4,427	Bixby	
Deepest well	McFarland Energy, Inc. "Bixby A" 62	Continental 0il Co. "Bixby A" 62	25 S 12 W	SB	12,162		Catalina Schist Cret, or older

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{\begin{tabular}{l}
FIELD OR \\
AREA DATA
\end{tabular}} \\
\hline \& BIXBY \& SELOVER \& WASEM \& MCGRATH \& LANE \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation. \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
\text { August } 1926 \\
1,853 \\
\\
1,500 \\
149 \\
168 \\
\text { "Repetto" } \\
\text { "Rlorene } \\
4,100 \\
115
\end{array}
\] \& \[
\begin{array}{r}
\text { November } 1926 \\
2,950 \\
\ldots \\
2,100 \\
1,200 \\
420 \\
\text { "Repetto" } \\
\text { early Pliocene } \\
4,100 \\
200
\end{array}
\] \& July 1929
1,224
-
2,200
150
1,600
590
"Repetto"-Puente
e Plio./1 Miocene
4,600
900 \& \[
\begin{array}{r}
\text { February } 1928 \\
650 \\
850 \\
\\
\\
2,800 \\
170 \\
1,150 \\
515 \\
\text { Puente } \\
\text { late Miocene } \\
5,500 \\
800
\end{array}
\] \& \[
\begin{array}{r}
\text { February } 1952 \\
278 \\
- \\
\\
3,400-3,760 \\
190-260 \\
600 \\
320 \\
\text { Puente } \\
\text { 1ate Miocene } \\
7,600 \\
1,000
\end{array}
\] \& 290 \\
\hline \multicolumn{7}{|c|}{RESERVOIR ROCK PROPERTIES} \\
\hline \begin{tabular}{l}
Porosity (\%) \(\qquad\) \\
Soi (\%) \(\qquad\) \\
Swi (\%) \(\qquad\) \\
Sgi (\%) \(\qquad\) \\
Permeability to air (md) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
28 \\
77 \\
23 \\
200
\end{array}
\] \& \[
\begin{array}{r}
30 \\
50 \\
50 \\
400-600
\end{array}
\] \& \[
\begin{array}{r}
28 \\
75 \\
25 \\
70-390
\end{array}
\] \& \[
\begin{array}{r}
23 \\
65 \\
35 \\
\\
50-150
\end{array}
\] \& \[
\begin{array}{r}
16-18 \\
40-70 \\
30-60 \\
\\
20
\end{array}
\] \& \\
\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES} \\
\hline \begin{tabular}{l}
Oil: \\
Oil gravity (\({ }^{\circ}\) API) \(\qquad\) \\
Sulfur content (\% by wt.) \(\qquad\) \\
Initial solution \\
GOR (SCF/STB) \(\qquad\) \\
Initial oil FVF (RB/STB) \(\qquad\) \\
Bubble point press. (psia) \(\qquad\) \\
Viscosity (cp) @ \({ }^{\circ} \mathrm{F}\). \(\qquad\) \\
Gas: \\
Specific gravity (air \(=\mathbf{1 . 0}\)) \(\qquad\) \\
Heating value (Btu/cu. ft.) \(\qquad\) \\
Water: \\
Salinity, NaCl (ppm) \(\qquad\) \\
T.D.S. (ppm) \(\qquad\) \\
\(\mathbf{R}_{\mathbf{w}}(\mathrm{ohm} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)\) \(\qquad\)
\end{tabular} \& \(21-25\)
1.23
330
1.22
1,600
3.60130
0.89
30,800
31,000
0.20 \& \[
\begin{array}{r}
24-28 \\
1.23 \\
350 \\
1.24 \\
1,700 \\
3.5 @ 130 \\
0.90 \\
\\
27,400 \\
0.28
\end{array}
\] \& \[
\begin{array}{r}
22-28 \\
- \\
370 \\
1.32 \\
1,850 \\
3.5130 \\
0.90 \\
\\
\\
\\
25,700 \\
31,000 \\
0.37
\end{array}
\] \& \(25-33\)
0.55
450
1.36
1,850
3.50130
0.90

33,000
22,000

0.32 \& $$
\begin{array}{r}
28-32 \\
530 \\
1.38 \\
2,200 \\
3.5130 \\
\\
0.89 \\
\\
\\
10,300 \\
31,000 \\
0.25
\end{array}
$$ \&

\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects. \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \& \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1976 \\
\text { active }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1976 \\
\text { active }
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1976 \\
\text { active }
\end{array}
$$
\] \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \& \[

$$
\begin{array}{r}
1,792,923 \\
1936
\end{array}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.): $\quad 1,800$
Remarks:

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Santa Fe Energy Co. "Cesapi" T.C.A.	Union Oil Co. of Calif. "Tar Creek" 1	285 N 19 W	SB	unk.	RinconVaqueros	
Deepest well	```Kentuck Trust I and II "Ivers-Van Trees" l```	Western Gulf 0il Co. "Ivers-Van Trees" 1	14 N 20 W	SB	13,126		Pico Pliocene

Base of fresh water (ft.):
Remarks: See areas

Selected References:

county: VENTURA

SESPE OIL FIELD FOOT OF THE HILLS AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Damson 0 il Corp. No. 1	California Oil Co. "Razzle-Dazzle" 1	14 N 20 W	SB	1,100	Middle Sespe	
Deepest well	Damson Oil Corp. "Nellie Bell" 10	Merchants Oil Co. "Nellie Bell" 10	64 N 19 W	SB	3,957		Coldwater Eocene

Base of fresh water (ft.): $0-100$
Remarks:

SESPE OIL FIELD LITTLE SESPE CREEK AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Kentuck Trust I \& II "Kentuck" 1	Kentuck Oil Co. "Kentuck" 1	14 N 20 W	SB	905	Upper Sespe	
Deepest well	Kentuck Trust I \& II "Ivers-Van Trees" 1	Western Gulf 0il Co. "Ivers-Van Trees" 1	14 N 20 W	SB	13,126		Pico Pliocene

Base of fresh water (ft.): $0-100$
Remarks:

Selected References

county: VENTURA

SESPE OIL FIELD

 SECTION 23 AND 26 AREADISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	U.S. Forest Service "Nathan" 1	Union Consolidated 0il Co. "Nathan" 1	235 N 20W	SB	540	Coldwater	
Deepest well	Same as above	Pacific Supply Cooperative "Nathan" la/	23 5N 20W	SB	4,014		Coldwater Eocene

Base of fresh water (ft.): $0-50$
Remarks: a/ The discovery well was deepened from 540 feet to 4,014 feet in 1954 by Pacific Supply Cooperative.

Selected References:

Selected References:

SHERMAN OIL FIELD

(Abandoned)

$$
\begin{array}{l|l}
7 & 8 \\
\hline 18 & 17
\end{array}
$$

$$
\begin{aligned}
& \text { CONTOURS ON TOP OF SHERWOOD ZONE } \\
& \text { SCALE: }!^{\prime \prime}=1000^{\circ}
\end{aligned}
$$

SHERMAN OIL FIELD (ABD)

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Chevron U.S.A. Inc. "Arden P.E." 1 Chevron U.S.A. Inc. "Laurel" IB	Standard 0il Co, of Calif. "P.E." 1 Standard 0il Co. of Calif. "P.E.-Laurel" 1	$\begin{array}{ll}18 & 15 \\ 14 W\end{array}$	SB SB	$\begin{aligned} & 2,274 \\ & 6,496 \end{aligned}$	Sherwood	Santa Monica slate TriassicJurassic

Base of fresh water (ft.): 650
Remarks: Last production was in June 1973. The field was abandoned in 1973. Cumulative production is 93,000 bbls of oil and $50,000 \mathrm{Mcf}$ of gas.

Selected References:

Base of fresh water (ft.): 200
Remarks: Originally was Montebello Dome area of Bardsdale oil field, and was designated Shiells Canyon oil field on January 1 , 1955 . The 164 zone (1 well) is included in the Shallow zone.

Selected References: \quad Bailey, Wm. C., 1934, Shiells Canyon Area of Bardsdale Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields,
Vol. 20 , No.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and weil designation	Sec. T, \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	M.H. Marr "Marr Ranch" 11	Simi Oi〕 Co. No. 11	30 3N 17W	SB	748	unknown	
Deepest well	Condor 0il Co., Inc. "Pacific Western Marr" 1	Pacific Western Oil Corp. "Pacific Western Marr" 1	$363 N 18 W$	SB	7,644		Chico Cretaceous

Base of fresh water (ft.): See areas
Remarks:

Selected References:

COUNTY: VENTURA
SIMI OIL FIELD OLD AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	M.H. Marr "Marr Ranch" 11	Simi Dil Co. No. 11	30 3N 17W	SB	746	unknown	
Deepest well	$\begin{aligned} & \text { Condor } 0 i 1 \text { Co., Inc. "Pacific Western } \\ & \text { Marr" } \end{aligned}$	Pacific Western Oil Corp. "Pacific Western Marr" 1	36 3N 18W	SB	7,644		Chico Cretaceous

Base of fresh water (ft.): 1300 (waters are sulphurous)
Remarks:

[^24]SIMI OIL FIELD
Strathearn Area (abandoned)

N N

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Chevron-Sulpetro Sisquoc Ranch" 1	Same as present	19 9N 31W	SB	6,506	Monterey	Franciscan Cretaceous
Deepest well	Same as above	"	"	"	"	*	"

Base of fresh water (ft.): None
Remarks: Only one well produced in this field. The field was abandoned in 1982. Cumulative production is 5,554 bbl of oil and no gas.

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Aminoil U.S.A. Inc. "Berylwood" 1	The Texas Co. "Berylwood" 1	16 2N 20W	SB	6,235	B-1	
Deepest well	Texaco Inc. "Berylwood" 2	The Texas Co. "Berylwood" 2	16 2N 20W	SB	8,190		Llajas Eocene

Base of fresh water (ft.): $1,180-1,400$
Remarks: The field was abandoned in May 1956. Cumulative production is 2,088 bbl of oil and 805 Mcf of gas.

Selected References:

CONTOURS ON TOP OF MAIN (A) SAND SCALE: $I^{\prime \prime}=600^{\circ}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	unknown	Same as present	22 4N 26W	SB	unk.	Main	
Deepest well	Texaco Producing Inc. "Seaside-State" 1	Tidewater Oil Co. "Seaside-.State"	22 4N 26W	SB	6,191		Sespe 0ligocene

Base of fresh water (ft.): See areas
Remarks: See areas

Selected References: See areas

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Huntington Harbour Corp. "F.A.F." 6-2	Bert Aston "Lomita" 1	19 5S 11W	SB	7,185	Lower Ramser	
Deepest well	Atlantic 0i1 Co. "B.A." 1	Same as present	19 5S 11W	SB	9,550		Topanga middle Miocene

POOL DATA

Base of fresh water (ft.): $\quad 1,850-2,850$
Remarks: \quad a/ Average daily gas production for first 30 days.

Selected References: Allen, D.R., and G.C. Hazenbush, 1957, Sunset Beach Oif Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields,

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Lamb" 1	Honolulu 0il Corp. "Lamb" 1	6 6S 10W	SB	5,968	Lamb and E sands	
Deepest well	Coast Supply Co., Ltd. "Lamb" 51-6	Shell 0il Company "Lamb" 51-6	6 6S 10W	SB	7,835		Topanga middle Miocene

Base of fresh water (ft.): $\quad 1,700-2,000$
Remarks: Last production was in February 1963. The field was abandoned in April 1963. Cumulative production is 126,275 bbl of oil and 4,481 Mcf of gas.

Selected References: Loken, K.P., 1963, Talbert Oil Field: Calif. Div. of $0 i 1$ and Gas, Summary of Operations -- Calif. 0il Fields, Vol. $49 .$, No. 1.

discoverr well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Crown Central Pet. Corp. "Yule" 2	Intex 0il Co. "Yule" 2	37 5N 16W	SB	1,352	Yule	
Deepest well	Texaco Inc. "YuTe" $]$	The Texas Co. "Yule" 1	305 N 16 W	SB	6,010		Mint Canyon late Miocene

Base of fresh water (ft.): $450-700$
Remarks:

Crowell, J.C., 1954, Geology of the Ridge Basin Area, Los Angeles and Ventura Counties, Geology of Southern California; Calif. Div. of Mines Bull. M.
Dosch, M., and G.W. Beecroft, 1959 , Tapia 0il Field: Calif. Djv. of $0 i l$ Dosch, M.W., and G.W. Beecrich Go. Kew, W.S., 1924, Geology and Oil Resources of a part of Los Angeles and Ventura Counti
Miller, H., and R. Turner; 1959, Tapia Field: Geol. Society, Occasional Papers No. 1.
Miller, H., and R. Turner; 1959, Tapia Field: Geol. Society, Occasional Papers No. 1. Winterer, E.L. and D.L. Durham, 1962, Geology of Southeastern Ventura Basin, Los Angeles County, California: U.S. Geol. Survey Prof
Paper 334 H .

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Murray-Teague Associates "Tapo" 2	Terry and Jensen "Tapo" 2	13 3N 18W	SB	3,746	Terry	
Deepest well	Havenstrite 0il Co. "Tapo" 1	Same as present	13 3N 18W	SB	8,394		Llajas Eocene

Base of fresh water (ft.): $500-600$
Remarks: a/ Initial production from the 2nd, 3rd, and 4th Sespe zones was commingled.
a/ Initial production from the 2nd, 3rd, and 4th Sespe zones was comming
b/ Terry zone water is high in bicarbonates and total dissolved solids.

Selected References: Hardoin, J.L., 1958, South Tapo Canyon Oil Field, Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44 , No. I.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Tapo Ridge" 27	Union 0 it Co. of Calif. "Simi" 27	13 N 18 W	SB	2,047	1325 Sand	
Deepest well	Union Oil Co. of Calif. "Tapo Ridge" 1~1	Same as present	13 N 18 W	SB	6,033		Sespe Otigocene

Base of fresh water (ft.): $\quad 500$
Remarks:

Kew, W.S., 1924, Geology and $0 i 1$ Resources of a Part of Los Angeles and Ventura Counties, Calif.: U.S. Geol. Survey Bulletin 753 Bailey, T.L., 1954, Geology of the Western Ventura Basin, Santa Barbara, Ventura and Los Angetes Counties, Geology of Southern California: Calif. Div. of Mines Bulletin 170, Vol. 2, Map Sheet No. 4.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	G. L. Stafford, Jr. "Hancock-Bishop" 44-31		3132 S 20 E	MD	6,235	Quail Canyon sand	
Deepest well	Calplans Resources "Haussler-USL" 1-31	Same as present	$3132 \mathrm{~S} \mathrm{20E}$	MD	6,465		undiff. marine \checkmark Cretaceous

Base of fresh water (ft.): $\quad \mathbf{0 - 2 0 0}$
Remarks: The field was abandoned in 1985. Cumulative production is $486,000 \mathrm{bbl}$ of oil and $141,000 \mathrm{Mcf}$ of gas.

Selected References: Dolman, S.B., 1950, Operations in District 3: Calif. Div. of 0il and Gas, Summary of Operations--Calif. 0il Fields, Vol. 36 , No. 2. Hill, J.L., S.A. Carlson, and T.W. Dibblee, Jr., 1958, Stratigraphy of Cuyama Valley-Caliente Range Area, California: Am. Assoc. Petroleum Geologists Buil. Vol. 42, No. 12, p. 2973.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Temescal" 1	B \& L Oil Co. No. 1	4 4N 18W	SB	1,987	G	
Deepest well	Texaco Producing Inc. "Temescat" 14	Pacific Western 0il Corp. "Temescal" 14	4 4N 18W	SB	10,313		Modelo Miocene

Base of fresh water (ft.): None
Remarks: All waters are low in salinity but high in sodium bicarbonate and solids.

Selected References: Schultz, C.H., 1957, Temescal Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 2.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Empire 0il Co. "Loma" 1	Loma Oil Co. No. 1	13 4N 21W	SB	unk.	Pico	
Deepest well	McFarland Energy, Inc. "Loel-Maxwell" 1	Richfield 0il Corp. "Loel-Maxwell" l	18 4N 20W	SB	9,028		Santa Margarita late Miocene

Base of fresh water (ft.): $0-100$
Remarks: Designated as a field January 1, 1957; formerly a part of Santa Paula oil field.
Bertholf, H.W., 1965, Timber Canyon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 51, No. 1. Fine, S.F., 1954, Geology and Occurrences of Oil in the Ojai, Santa Paula Area, Ventura County, Geology of Southern Calif.: Calif. Div. of McCulloch, T.R., 1957, Geology of the Timber Canyon Area, Ventura County: unpublished thesis on file at University of Calif.,
Natland, M.L., and W. T. Ruthwell, Jr., 1954, Fossil Foraminifera of the Los Angeles and Ventura Regions, Geology of Southern California: Calif. Div. of Mines Bulletin 170 p. 33-42.
Prutzman, P.W., 1913, Petroleum in Southern California: Calif. State Mining Bureau Bulletin 63, p. 50-89.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Del Amo Energy Co. "Del Amo" 1	Petroleum Development Co. "Redondo" 1	9 4S 14W	SB	3,500	Tar-Ranger	
Deepest well	American Pacific International Inc. "City of Redondo Beach" S-12	McCulloch Oil Corp., Inc. "City of Redondo Beach" S-12	6 4S 14W	SB	8,313		Puente late Miocene

POOL DATA

Base of fresh water (ft.): See areas
Remarks: $\quad \underline{a} /$ Tar-Ranger and Main production were commingled in the discovery well.

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Del Amo Energy Co. "Del Amo" 1	Petroleum Development Co. "Redondo" 1	9 4S 14W	SB	3,500	Tar-Ranger	
Deepest well	Petroleum Midway Co. "Capitol" 3	D \& B 0il Co. "D \& B" 3	25 4S 14W	SB	6,070		Puente late Miocene

Base of fresh water (ft.): $1,550-1,770$
Remarks: a/ Tar-Ranger and Main production were commingled.
Several cyclic-steam projects were attempted in 1964 and 1965, when 56,890 bbl of water-converted-to-steam was injected into six wells.

Selected References: $\quad \begin{gathered}\text { Crowder, R.E., 1956, Torrance Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. } 42 \text {, No. } 2 .\end{gathered}$
$\begin{gathered}\text { Crowder, R.E., 1965, Del Amo Zone of Torrance Oil Field: Calif. Div. of Oil and Gas, Summary of Operations }-- \text { Calif. Oil Fields, Vol. } 51,\end{gathered}$
No. I.

CONTOURS ON LS 12 ELECTRIC LOG MARKER
sCALE $i^{\prime \prime}=1800^{\prime}$

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Torrey" 1	Same as present	5 3N 18W	SB	1,010	2nd Sespe	
Deepest well	Union 011 Co. of Calif. "Torrey" 92	Same as present	5 3N 18W	SB	14,989		undiff. marine strata Paleocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline \& IST SESPE \& 2ND SESPE \& 3RD SESPE \& DEEP \& EOCENE \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation. \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft .) \(\qquad\) \\
Maximum productive area (acres) \(\qquad\)
\end{tabular} \& November 1889
\[
\begin{array}{r}
\text { Sespe } \\
\text { 01igocene } \\
1,800 \\
600
\end{array}
\] \& \begin{tabular}{l}
March 1889 \\
212 - \\
Sespe 01 igocene 1,500 400
\end{tabular} \& \begin{tabular}{l}
June 1880 \\
50 \\
- \\
Sespe \\
01igocene \\
2,000 \\
500
\end{tabular} \& \[
\begin{array}{r}
\text { May } 1952 \\
549 \\
163 \\
\\
\\
3,660 \\
174 \\
\\
\\
\text { Sespe } \\
01 \text { igocene } \\
8,700 \\
3,000
\end{array}
\] \& September 1953
117
-

Llajas/Santa
Susana
Eocene
1,300
300 \& 270

\hline \& \multicolumn{6}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline \multirow[t]{2}{*}{| Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| Sgi (\%) \qquad |
| Permeability to air (md) \qquad |} \& - \& \[

$$
\begin{array}{r}
21.0 \\
60 \\
40 \\
31
\end{array}
$$

\] \& - \& | 12.2 |
| :--- |
| 41 | \& -

-
- \&

\hline \& \multicolumn{6}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline \multirow[t]{2}{*}{| Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) \qquad |
| Sulfur content (\% by wt.) \qquad |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). \qquad |
| Bubble point press. (psia) \qquad |
| Viscosity (cp) @ ${ }^{\circ}$ F \qquad |
| Gas: |
| Specific gravity (air $=\mathbf{1 . 0}$) \qquad |
| Heating value (Btu/cu. ft.) \qquad |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| $\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(7^{\circ} \mathrm{F}\right)$ \qquad |} \& \[

$$
\begin{array}{r}
24 \\
- \\
- \\
- \\
25,700
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
- \\
13.5 \\
\\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
18-36 \\
2.74 \\
- \\
- \\
29,100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
18-36 \\
500 \\
- \\
29,100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
29 \\
- \\
- \\
- \\
30,800
\end{array}
$$
\] \&

\hline \& \multicolumn{6}{|c|}{ENHANCED RECÓVERY PROJECTS}

\hline | Enhanced recovery projects. \qquad |
| :--- |
| Date started \qquad |
| Date discontinued \qquad | \& \[

$$
\begin{array}{r}
\text { waterflood } \\
1952 \\
\text { active }
\end{array}
$$
\] \& \& waterflood

1966
1971
cyclic steam
1964
1964 \& pressure maintenance 1975 1982 \& \&

\hline | Peak oil production (bbl) |
| :--- |
| Year \qquad |
| Peak gas production, net (Mcf) |
| Year \qquad | \& \& \& \& \& \& \[

$$
\begin{array}{r}
1,301,802 \\
1954 \\
3,980,048 \\
1968
\end{array}
$$
\]

\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks:

Selected References: Prutzman, P.W., 1913, Petroleum in Southern California: Calif. State Mining Bureau Bulletin 63.

TURNBULL OIL FIELD (Abandoned)

CONTOURS ON TOP OF FIRST CLEVENGER SAND

county: LOS ANGELES
TURNBULL OIL FIELD
(ABD)
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R .	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Southern California Gas Co. "Turnbull Community" 1	Continental Oil Co. "Turnbull Community" 1	13 2S 11W	SB	3,447	1st Clevenger	
Deepest well	Southern California Gas Co. "Turnbull Community" 3	Continental Oil Co. "Turnbull Community" 3		SB	5,608		Puente late Miocene

Base of fresh water (ft.): $\quad 500$
Remarks: Last production was in May 1965; field abandoned 1965. Cumulative production is 765,770 bbl of oil and $582,160 \mathrm{Mcf}$ of gas a /Production from the 1 st , 2nd, and 3 rd Clevenger commingled.
b/ Production from the 4 th and 5th Clevenger commingled.

Selected References: Mefferd, M.G., 1962, Turnbull Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0 il Fields, Vol. 48 , No. 2.

UNION STATION OIL FIELD

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Garey" 1-C	Standard 0il Co. of Calif. "Challenge Creamery" 1	27 1S 12W	SB	6,000	Lower Broadway \& Lower	
Deepest well	Chevron U.S.A. Inc. "Garey" 6	Standard 0i1 Co. of Calif. "Garey" 4-A	27 15 12W	SB	9,849		Puente 1ate Miocene

POOL DATA

Base of fresh water (ft.): 600
Remarks:

Selected References:

VENICE BEACH OIL FIELD

discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \begin{array}{l} \text { Total } \\ \text { depth } \\ \text { (feet) } \end{array} \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Damson 0il Corp. "Venice Beach Unit" 1	Mobil Oil Corp. "L.A. City 135" 1	20 2S 15W	SB	6,787	Schist sand	
Deepest well	Damson Oil Corp. "L.A. City 135" 2	Socony Mobil 0 il Co., Inc. "L.A. City $135^{\prime \prime}$ 2	202515 W	SB	9,082		Catalina Schist Cret. or older

Base of fresh water (ft.): See areas
Remarks: See areas

Selected References:

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Damson Oil Corp. "Venice Beach Unit" 1	Mobil Oil Corp. "L.A. City 135" 1	20 2S 15W	SB	6,787	Schist sand	
Deepest well	Damson Oil Corp. "Venice Beach Unit" 3	Mobil Oil Corp. "L.A. City 135" 3	20 2S 15W	SB	7,250		Catalina Schist Cret. or older

Base of fresh water ($\mathbf{f t}$.): $\quad 600-700$
Remarks:

Selected References:

CONTOURS ON AO ELECTRIC LOG MARKER
SCALE $i^{\prime \prime}=4800^{\circ}$
COURTESY OF SHELL OIL COMPABY AMO PCCFFIC SECTION, aAPG

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. "Gosnell" 1	Shell Oil Co. "Gosnell" 1	28 3N 23W	SB	3,498	2nd	
Deepest well	Shell Western Expl. \& Prod. Inc. "Taylor" P.T. 653	Shell $0 i 1$ Co. "Taylor" P.T. 653	21 3N 23W	SB	21,500		Monterey Miocene

Base of fresh water (ft.): 250-750
Remarks: About 1903, seven gas wells were drilled to depths of $400-800$ feet and produced gas for a utility company. No other information is available regarding these wells.
a/ Production from the 5 th and 6 th zones was commingled.
Selected References: Hacker, R.N., 1969, Ventura Avenue 0il Field: Am. Assoc. Petroleum Geologists, Pacific Section, 44 th Annual Meeting and Field Trip, pp. 22-29.

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.):
Remarks:

Selected References:

dISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Inc. "Wayside Canyon Unit" 22	Texaco Inc. "Honor Rancho 'A' (NCT-2)" 22	325 N 16 W	SB	1,872	Yule 1-A	
Deepest well	```Texaco Inc. "Honor Rancho 'A' (NCT-2)" 12```	Same as present	5 4N 16W	SB	2,638		Castaic Miocene

Base of fresh water (ft.): $\quad 1,400$
Remarks:

Selected References:

county: VENTURA
discovery well and deepest well

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \end{aligned}$ (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	South Fork Ranch "Converse" 1 .	F.E. Fairfield "West Mountain" 1	23 3N 21W	SB	5,047	Sespe	
Deepest well	South Fork Ranch "Lemon" 2	Honolulu 0 il Corp. Ltd. "Hobson" 1	23 3N 21W	SB	6,744		Llajas Eocene

Base of fresh water (ft.): $\quad 400$
Remarks:

Selected References:

COUNTY: LOS ANGELES

WHITTIER OIL FIELD CENTRAL AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. "Central Fee" 1A	Central Oil Co. No. 1-A	23 2S ITW	SB	984	3rd	
Deepest well	Chevron U.S.A. Inc. "MurphyWhittier" 101	Standard 0i1 Co. of Calif. "MurphyWhittier" 101	26 2S 11W	SB	10,950		Puente late Miocene

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} \& \multicolumn{5}{|c|}{POOL DATA} \& \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline \& 1ST \& 2ND \& 3RD \& 4TH \& 5TH \& \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \\
Bean size (in.)
\(\qquad\)
\(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \\
Geologic age . \(\qquad\) \\
Average depth (ft.) \(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} \& \[
\begin{array}{r}
\text { August } 1916 \\
202 \\
- \\
- \\
- \\
\text { "Repetto" } \\
\text { early Pliocene } \\
900 \\
75-300
\end{array}
\] \& \[
\begin{array}{r}
\text { Apri1 } 1904 \\
100 \\
\\
950 \\
115 \\
1,390 \\
\text { "Repetto" } \\
\text { early Pliocene } \\
1,300 \\
100-200 \\
141
\end{array}
\] \& July 1896
10

950
115
1,268
"Repetto"
early Pliocene
1,600
$200-250$
176 \& unknown epetto" early Pliocene 2,100

20 \& $$
\begin{array}{r}
1898 \\
60 \\
\\
- \\
- \\
\text { Puente } \\
\text { 1ate } \begin{array}{r}
\text { Miocene } \\
1,200 \\
150-400
\end{array} \\
\hline
\end{array}
$$ \&

\hline \& \multicolumn{6}{|c|}{RESERVOIR ROCK PROPERTIES}

\hline | Porosity (\%) \qquad |
| :--- |
| Soi (\%) \qquad |
| Swi (\%) \qquad |
| Sgi (\%) \qquad |
| Permeability to air (md) \qquad | \& \[

$$
\begin{array}{r}
30.0 \\
- \\
380
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
28.8 \\
67 \\
33 \\
504
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
27.5 \\
64 \\
36 \\
\\
174
\end{array}
$$

\] \& \[

\bar{\square}

\] \& \[

$$
\begin{array}{r}
30.0 \\
- \\
60
\end{array}
$$
\] \&

\hline \& \multicolumn{6}{|c|}{RESERVOIR FLUID PROPERTIES}

\hline | Oil: |
| :--- |
| Oil gravity (${ }^{\circ}$ API) |
| Sulfur content (\% by wt.) \qquad \qquad |
| Initial solution |
| GOR (SCF/STB) \qquad |
| Initial oil FVF (RB/STB). |
| Bubble point press. (psia) \qquad \qquad |
| Viscosity (cp) @ ${ }^{\circ}$. \qquad |
| Gas: |
| Specific gravity (air = 1.0) \qquad |
| Heating value (Btu/cu. ft.) |
| Water: |
| Salinity, NaCl (ppm) \qquad |
| T.D.S. (ppm) \qquad |
| $\mathbf{R w}_{\mathbf{w}}$ (ohm/m)(770F) \qquad | \& \[

$$
\begin{array}{r}
13-18 \\
\\
- \\
- \\
\\
\\
\\
5,135 \\
4,615 \\
1.950
\end{array}
$$

\] \& \[

$$
\begin{gathered}
18-20 \\
\\
1.077 \underline{a} / \\
276 @ 80 \\
\\
\\
\\
5,735 a / / 2 \\
6,656 \underline{a} / \\
0.996 \underline{a} /
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
14-20 \\
\\
1.077 \underline{\mathrm{a}} / \\
276080 \\
\\
\\
\\
5,735 \mathrm{a} / \\
6,656 \mathrm{a} / \\
0.996 \underline{\mathrm{a}} /
\end{gathered}
$$
\] \& 12-25 \& 12-33 \&

\hline \& \multicolumn{6}{|c|}{ENHANCED RECOVERY PROJECTS}

\hline | Enhanced recovery projects............ |
| :--- |
| Date started. \qquad |
| Date discontinued \qquad | \& \& waterflood

1961
active

alkaline | flood |
| ---: |
| 1983 |
| active | \& waterflood

activ1
active
alkaline flood
1983
active \& \& \&

\hline \& \& \& \& \& \&

\hline
\end{tabular}

Base of fresh water (ft.): $0-1,250$
Remarks: \quad a/ Composite $2 n d$ and 3 rd zones.

Selected References: Gaede, V.F., 1964, Central Area of Whittier Oil Field: Calif. Div. of $0 i 1$ and Gas, Sunmary of Operations -- Calif. Oil Fields, Vol. 50, No. 1.
discovery well and deepest well
Sheet 2 of 2

Base of fresh water (ft.):
Remarks:

Selected References:

WHITTIER OIL FIELD
La Habra and Rideout Heights Areas

countr: LOS ANGELES
WHITTIER OIL FIELD LA HABRA AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. "Mineral Springs" 1	Same as present	25 2S 11W	SB	3,281	2nd	
Deepest well	$\underset{\text { See" }}{\substack{\text { Southern } \\ \text { Calif. Gas Co. "La Habra }}}$	Union Oil Co. of Calif. "Monterey Fee" 2	25 2S 11W	SB	7,289		Puente late Miocene

Base of fresh water (ft.): None
Remarks: 1 st, 2 nd, and 3 rd zones are used for gas storage (project started in 1952). Only one well produced from the Miocene Sands. a/ Initial production from the $2 n d$ and 3 rd zones was commingled.

Selected References: Gaede, V.F., 1965, La Habra Area of Whittier Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields,

COUNTY: LOS ANGELES

WHITTIER OIL FIELD RIDEOUT HEIGHTS AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	E \& E Production "Whitley" 1	C.W. Whitley No. 1	17 2S 11W	SB	3,292	5 th	
Deepest weil	Mitchell Energy Corp. "Mitchell Energy Corp" W-1	American Petrofina Exploration Co. "Whittier" 1	162 S 11W	SB	10,138		Puente late Miocene

Base of fresh water (ft.): None
Remarks:

Selected References: Ingram, W.L., 1962, Rideout Heights Area of Whittier 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields,

DISCOVERY WELL AND DEEPEST WELL.

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	01 son and Gregg Inc. "Pellister" 1	Capitol Co. No. 2-1	11 2S 17W	SB	1,285	Upper	
Deepest well	Crown Central Petroleum Corp. "Baldwin" 1	Sunset 0il Company "Baldwin" 1	11 2S 11w	SB	4,681		Topanga middle Miocene

POOL DATA

Base of fresh water (ft.): $\quad 200-500$
Remarks: Last production was in January 1970. The field was abandoned in 1970. Cumulative production is 84,812 bbl of oil and 83,525 Mcf of gas.

Selected References: Hunter, W.J., 1959, North Whittier Heights Area of Los Angeles County: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 1.

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Decalta International Corp. "Watson A" 2	Ranger Petroleum Corp. "Watson" 2	29 4S 13W	SB	3,784	Ranger	
Deepest well	Thums Long Beach Co. C-520 I	Same as present	$165 \mathrm{~S} \mathrm{12W}$	SB	12,383		Puente 1ate Miocene

Base of fresh water (ft.): See areas
Remarks: This is the onty oil field in California administered under the Subsidence Abatement Act.

Selected References: Crown, W.J., 1941, Wilmington 0il Field: Calif. Div. of 0il and Gas, Summary of Operations .-. Calif. Oil Fields, Vol. 26
Frame, R.G., 1952, Earthquake Damage, Its Cause and Prevention in the Wilmington 0il Field: Calif. Div. of 0il and Gas, Summary of Operations, Calif. Oil Fields, Vol. 38, No號

WILMINGTON OIL FIELD ONSHORE AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth	
Discovery well								
Deepest well								

Base of fresh water (ft.): $\quad \mathrm{I}, 600$

Remarks:

$$
\begin{aligned}
& \text { Thomas, J.R., 1957, Extension of Wilmington Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, } \\
& \text { Vol. } 43 \text {, No. 1. } 1962 \text {, Review of Wilmington Waterfloods: Calif. Div. of } 0 i 1 \text { and Gas, Summary of Operations -- Calif. } 0 i l \text { Fields, } \\
& \text { van Wingen, N., } \\
& \text { Vol. 48, No. 1. } \\
& \text { Ybarra, R.A., and A.D. Stockton, 1964, Ford Pool of Fault Block I, Wilmington 0il Field: Calif. Div. of 0il and Gas, Summary of } \\
& \text { Operations -- Calif. Oil Fields, Vol. 50, No. T. }
\end{aligned}
$$

Selected References:

YORBA LINDA OIL FIELD

COUNTY: ORANGE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell California Production Inc. "P.E. Todd" 1	L.C. Simmel No. 1	22 3S 9W	SB	2,722	Main	
Deepest well	Harold C. Ramser "Y.J.O.G." 1	Western Gulf 0il Co. "Y.J. Orange Grove" 1	21359 W	SB	6,085		Puente late Miocene

POOL DATA

Base of fresh water (ft.): 2,500
Remarks:

Selected References: Barger, R.M., and V.F. Gaede, 1956, Yorba Linda 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 42,

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Texaco Producing Inc. "Davis" 1	Tidewater Associated Oil Co. "Davis" 1	338 N 31 W	SB	6,643	Monterey	
Deepest well	Texaco Producing Inc. "Luton" 113	Tidewater Associated Oil Co. "Luton" 113	29 8N 31W	SB	6,685		Monterey Middle Miocene

Base of fresh water (ft.): $\quad 1,400$
Remarks:
a/ Because the principal purpose of the project was waste-water disposal, the project was reclassified as a water-disposal project in January 1973. The project is still active, and the injected water has some waterflooding effect.

Am. Assoc. Petroleum Geologists, 1970, Petroleum Potential of the Santa Maria Province, California; Memoir 15, Vol. 1, p. 325.
Dibblee, T.W., Jr., 1950, Geology of Southwestern Santa Barbara County, California: Calif. Div. of Mines Bull. 150, p. 69.
Dolman, S.G., 1942, Operations in Dist. No. 3: Calif. Div. of 011 and Gas, Summary of Operations--Calif. Oil Fields, Vol. 28, No. 2, p. 61.
Selected References
Regan, L.J., and A.W. Hughes, 1950, Fractured Reservoirs of Santa Maria District, California: Am. Assoc. Petroleum Geologists Buil.
Mo. P. M. Ponek, and B. Newman, 1983, Zaca Field-Santa Maria Basin: Petroleum Generation and Occurrence in the Miocene Monterey Formation, California, the Pacific Section Soc. Econ. Paleontologists and Mineralogists, p. 228.

beta offshore oil field

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Shell Western Expl. \& Prod. Inc. OCS-P-300-1	Shell Oil Company OCS-P-300-1			4,850	Delmontian Miocene	
Deepest well	Shell Western Expl. \& Prod. Inc. OCS-P-300-A51R	Shell California Production, Inc. OCS-P-300-A51R			10,262		Franciscan

Base of fresh water (ft.):
Remarks:

Selected References:

DOS CUADRAS OFFSHORE OIL FIELD FEDERAL OCS

CONTOURS ON C ELECTRIC LOG MARKER

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. A-20	Same as present	$\begin{aligned} & x-1,513 \\ & y-307 \end{aligned}$		3,673	Repetto	
Deepest well	Union Oil Co. of Calif. No. 1	"	$\left\lvert\, \begin{aligned} & x-1,515 \\ & y-317 \end{aligned}\right.$		13,292		Monterey Miocene

Base of fresh water (ft.):
Remarks: The field is produced from Unocal's Platforms A, B, C, and Hillhouse.

[^25]

COURTESY OF EXXON CO., USA

CONTOURS ON TOP MONTEREY SILICEOUS STRUCTURE

HONDO "A" CROSS SECTION

HUENEME OFFSHORE OIL FIELD FEDERAL OCS

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	$\begin{aligned} & \text { Total } \\ & \text { depth } \\ & \text { (feet) } \end{aligned}$	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Mobil Oil Corp. OCS P-02O2 No. 1 Confidential	Same as present			8,452	Hueneme and Sespe	Miocene and 01 igocene

Base of fresh water (ft.):
Remarks: The field is produced from Unocal's Platform Gina.

Selected References:

PITAS POINT OFFSHORE GAS FIELD FEDERAL OCS

ADAPTED FROM AAPG BULLETIN V.69, No. 4 (1985)

POINT ARGUELLO OFFSHORE OIL FIELD FEDERAL OCS

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. P-0316-1	Same as present			9,621	Monterey	
Deepest well	Chevron U.S.A. Inc. P-0316-2	"			11,116		Monterey Miocene

Base of fresh water (ft.):
Remarks: Commercial production has not begun.

Selected References
Crain, W.E., W.E. Mero, and D. Patterson, 1985, Geology of the Point Arguello Discovery: AAPG Bulletin Volume 69, No. 4, p. 537-545. Van Bloemen Waanders, B.G., and B.L. Litvak, 1989, Simulation of a Naturally Fractured Reservoir, Point Arguello Field, offshore Calif. SPE Paper 18745

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B. \& M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Union Oil Co. of Calif. OCS P-0441 \#1	Same as present			Conf.	Monterey	Miocene
Deepest well	Confidential	${ }^{\prime}$					

Base of fresh water ($\mathbf{f t}$.):
Remarks: Field Produced From Union Platform "Irene".

Selected References:

SANTA CLARA OFFSHORE OIL FIELD
FEDERAL OCS

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well	Chevron U.S.A. Inc. OCS-P-217 \#1	Same as present	48N 62W	MD	9,990	Monterey	
Deepest well	Chevron U.S.A. Inc. OCS-P-217 A-7	Same as present	48N 62W	MD	10,107		Sespe 01igocene

Base of fresh water (ft.):
Remarks:

Selected References:

SOCKEYE OFFSHORE OIL FIELD FEDERAL OCS

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. \& R.	B.\&M.	Total depth (feet)	Pool (zone)	Strata \& age at total depth
Discovery well Deepest well	Chevron U.S.A. Inc. OCS-P-205 \#1 Same as above	Humble Oil Company OCS-P-205 \#1	$\begin{array}{\|l\|} \hline 0 C S-P-205 \\ X=728,472 \\ Y=1,046,798 \end{array}$		12,771	Monterey u \& m Sespe	Miocene \& 01 igocene "

Base of fresh water ($\mathbf{f t .}$):
Remarks: a/ vertical sub-sea Tevel

[^26]ALEGRIA OFFSHORE OIL FIELD

CONTOURS ON TOP OF VAQUEROS

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): None
Remarks: a/ Directional well; true vertical depth of present hole is 4,212 feet. Commercial production was established after redrilling the deepest well. b/ Directional well; true vertical depth of original hole is 5,957 feet.
$\overline{c /}$ This pool is abandoned. Early production was not broken down by pools.

```
Selected References: Barton, C.L., 1962, Operations in District No, 3: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48 , No. 2.
``` Paper 679B, p, 19.


DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Exxon Corp. "State PRC 186"1 & Gilco Inc. "State" 1 & 11 5S 12W & SB & \[
\begin{aligned}
& 8,050 \\
& \underline{\text { a }}
\end{aligned}
\] & Upper & \\
\hline Deepest well & Exxon Corp. "State PRC 186" 210 & Marine Exploration Co. "State" 2 & 11 5S 12W & SB & \[
\begin{aligned}
& 12,131 \\
& \underline{b} /
\end{aligned}
\] & & \begin{tabular}{l}
Puente \\
late Miocene
\end{tabular} \\
\hline
\end{tabular}

Base of fresh water (ft.): See Areas
Remarks: a/ Directional well, true vertical depth is 3,406 feet. Б/ Directional well, true vertical depth is 5,772 feet.

Selected References

COUNTY: ORANGE

\section*{BELMONT OFFSHORE OIL FIELD SURFSIDE AREA}

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "State 3095" 318 & \begin{tabular}{l}
Standard Oil Co. of Calif. \\
"Surfside 3095" 318
\end{tabular} & 22 2S 12W & SB & \[
\begin{aligned}
& 4,920 \\
& \underline{d} f
\end{aligned}
\] & Upper Terminal & \\
\hline Deepest well & Chevron U.S.A. Inc. "State 3095" 317 & Standard Oil Co. of Calif. "Surfside 3095" 317 & 22 2S 12W & SB & \[
\begin{aligned}
& 11,695 \\
& \underline{c} f
\end{aligned}
\] & & \begin{tabular}{l}
Puente \\
late Miocene
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{POOL DATA} & \multirow[b]{2}{*}{\begin{tabular}{l}
FIELD OR \\
AREA DATA
\end{tabular}} \\
\hline ITEM & RANGER a/ & UPPER TERMINAL \(\mathrm{b} /\) & \begin{tabular}{l}
LOWER \\
TERMINAL b/
\end{tabular} & UNION PACIFIC & F0RD & \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \(\qquad\) \\
Gas (Mcf/day) \(\qquad\) \\
Flow pressure (psi) \(\qquad\) \\
Bean size (in.) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \(\qquad\) \\
Initial oil content (STB/ac.-ft.) \(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation \(\qquad\) \\
Geologic age \(\qquad\) \\
Average depth (ft.) \\
Average net thickness (ft.)
\(\qquad\)
\(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} & \begin{tabular}{l}
November 1965 \\
248
85
\[
\begin{array}{r}
1,300-1,400 \\
150
\end{array}
\] \\
"Repetto"-Puente \\
e Plio./1 Miocene
\[
\begin{array}{r}
3,700 \\
105
\end{array}
\]
\end{tabular} & \[
\begin{array}{r}
\text { September } 1965 \\
516 \\
181 \\
\\
1,350-1,500 \\
140 \\
\\
\text { Puente } \\
\text { late Miocene } \\
4,000 \\
150
\end{array}
\] & \[
\begin{array}{r}
\text { December } 1965 \\
464 \\
168 \\
\\
1,800 \\
- \\
\text { Puente } \\
\text { late Miocene } \\
4,800 \\
85
\end{array}
\] & \[
\begin{array}{r}
\text { October } 1965 \\
50 \\
- \\
1,750 \sim 1,800 \\
- \\
\\
\text { Puente } \\
\text { late Miocene } \\
5,400 \\
200
\end{array}
\] & \[
\begin{array}{r}
\text { October } 1965 \\
50 \\
- \\
1,750-1,800 \\
- \\
\text { Puente } \\
\text { late Miocene } \\
6,100 \\
75
\end{array}
\] & 425 \\
\hline \multicolumn{7}{|c|}{RESERVOIR ROCIK PROPERTIES} \\
\hline \begin{tabular}{l}
Porosity (\%) \(\qquad\) \\
Soi (\%) \(\qquad\) \\
Swi (\%) \(\qquad\) \\
Sgi (\%) \(\qquad\) \\
Permeability to air (md) \(\qquad\)
\end{tabular} & \[
\begin{gathered}
35 \\
71 * * \\
29 \star \star \\
0 \star * \\
1,638^{\star *}
\end{gathered}
\] & \[
\begin{gathered}
31 \\
67 \star * \\
33^{* *} \\
0 \star \star \\
735 * *
\end{gathered}
\] & \[
\begin{array}{r}
31 * * \\
61^{* *} \\
39 \star * \\
00^{* *}
\end{array}
\] & \[
\begin{gathered}
25 \\
58^{\star \star} \\
42^{\star \star} \\
0^{\star \star} \\
40^{\star \star}
\end{gathered}
\] & \[
\begin{aligned}
& 25 \\
& 53^{\star *} \\
& 47^{* *} \\
& 0 \star \star \\
& 80^{\star *}
\end{aligned}
\] & \\
\hline \multicolumn{7}{|c|}{RESERVOIR FLUID PROPERTIES} \\
\hline \begin{tabular}{l}
Oil: \\
Oil gravity (\({ }^{\circ}\) API) \(\qquad\) \\
Sulfur content (\% by wt.) \(\qquad\) \\
Initial solution \\
GOR (SCF/STB) \(\qquad\) \\
Initial oil FVF (RB/STB) \(\qquad\) \\
Bubble point press. (psia) \(\qquad\) \\
Viscosity (cp) @ \({ }^{\circ}\) F \(\qquad\) \\
Gas: \\
Specific gravity (air \(=\mathbf{1 . 0}\)) \(\qquad\) \\
Heating value (Btu/cu. ft.) \\
Water: \\
Salinity, NaCl (ppm) \(\qquad\) \\
T.D.S. (ppm) \(\qquad\) \\
\(\mathbf{R}_{\mathbf{w}}(\mathbf{o h m} / \mathrm{m})\left(77^{\circ} \mathrm{F}\right)\) \(\qquad\)
\end{tabular} & \[
\begin{array}{r}
21-30 \\
0.02 \\
\\
\\
1.025 \\
\\
30,130 \\
22,300-30,300 \\
0.21
\end{array}
\] & \[
\begin{array}{r}
23-29 \\
1.25 \\
\\
\\
1.025 \\
\\
\\
30,130 \\
30,500 \\
0.23
\end{array}
\] & \[
23-29
\]
\[
1.025
\]
\[
\begin{array}{r}
30,300 \\
31,200 \\
0.21
\end{array}
\] & \[
\begin{array}{r}
25-28 \\
0.23 \\
- \\
\\
\\
1.023 \\
\\
\\
24,200 \\
27,650 \\
0.27
\end{array}
\] & \[
\begin{array}{r}
25-28 \\
0.16 \\
\\
\\
\\
1.024 \\
\\
\\
24,000-28,000 \\
28,100-30,500 \\
0.24-0.25
\end{array}
\] & \\
\hline \multicolumn{7}{|c|}{ENHANCED RECOVERY PROJECTS} \\
\hline \begin{tabular}{l}
Enhanced recovery projects. \(\qquad\) \\
Date started \(\qquad\) \\
Date discontinued \(\qquad\)
\end{tabular} & \[
\begin{array}{r}
\text { waterflood } \\
1967 \\
1979
\end{array}
\] & \[
\begin{array}{r}
\text { waterflood } \\
1967 \\
1979
\end{array}
\] & \[
\begin{array}{r}
\text { waterflood } \\
1967 \\
1979
\end{array}
\] & \[
\begin{array}{r}
\text { waterflood } \\
1972 \\
1979
\end{array}
\] & \[
\begin{array}{r}
\text { waterflood } \\
1972 \\
1979
\end{array}
\] & \\
\hline \begin{tabular}{l}
Peak oil production (bbl) \\
Year \(\qquad\) \\
Peak gas production, net (Mcf) \\
Year \(\qquad\)
\end{tabular} & & & & & & \[
\begin{array}{r}
3,675,984 \\
1968 \\
412,000 \\
1976
\end{array}
\] \\
\hline
\end{tabular}

Base of fresh water (ft.): \(\quad 2,100\)
Remarks: All completed wells drilled from Island Esther (now Platform Esther).
All completed wells drilled from Island Esther (now Plat
a/ Production from Ranger and Upper Terminal commingled.
\(\frac{\mathrm{b}}{}\) / Production from Uper and Lower Terminal commingled.
\(\frac{\mathrm{c}}{\mathrm{c}}\) Directional well, true vertical depth is 11,647 feet.

\section*{Selected References:}

\section*{CALIENTE OFFSHORE GAS FIELD}

CONTOURS ON TOP OF VAQUEROS

sIsQuoc

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total
depth
feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "SSGS 2199" 401A & Standard 0il Co. of Calif. "SSGS 2199" 401A & 104 N 32 W & SB & 7,070 & Vaqueros & \\
\hline Deepest well & Chevron U.S.A. Inc. "SSGS 2199" 101 & Standard 0i1 Co. of Calif. "StandardHumble Gaviota State" 101 & 104 N 32 W & SB & 7,912 & & Gaviota 01 igocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: \(\quad\) / Commingled with production from Vaqueros zone.

\section*{Selected References:}

CAPITAN OIL FIELD
Offshore Area
(Abandoned)

\[
\text { SCALE: } 1^{\prime \prime}=1360^{\prime}
\]

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & H.J. Montgomery 170-1 & Oakburn Drilling Co. 170-1 & 54 N 30 W & SB & 1,302 & Vaqueros & \\
\hline Deepest well & Mobil 0il Corp. "State 2991" 2 B & Socony Mobil 0 il Co. Inc. "State 2991" 2 & 4 4N 30W & SB & 6,761 & & Sespe 01 igocene \\
\hline
\end{tabular}

Base of fresh water (ft.): \(\quad 150\)
Remarks: The area was abandoned in 1963. Cumulative production is \(71,074 \mathrm{bbl}\) of oil and 33,141 Mcf of gas. a/ Commingled with production from Erburu 8 zone.

Selected References: Yerkes, R.F., H.C. Wagner, and K.A. Yenne, 1969, Petrofeum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

CONTOURS ON G ELECTRIC LOG MARKER

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total
depth
(feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "Sacs 3150" 1 & Standard 0il Co. of Calif. "Sacs 3150" 1 & 17 3N 25W & SB & 5,935 & Pico & \\
\hline Deepest well & Chevron U.S.A. Inc. "Sacs 3150" 9 & Standard 0il Co. of Calif. "Sacs 3150"9 & 17 3N 25W & SB & 14,552 & & \begin{tabular}{l}
Sespe \\
0ligocene
\end{tabular} \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: Field straddles the state-federal boundary. Wells were drilled from state Platforms Heidi and Hope and federal Platforms Hogan and Houchin. First production from federal leases was in 1968.

\section*{Selected References:}

DISCOVERY WELL AND DEEPEST WELL

Base of fresh water (ft.): None
Remarks: The field was abandoned in 1984. Cumulative production is \(1,307,279 \mathrm{bbl}\) of oil and 3,269,672 Mcf of gas.
a/ Directional well; true vertical depth is 3,357 feet.
\(\overline{\text { c/ } / ~ A p p r o x i m a t e ~ t r u e ~ v e r t i c a l ~ d e p t h . ~}\)

Selected References: Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 6798, p. 19.

\section*{DISCOVERY WELL AND DEEPEST WELL}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Phillips Petroleum Co. "State 2207" 4 & Same as present & 134 N 34 W & SB & 6,897 & Gaviota & \\
\hline Deepest well & Phillips Petroleum Co. "State 2207" 36 & Same as present & 144 N 34 W & SB & \[
10,707
\] & & Alegria 01igocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remark: The western portion of the field was developed by wells drilled from Platform Harry. The eastern portion of the field was developed by subsea-completed wells with product
The field was abandoned in 1988. Cumulative production is \(20,933,349 \mathrm{bbl}\) of oil and \(12,325,906\) Mcf of gas.
a/ Directional well; true vertical depth is 9,116 feet.
b/ Not recorded.

Selected References: Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

Sheet 1 of 2
DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Oryx Energy Co. 94-1 & Barnsdall 0il Co. of Calif. "Tideland Permit" 94-1 & 22 4N 29W & SB & 3,512 & Vaqueros & \\
\hline Deepest well & ARCO 0il and Gas Co. "State 208" 29x & Signal Oil and Gas Co. "State" 208-29X & 17 4N 29W & SB & \[
\begin{array}{r}
9,986 \\
a /
\end{array}
\] & & Cozy Dell Eocene \\
\hline
\end{tabular}

POOL DATA

Base of fresh water (ft.): None
Remarks: a/ Directional well; true vertical depth of original hole is 9,280 feet. b/ Early production was not broken down by areas.

Selected References: Frame, R.G., 1960, California Offshore Petroleum Developments: Calif. Div. of 0il and Gas, Summary of Operations--California 0il Fields,

\section*{ELWOOD OIL FIELD} OFFSHORE AREA

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & \[
\begin{aligned}
& \text { Total } \\
& \text { depth } \\
& \text { (feet) }
\end{aligned}
\] & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & & & & & & & \\
\hline Deepest well & & & & & & & \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: \(\quad \underline{c} /\) Commingled with production from the Sespe Gas zone.

\section*{Selected References:}

SISQUOC

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total
depth
(feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & ARCO Oil and Gas Co. "State 3242" 1 & Richfield 0il Corp. "State 3242" 1 & 34 4N 29W & & \[
\begin{array}{|c}
6,490 \\
a /
\end{array}
\] & Rincon & \\
\hline Deepest well & ARCO 0 il and Gas Co. "Ames 3242" 19 & Same as present & 34 4N 29W & SB & b/ & & Confidential \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} & \multicolumn{5}{|c|}{POOL DATA} & \multirow[b]{2}{*}{FIELD OR AREA DATA} \\
\hline & SISQUOC & MONTEREY & RINCON & VAQUEROSE/ & SESPEC/ & \\
\hline \begin{tabular}{l}
Discovery date \(\qquad\) \\
Initial production rates \\
Oil (bbl/day) \\
Gas (Mcf/day)
\(\qquad\)
\(\qquad\) \\
flow pressure (psi) \(\qquad\) \\
Initial reservoir \\
pressure (psi) \(\qquad\) \\
Reservoir temperature (\({ }^{\circ} \mathrm{F}\)) \\
Initial oil content (STB/ac.-ft.)
\(\qquad\) \\
Initial gas content (MSCF/ac.-ft.)... \\
Formation. \\
Geologic age
\(\qquad\)
\(\qquad\) \\
Average net thickness (ft.) \(\qquad\) \\
Maximum productive \\
area (acres) \(\qquad\)
\end{tabular} & Sisquoc Pliocene 1,350
10 & \begin{tabular}{l}
\[
\begin{array}{r}
\text { May } 1969 \\
112 \\
10-15 \\
64 / 64 \\
1,600 \\
150 \\
100-150
\end{array}
\] \\
Monterey Miocene 3,350
500
\end{tabular} & July 1965
1,010
273
\(400-425\)
\(28 / 64\)
2,205
190
1,402
Rincon
early Miocene
5,000
150 & January 1967
145
36
150
\(64 / 64\)
3,650
208
-
Vaqueros
early Miocene
5,900
60 & January 1967
\[
\begin{array}{r}
\frac{\mathrm{d} /}{-} \\
64 / 64 \\
3,650 \\
208 \\
- \\
\text { Sespe } \\
\begin{array}{r}
\text { Sigocene } \\
6,000 \\
150
\end{array}
\end{array}
\] & 600 \\
\hline & & & VOIR ROCK PROP & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Porosity (\%) \(\qquad\) \\
Soi (\%) \(\qquad\) \\
Swi (\%) \(\qquad\) \\
\(\mathbf{S g i}(\%)\) \(\qquad\) \\
Permeability to air (md)
\end{tabular}} & E & fractured shale & \[
\begin{array}{r}
29 \\
59 \\
21 \\
20 \\
587
\end{array}
\] & \(24 * * *\)
\(60 * * *\)
\(30 * * *\)
\(10 * * *\)
\(80-200 * * *\) & \[
\begin{array}{r}
24 * * * \\
70 * * * \\
30 * * * \\
-\quad \\
80-200 * * *
\end{array}
\] & \\
\hline & \multicolumn{6}{|c|}{RESERVOIR FLUID PROPERTIES} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Oil: \\
Oil gravity (\({ }^{\circ}\) API) \(\qquad\) \\
Sulfur content (\% by wt.).......... \\
Initial solution \\
GOR (SCF/STB) \\
Initial oil FVF (RB/STB).
\(\qquad\) \\
Bubble point press. (psia)
\(\qquad\)
\(\qquad\) \\
Gas: \\
Specific gravity (air \(=1.0\))........ \\
Heating value (Btu/cu. ft.) \\
Water: \\
Salinity, NaCl (ppm) \(\qquad\) \\
T.D.S. (ppm) \(\qquad\) \\
\(\mathbf{R}_{\mathbf{w}}\) (\(\mathbf{o h m} / \mathrm{m}\)) (\(\mathbf{7 7}^{\circ} \mathrm{F}\)) \(\qquad\)
\end{tabular}} & \[
25-34
\] & \[
\begin{array}{r}
25-34 \\
2.02 \\
500 \\
- \\
550100 \\
0.97 \\
1,136-1,289 \\
44,340 \\
\hline .
\end{array}
\] & \(32-34\)
0.20
\(346-1,000\)
1.248
2,205
406100
0.68
1,206
20,530
21,803
0.31 & \[
3,947-4,800
\]
\[
21,400
\] & \[
\begin{array}{r}
33 \\
\text { - } \\
3,947-4,800 \\
- \\
- \\
- \\
- \\
21,400 \\
-
\end{array}
\] & \\
\hline & \multicolumn{6}{|c|}{ENHANCED RECOVERY PROJECTS} \\
\hline \begin{tabular}{l}
Enhanced recovery projects \\
Date started. \(\qquad\) \\
Date discontinued \(\qquad\)
\end{tabular} & & \[
\begin{array}{r}
\text { gas injection } \\
1973 \\
1981
\end{array}
\] & waterflood
1971
1977
gas injection
1981
active & & & \\
\hline & & \[
\begin{array}{r}
3,444,789 \\
1984 \\
2,948,055 \\
1984
\end{array}
\] & & \[
\begin{array}{r}
123,485 \\
1967 \\
236,253 \\
1967
\end{array}
\] & \[
\begin{aligned}
& \mathrm{d} / \\
& \mathrm{d} /
\end{aligned}
\] & \[
\begin{array}{r}
3,460,338 \\
1984 \\
2,956,696 \\
1984
\end{array}
\] \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: a/ Directional well; true vertical depth is 6,472 feet
b/ Directional well; however, measured and true vertical depth are confidential.
c/ Pool has been abandoned.
d/ Commingled with production from the Vaqueros zone.

\footnotetext{
Selected References: Belfield, W.C., and others, 1983, South Elwood Oil Field, Santa Barbara Channel, California, a Monterey Formation Fractured Reservoir in
Petroleum Generation and Occurrence in the Miocene Monterey Formation, California Pacific Section SEPM.
Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper \(679 \mathrm{~B}, \mathrm{p}\). 19.
}

\section*{gaviota offshore gas field}

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & \[
\begin{aligned}
& \text { Total } \\
& \text { depth } \\
& \text { (feet) }
\end{aligned}
\] & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "SGS 2199" 1 & Standard 0il Co. of Calif. "StandardHumble Gaviota State" 1 & 2 4N 32W & SB & \[
\begin{array}{r}
7,751 \\
a / f
\end{array}
\] & \[
\begin{aligned}
& \text { Vaqueros- } \\
& \text { Sespe }
\end{aligned}
\] & \\
\hline Deepest well & Chevron U.S.A. Inc. "SGS 2199" 2 A & Standard 0il Co. of Calif. "StandardHumble Gaviota State" 2A & 3 4N 32W & SB & \[
\begin{array}{r}
8,567 \\
\text { b/ }
\end{array}
\] & & \begin{tabular}{l}
Gaviota \\
01igocene
\end{tabular} \\
\hline
\end{tabular}

Base of fresh water (ft .): None
Remarks: a/ Directional well; true vertical depth is 7,238 feet; drilled from a jack-up barge. The well tested for 4,000 Mcf of gas and 445 bbl of condensate - Directional well \(\quad\) per day in November 1958 and was subsequently suspended. Pool data are from the first producing well, "SGS 2199" 4 . - per day in November 1958 and was subsequently susp.

Selected References: Giallonardo, T., and A. Koller, 1978, Gaviota Offshore Gas Field: California Division of 0il and Gas Publication TR21, p. 1-8. Yerkes, R.F., H.C. Wagner and X.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 679B, p. 19.

COUNTY: ORANGE

\section*{HUNTINGTON BEACH OIL FIELD OFFSHORE AREA}

Base of fresh water (ft.): \(\quad 500\)
Remarks: The Jones and Main zones were discovered from townlot drillsites by trespass wells. Wells were directionally drilled from onshore, and from Platforms Eva and Enmy.

\footnotetext{
Selected References: Frame, R.C., 1960, California Offshore Petroleum Development: Calif. Div. of Oil and Gas, Summary of Operations ..- Calif. Oil Fields, Vol. 46, No. 2. 1947 Tidelands Pools of Hurtington Beach Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. 0il Murray-Aaron, E.R., 1947, Fields, Vol. 33, No. 1.'
}

MOLINO OFFSHORE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Shell Western Expl. \& Prod. Inc. "SSMS 2920" 1 & Shell 0 i1 Co. "C.H." 8-502 & 84 N 31 W & SB & \[
\begin{array}{r}
8,479 \\
\underline{a} /
\end{array}
\] & \begin{tabular}{l}
Vaqueros \\
Sespe- \\
Alegria
\end{tabular} & \\
\hline Deepest well & Shell Western Expl. \& Prod. Inc. "SSMS 2920" 8 & Shell California Production Inc. "SSMS 2920" 8 & 18 4N 31W & SB & \[
\begin{array}{r}
12,589 \\
\mathrm{~b} /
\end{array}
\] & & Matilija Eocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: a/Direction well; true vertical depth is 8,423 feet.
a/ Direction well; true vertical depth is 8,423 feet.
b/ Direction well; true vertical depth is about 12,200 feet \(\frac{\mathrm{c}}{\mathrm{c}} /\) Commingled with production from Vaqueros zone.

Selected References: Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 6798, p. 19.

```

COUNTY: VENTURA

```

MONTALVO, WEST, OIL FIELD OFFSHORE AREA

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total
depth
(feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "State" C-1A & Standard 0il Co. of Calif. "State" C-1A & 35 2N 23W & SB & 13,600 & Colonia & \\
\hline Deepest well & Chevron U.S.A. Inc. "State" B-6 & Standard 0il Co. of Calif. "State" B-6 & \(262 N 23 W\) & SB & 14,850 & & \begin{tabular}{l}
Sespe \\
Oligocene
\end{tabular} \\
\hline
\end{tabular}

Base of fresh water (ft.): \(1,100-1,600\)
Remarks: Wells directionally drilled from onshore site.

\section*{Selected References:}

CONTOURS ON TOP OF VAQUEROS
\(A \longrightarrow B\)

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Phillips Petroleum Co. "State 2205" 5 & Phillips Petroleum Co. "Phillips Pet. Co.-Pauley et al State \(2205^{\prime \prime} 5\) & 2 4N 30W & SB & \[
\begin{array}{r}
8,871 \\
\underline{a} /
\end{array}
\] & Vaqueros & \\
\hline Deepest well & Phillips Petroleum Co. "State 2205" 3 & Phillips Petroleum Co. "Phillios Pet. Co.-Pauley et al State 2205 E.T." 3 & 114 N 30 W & SB & 8,101 & & Gaviota 01igocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: The first well to penetrate the gas zone was Phillips Petroleum Co. "State 2205" 3, which was drilled as an expendable test hole from a drilling barge. Producing wells were directionally drilled from onshore locations. The field was abandoned in 1968. Cumulative production is 555,962 bbl of condensate and \(20,814,928\) Mcf of gas.
a/ Directional well; true vertical depth is 5,963 feet.

Selected References: Yerkes, R.F., H.C. Wagner and K.A. Yenne, 1969, Petroleum Development in the Region of the Santa Barbara Channel: U.S. Geol. Survey Prof. Paper 6798, p. 19.

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & City of Newport Beach "Newport Beach" 1 & Monterey 0il Co. "Newport Beach" 1 & 29 6S 10W & SB & 7,125 & Newport & \\
\hline Deepest well & Exxon Corp. "State 1549" 1 & Monterey 0 il Co. "State 1549" 1 & 19 6S 10W & SB & 8,711 & & Topanga middle Miocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: All producing wells were drilled from two onshore drillsites.

Selected References: Hunter, A. L., and D. R. Allen, 1956, Recent Developments in the West Newport Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 42, No. 2.

\section*{POINT CONCEPTION OIL FIELD \\ Offshore area}
(UPPER EOCENE

CONTOURS ON TOP OF SACATE

\section*{POINT CONCEPTION OIL FIELD OFFSHORE AREA}

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B. \& M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Union 0il Co. of Calif. "State 2879" 10-6 & Same as present & 84 N 34 W & SB & \[
\begin{array}{r}
7,497 \\
a /
\end{array}
\] & Sacate & \\
\hline Deepest well & \(\underset{5-6}{\text { Union Oil Co. of Calif. "State 2879" }}\) & Same as present & 16 4N 34W & SB & \[
\begin{array}{r}
8,780 \\
b /
\end{array}
\] & & Matílija Eocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: Completed wells are directionally drilled from onshore locations. This area was originally included in Conception offshore field. a/ Directional well; true vertical depth is 7,104 feet. a/ Directional well; true vertical depth is 7,104 feet.

Selected References: Barton, C.L., 1965, Operations in District No. 3: Calif. Div. of Oil and Gas-Summary of Operations, Vol. 51, No. 2.

\section*{RINCON OIL FIELD Offshore Area}

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & ARCO Oil \& Gas Co. "Hobson State" 1 & Chanslor-Canfield Midway Oil Co. "State" 1 & 173 N 24 N & SB & 4,281 & Miley & \\
\hline Deepest well & Chevron U.S.A. Inc. "State 3184" 3 & Standard 0il Co. of Calif. "State 3184" 3 & 223 N 24 W & SB & 17,590 & & Santa Margarita late Miocene \\
\hline
\end{tabular}

POOL DATA

Base of fresh water (ft.): None
Remarks: Wells were originally drilled from piers. Later wells were directionally drilled from onshore areas and from antificial island.

Selected References: Frame, R.C., 1960, California Offshore Petroleum Development: Calif. Div, of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 46, No. 2.

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Chevron U.S.A. Inc. "SHSS 1824" 1A & Standard Oil Co. of Calif. "StandardHumble Summerland State" 1 & 354 N 26W & SB & 7,768 & Vaqueros & \\
\hline Deepest well & Chevron U.S.A. Inc. "SHSS 1824" 26 & Standard 0il Co. of Calif. "StandardHumble Summerland State" 24 & 354 N 26W & SB & 12,733 & & Sespe 01 igocene \\
\hline
\end{tabular}

POOL DATA

Base of fresh water (ft.): None
Remarks: Two producing wells were completed on the ocean floor; all others are on either Platform Hazel or Hilda. Hazel was the first platform installed in California waters that was constructed in a shipyard and towed to the site.

CONTOURS ON TOP OF MAIN (A) SAND
scale: \({ }^{\prime \prime}=600^{\prime}\)

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & unknown & H.L. Williams, Well No. unknown & unknown & SB & unk. & Main & \\
\hline Deepest well & Texaco Producing Inc. "Seaside-State" 1 & Tidewater 0il Co. "Seaside-State" 1 & 22 4N 26W & SB & 6,191 & & Sespe 01igocene \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: This is the first offshore oil field developed in California and possibly in the world. The last production from this field was in 1940 .

Selected References: Arnold, Ralph, 1907, Geology \& Resources of the Summerland District, Santa Barbara County, California: U.S. Geol. Survey Bull. 321. Dibblee, T.W., Jr., 1966, Geology of the Central Santa Ynez Mountains, Santa Barbara County, Calif: Calif. Div. of Mines and Geology Bull. 186, p. 88.

\section*{DISCOVERY WELL AND DEEPEST WELL}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & American Pacific International, Inc. "City of Redondo Beach" 1 & Signal 0i1 and Gas Co. "City of Redondo Beach" 1 & 6 4S 14W & SB & 4,036 & Del Amo & \\
\hline Deepest well & American Pacific International, Inc. "City of Redondo Beach" S-12 & McCulloch Oi] Corp., Inc. "City of Redondo Beach" S-12 & 64 S 14 W & SB & 8,313 & & \begin{tabular}{l}
Puente \\
late Miocene
\end{tabular} \\
\hline
\end{tabular}

Base of fresh water (ft.): None
Remarks: All completed wells were drilled from one onshore drillsite.

Crowder, R.E., 1956, Torrance Oil Field: Calif. Div. of 011 and Gas, Surnmary of Operations ---Calif. Oil Fields, Vol. 42 , No. 2.
Crowder, R.E., 1964, Del Amo Zone of Torrance 0il Field: Calif. Div. of 0il and Gas, Summary of Operations - Calif.
Crowder, R.E., 1964, Del Amo Zone of Torrance \(0 i 1\) Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 51, Frame, R.G., 1960, Calif. Offshore Petroleum Development: Calif. Div. of \(0 i 1\) and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 46, No. 2.

DISCOVERY WELL AND DEEPEST WELL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R & B.\&M. & Total depth (feet) & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Damson 0il Corp. "L. A. City 135" 3 & Socony Mobil Oil Co., Inc. "L. A. City \(135^{\prime \prime} 3\) & 202515 W & SB & 7,045 & Schist Sand & \\
\hline Deepest well & Damson 0i1 Corp. "L. A. City 135" 9 & Socony Mobil 0 it Co., Inc. "L. A. City
\(135^{\prime \prime} 9\) & 20 2S 15W & SB & 7,522 & & Catalina Schist Cret. or older \\
\hline
\end{tabular}

POOL DATA

Base of fresh water (ft.): 600-700
Remarks: All wells were directionally drilled from an onshore drillsite.

Selected References:

COUNTY: LOS ANGELES
WILMINGTON OIL FIELD OFFSHORE AREA

Sheet 1 of 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{DISCOVERY WELL AND DEEPEST WELL} \\
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & \begin{tabular}{l}
Total
depth
(feet) \\
(feet)
\end{tabular} & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & Long Beach Oil Development Co. "X" 6 & Same as present & 25 S 13W & SB & 3,840 & Ranger & \\
\hline Deepest well & Thums Long Beach Co. C-520 I & Same as present & 165 S 12 W & SB & 12,383 & & late Miocene \\
\hline
\end{tabular}

Base of fresh water (ft.): \(\quad 1,600\)
Remarks: a/ Production from Ranger, Upper Terminal, and Lower Terminal commingled.

Selected References:
discovery well and deepest well
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Present operator and well designation & Original operator and well designation & Sec. T. \& R. & B.\&M. & \[
\begin{aligned}
& \text { Total } \\
& \text { depth } \\
& \text { (feet) } \\
& \hline
\end{aligned}
\] & Pool (zone) & Strata \& age at total depth \\
\hline Discovery well & & & & & & & \\
\hline Deepest well & & & & & & & \\
\hline
\end{tabular}

Base of fresh water (ft.):
Remarks: b/ Production from Ford, 237, and Schist commingled.

\section*{Selected References:}

\section*{From:}

Sent:
To:

Subject:

\section*{Jeff Schwartz}

Monday, October 18, 2021 1:48 PM
Vera, Albert; Eriksson, Goran; Fisch, Alex; McMorrin, Yasmine; Lee, Daniel; Public Comment at Culver City; City Council - external public facing; Clerk, City Public Comment for City Council Item PH-1

Dear Mayor, Vice Mayor, and Council Members,
I expect your vote on this item will be a formality. I hope it will be unanimous. Four of you campaigned on closing the oil field and voted for this item on its previous appearance.
I am writing to share this article, which just appeared as a collaboration of Capital \& Main, Grist, and LA Taco: https://www.lataco.com/oilfields-los-angeles/
It's focused on environmental racism, but also documents the health impacts of drilling near homes. I encourage you to close this deal and shut down the oil field once and for all.
In my opinion, this is far too generous to Sentinel: we should be suing them for damages rather than buying them out, but it's the deal at hand and we need to stop extracting and burning fossil fuels immediately.
Thank you for continuing to move this forward and keeping Culver City a climate leader.

Ferrel, Mimi
\begin{tabular}{ll}
From: & Liz Jones <ljones@biologicaldiversity.org> \\
Sent: & Monday, October 18, 2021 1:55 PM \\
To: & Public Comment at Culver City; Clerk, City \\
Cc: & Maya Golden-Krasner \\
Subject: & File No. 22-361, Reintroduction of an Ordinance Approving Zoning Code Amendment \\
& P2021-0036-ZCA \\
Attachments: & 211018 CBD File No 22-361 IOF Ordinance Comments with Enclosures.pdf
\end{tabular}

To the City Clerk's Office:
Please see the attached written comments related to File No. 22-361 - Reintroduction of an Ordinance Approving Zoning Code Amendment P2021-0036-ZCA.

Please contact me with any questions.

Best,
Liz Jones
Staff Attorney, Climate Law Institute
Center for Biological Diversity
660 S. Figueroa St., Suite 1000, Los Angeles, CA 90017
cell: (310) 612-1018; office: (213) 785-5400
she/her/hers

October 18, 2021
City Clerk
City of Culver City
9770 Culver Boulevard
Culver City, CA 90232
City.clerk@culvercity.org
via email

\section*{Re: File No. 22-361, Reintroduction of an Ordinance Approving Zoning Code Amendment P2021-0036-ZCA, Amending Culver City Municipal Code Title 17: Zoning Code, Section 17.610.010.D - Nonconforming Oil Use, to Terminate Nonconforming Oil and Gas Uses by November 24, 2026}

The Center for Biological Diversity ("Center") submits these comments in support of the reintroduction of the ordinance to phase out nonconforming oil and gas uses by November 24, 2026.

Over the past few years, the Center has submitted several letters in support of Culver City's actions to phase out drilling in the Inglewood Oil Field in order to protect residents' health and reduce greenhouse gas emissions. I am attaching those letters to ensure they are included in the record associated with this agenda item. We also signed on to a June 15, 2021 letter of support for the City-Initiated Zoning Code Amendment to Chapter 17.610, Section 17.610.010.D, to terminate and phase out over a five-year period the closure and removal of nonconforming oil and gas activities within Culver City, and a representative of our organization spoke in favor of the proposed ordinance at the June 17, 2021 meeting.

We continue to support the ordinance and thank the City Council for demonstrating leadership in addressing Culver City's dangerous oil and gas projects. We were concerned, however, to see the change in the ordinance that allows Sentinel Peak Resources to continue to operate "injection wells that are permitted and demonstrated to be active and necessary by CalGEM" after the fiveyear phase-out period. This change apparently leaves it to CalGEM's discretion to determine when injection wells are "necessary." The ordinance would align better with City Council's health and safety goals if it clarified that such injection wells are "necessary" only to protect health and safety - such as by preventing subsidence or groundwater contamination in Culver City, but that "necessary" does not mean needed to support additional oil and gas extraction in the adjoining portion of the Inglewood Oil Field in unincorporated Los Angeles County. Please consider amending the ordinance to make this clarification.

Do not hesitate to contact me with any questions.

\author{
Staff Attorney \\ Center for Biological Diversity ljones@biologicaldiversity.org (213) 785-5402
}

Enclosures:
1. June 20, 2018 letter re: Update on the Specific Plan for the Inglewood Oil Field
2. August 12, 2020 letter re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field
3. August 28, 2020 letter re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field
4. October 26, 2020 letter re: A-4. 21-389, Resolution Declaring Intent to Evaluate Phase Out Period for the Inglewood Oil Field

\section*{Enclosure 1:}

June 20, 2018 letter re: Update on the Specific Plan for the Inglewood Oil Field

June 20, 2018
City Clerk
City of Culver City
9770 Culver Boulevard
Culver City, CA 90232
City.clerk@culvercity.org
via email

\section*{Re: Update on the Specific Plan for the Inglewood Oil Field}

The Center for Biological Diversity ("Center") submits these comments in support of the City Council Oil Drilling Subcommittee's ("Subcommittee) recommendation for the Inglewood Oil Field, as explained in the City Staff Report on June 15, 2018. These comments supplement comments the Center previously submitted on March 14, 2018, which are hereby incorporated by reference. \({ }^{1}\)

The Center urges the City Council to adopt the Subcommittee's recommendation. Specifically, the Center recommends that the City Council:
- End all well stimulation, enhanced oil recovery, and wastewater injection;
- Stop issuing permits for new wells or infrastructure, unless required for safety or repair;
- Begin an amortization study and create a plan to phase out all existing operations, starting with wells closest to homes and schools, and restore the site to a beneficial use for the community with appropriate remediation; and
- Meaningfully include the public in the creation of the amortization study as well as the phase-out plan, including conducting proper government-to-government consultation with all Tongva nations about protecting their cultural and natural cultural resources.

These measures are necessary to protect public health and to set a precedent that helps put us on a path to meeting the climate goals set out in the Paris Climate agreement. In addition, case law supports phasing out existing drilling through amortization. The Subcommittee's recommendation is, therefore, the best way forward for the residents of Culver City.

\section*{I. PERMITTING OIL WELLS AND INFRASTRUCTURE HINDERS THE STATE'S CLIMATE GOALS}

As detailed in the Center's March 14, 2018 comments, oil drilling near homes and schools increases numerous health and safety risks, especially for residents who live, good to school, play, or work within 2500 feet of the operations. In addition-also as detailed in the Center's earlier comments-approving new wells will only hinder achievement of the state's climate

\footnotetext{
\({ }^{1}\) The letter is attached for ease, but without references. The letter and all references were submitted to the City on March 14, 2018.
}
goals. Immediate and aggressive greenhouse gas emissions reductions are necessary to keep warming well below \(2^{\circ} \mathrm{C}\) rise above pre-industrial levels-the temperature rise beyond which the most catastrophic effects of climate change are projected to occur.

The emission reduction potential in California alone is staggering. In February 2018, the Stockholm Environment Institute released a study concluding that restricting California oil production by 100 million barrels/year would likely decrease global GHG emissions by 8 to 24 million tons \(\mathrm{CO}_{2} /\) year. \({ }^{2}\) Overall emission benefits may be even greater if one factors in the upstream GHG emissions associated with producing, transporting, and processing that oil. \({ }^{3}\)

Similarly, an Oil Change Institute report released in May 2018 found that halting new oil well permits and phasing out wells within 2,500 feet of sensitive areas-a distance within which public health studies suggest the greatest exposure to toxic air pollution occurs-could keep 660 million barrels of oil in the ground from 2019 through 2030. \({ }^{4}\) This oil, if extracted and burned, would release more than 425 million metric tons of carbon pollution over the same time period. \({ }^{5}\) As a point of comparison, Governor Brown set a goal to reduce oil use in cars and trucks by 50 percent by 2030, which save about 430 million barrels of oil over the next 12 years. \({ }^{6}\) So, if California does not limit production, it could add more oil supply to the market than its demandside measures reduces. \({ }^{7}\)

Further, both of these studies found that reducing production in California would not result in an equal import of oil from other states or countries. Rather, reducing production locally results in a net reduction of overall oil produced. The Stockholm Environment Institute, for instance, confirmed that every barrel of California oil left in the ground will result in a net decrease of about half a barrel of oil consumption globally. \({ }^{8}\)

The urgent need to prevent the worst impacts of climate change means that California cannot afford to invest in new fossil fuel extraction and infrastructure that locks in carbon intensive oil production for years into the future. As a result, we urge Culver City to immediately stop issuing permits for new wells and infrastructure.

\section*{II. THE CITY HAS BROAD AUTHORITY TO REGULATE OIL AND GAS DRILLING}

As explained in the Center's March 14, 2018 Comments, cases have upheld local governments' broad authority to regulate oil and gas drilling generally. Some of the cases are summarized in chronological order below.

\footnotetext{
\({ }^{2}\) Peter Erickson \& Michael Lazarus, Stockholm Envtl. Institute, How limiting oil production could help California meet its climate goals at p. 3 (Feb. 27, 2018), available at https://www.sei.org/wp-content/uploads/2018/03/sei-2018-db-california-oil2.pdf ("SEI Report").
\({ }^{3}\) Id.
\({ }^{4}\) Oil Change International, "The Sky's Limit California: Why the Paris Climate Goals Demand that California Lead in a Managed Decline of Oil Extraction, at p. 8 (May 2018), available at http://priceofoil.org/content/uploads/2018/05/Skys Limit California Oil Production R2.pdf.
\({ }^{5}\) Id.
\({ }_{7}^{6}\) Id.
\({ }^{7}\) Id.
\({ }^{8}\) SEI Report.
}

\section*{Pacific Palisades Ass'n v. City of Huntington Beach (1925) 196 Cal. 211}

The California Supreme Court considered an emergency city ordinance that prohibited a landowner from "erecting derricks, installing machinery, and drilling oil wells" within a business and residence district. Id. at 214. The Huntington Beach ordinance effectively blocked the landowner from executing a lease for the development of proven oil land, amidst nearby lands with producing wells. Id. at 215 . Nonetheless, the Supreme Court concluded that the city "has the unquestioned right to regulate the business of operating oil wells within its city limits, and to prohibit their operation within delineated areas and districts, if reason appears for so doing." Id. at 217.

\section*{Marblehead Land Co. v. Los Angeles, 47 F.2d 528 (9th Cir. 1931)}

The City of Los Angeles repealed an ordinance that had excluded a strip of the plaintiff's land from a residential district in which oil production was prohibited. The land had already been leased for drilling purposes with a considerable sum of money spent on preliminary work. The federal court held that the city's police powers permitted the city to protect inhabitants from fire and noxious gas hazards, and stated "there can be no question of the inherent right of the city to control or prohibit such production, provided it is done reasonably and not arbitrarily. In that event the loss must fall upon the owner whether it prevents him from erecting structures or establishing industries which he desires to erect or establish, or whether it prevents him from developing the inherent potentialities of his land." Marblehead, 47 F.2d at 531-32. The court further noted: "a mere change of policy or of legislation, however unfortunate the result may be to appellants, does not justify the courts in declaring void an ordinance exercising legitimate police power." Id. at 534 .

\section*{Beverly Oil Co. v City of Los Angeles (1953) 40 Cal.2d 552}

In the 1920s, the City of Los Angeles annexed land on the west side and passed a series of zoning ordinances that prohibited drilling and deepening of wells in the annexed area but permitted operations of existing wells and support structures (derricks, pumping units, well casings, pipes, storage tanks) in those areas as nonconforming uses. Uses that did not have association buildings or support structures were to be amortized out over 5 years, but the Supreme Court did not address this portion of the ordinance because the City-at the timeinterpreted its ordinance as allowing the plaintiff's drilling to continue.

In affirming the City's right to prohibit new wells or re-drill old wells, however, the Court reiterated its earlier-stated rule that "the city had 'the unquestioned right to regulate the business of operating oil wells within its city limits, and to prohibit their operation within the delineated areas and districts, if reason appears for so doing." Beverly Oil Co., 40 Cal .2 d at 558, quoting Pacific Palisades Ass'n v. City of Huntington Beach (1925) 196 Cal. 211, 217. The Supreme Court concluded that local zoning ordinances prohibiting oil production are valid because:

It is to be remembered that we are dealing with one of the most essential powers of government, one that is the least limitable. It may, indeed, seem harsh in its exercise, usually is on some individual, but the imperative necessity for its existence precludes any limitation upon it when not exerted arbitrarily. A vested interest cannot be asserted against it because of conditions once obtaining. To so hold would preclude development and fix a city forever in its primitive conditions.

There must be progress, and if in its march private interests are in the way, they must yield to the good of the community.

Id. at 557 (quoting Hadacheck v. Sebastian, 239 U.S. 394 (1915) (upholding a City of Los Angeles zoning ordinance that retroactively required the removal of a brickmaking industry (internal citations omitted)). The Supreme Court concluded that it is "well settled that the enactment of an ordinance which limits the owner's property interest in oil bearing lands located within the city is not of itself an unreasonable means of accomplishing a legitimate objective within the police power of the city." Beverly Oil, at 558.

\section*{Friel v. County of Los Angeles (1959) 172 Cal.App.2d 142}

Los Angeles County zoned certain areas for residential uses and denied plaintiffs' applications for exceptions or variances for the purpose of drilling for oil. Plaintiffs complained that their neighbors in different zones, who were permitted to drill, were drilling the oil underlying plaintiffs' land. The court upheld the ordinance, stating: "There is no question that the county has the right to regulate the drilling and operation of oil wells within its lands and to prohibit their drilling and operation within particular districts if reasonably necessary for the protection of the public health, safety and general welfare." Friel, 172 Cal.App.2d at 157.

\section*{Hermosa Beach Stop Oil Coalition v. City of Hermosa Beach (2001) 86 Cal.App. \(4^{\text {th }} 534\)}

After an oil company entered into a lease agreement with a city for oil and gas exploration and production on city-owned property, the city's voters enacted an initiative reinstating a total ban on oil drilling within the city. The Court of Appeals found that the company had not obtained vested rights to drill because, despite the existing lease, it had not yet received its required permits. Hermosa Beach, 86 Cal.App.4th at 552-553 ("'Courts have yet to extend the vested rights or estoppel theory to instances where a developer lacks a building permit or the functional equivalent, regardless of the property owner's detrimental reliance on local government actions and regardless of how many other land use and other preliminary approvals have been granted.... California courts apply this rule most strictly' [citation]"). The Court further found that the ban was not an unconstitutional impairment of the existing lease, noting that the oil company knew of the risk of increased regulation, and that "Proposition E was adopted with general findings that reinstituting the total ban on oil drilling and production in a densely populated urban area is necessary to preserve the environment, as well as to protect the public health, safety and welfare of people and property within Hermosa Beach. It is, therefore, presumptively a justifiable exercise of the City's police power." Id. at 555.

\section*{III. COURTS HAVE UPHELD AMORTIZATION PERIODS FOR PHASING OUT MANY DIFFERENT TYPES OF USES}

Property owners claiming a vested right must demonstrate that they have: (1) acquired all discretionary permits necessary for the prohibited activity, and (2) completed substantial work in good faith reliance on those permits prior to the effective date of the ordinance. Avco Community Developers, Inc. v. South Coast Regional Commission (1976) 17 Cal. 3d 785, 791 (1976). Vested rights need not be allowed to continue indefinitely; they may be terminated pursuant to a regulation's reasonable phase-out or "amortization" period. Metromedia, Inc. v.

San Diego (1980) 26 Cal. 3d 848, 882. The cases below are some that support amortization periods to phase out existing uses.

\section*{Livingston Rock and Gravel Co. v. County of Los Angeles (1954) 43 Cal.2d 121}

Los Angeles County re-zoned an area from industrial to light manufacturing, but allowed nonconforming uses to continue operating for 20 years unless the time period was revoked or shortened by the planning commission. The planning commission could revoke (shorten) the 20 years if: (1) it would not impair any person's constitutional rights, or (2) after a public hearing, the planning commission found that the continued use was detrimental to public health or safety or a nuisance. The planning commission revoked the company's right to operate a cement mixing plant, effective one year later, and the board of supervisors added to the basic zoning ordinance a section expressly confirming the expiration date fixed by the commission. Livingston Rock, 43 Cal.2d at 124-125. The Supreme Court recognized the legitimacy of amortization periods, noting that "zoning legislation looks to the future in regulating district development and the eventual liquidation of nonconforming uses within a prescribed period commensurate with the investment involved." Id. at 127. The Court thus upheld the right of the County to shorten the phase-out period, noting that the original 20-year phase-out period was an exception to the rezoning restrictions. The Court found that revocation of exceptions-in particular where the revocation was based on whether the shortened amortization period violated a person's constitutional rights-were constitutionally valid as a whole and within a local government's policy power authority. Id. at 127-128.

\section*{City of Los Angeles v. Gage (1954) 127 Cal.App.2d 442}

The City of Los Angeles passed a zoning ordinance requiring discontinuance of nonconforming commercial and industrial uses of residential buildings in residential zones. A wholesale and retail plumbing business challenged the five-year amortization period, but the California Court of Appeal upheld it. The court stated that zoning ordinances are valid exercises of local police powers, which are constitutional under the due process doctrine provided they are exercised for a proper purpose (health, safety, welfare) and are not arbitrary or unreasonable when applied in a particular case. Gage, 127 Cal.App.2d at at 453. The court noted:

The distinction between an ordinance restricting future uses and one requiring the termination of present uses within a reasonable period of time is merely one of degree, and constitutionality depends on the relative importance to be given to the public gain and to the private loss....
Use of a reasonable amortization scheme provides an equitable means of reconciliation of the conflicting interests in satisfaction of due process requirements. As a method of eliminating existing nonconforming uses it allows the owner of the nonconforming use, by affording an opportunity to make new plans, at least partially to offset any loss he might suffer.

Id. at 460 . Under the facts of this case (applying several fact-dependent factors), the court found that the amortization period was reasonable as applied to the plumbing business. Id. at 461.

\section*{National Advertising Co. v. County of Monterey (1970) 1 Cal.3d 875}

In 1955, Monterey County adopted a comprehensive zoning ordinance which banned billboards in many areas. An appellate court decision upheld a five-year amortization for billboards in the rezoned areas. In 1965, the county created a new zone within which billboards would need to be removed within one year. The Supreme Court upheld the one-year amortization period despite the company's continual investments in the signs for maintenance and even rebuilding the structures: "Although essential maintenance repairs may be said to prolong to a degree the useful life of any structure, and are permitted to those that are nonconforming [citation], the repairs cannot be relied upon to defeat zoning legislation which looks to the future and the eventual liquidation of nonconforming uses. [citations.]" National Advertising Co., 1 Cal.3d at 880.

\section*{People v. Gates (1974) 41 Cal.App.3d 590, 603-605}

Applying multiple fact-dependent factors, the California Court of Appeals upheld as reasonable an 18-month amortization period granted by the County for an automobile wrecking yard.

\section*{United Bus. Com. v. City of San Diego (1979) 91 Cal.App.3d 156, 180-182}

Provides a survey of cases in which courts have upheld amortization periods for nonconforming signs of two years and eight months, three years, five years, and seven years.

\section*{Castner v. City of Oakland (1982) 129 Cal.App.3d 94}

Based on the facts, the Court of Appeals upheld as reasonable a one-year amortization period (with an extra two years' grace period for operations obligated by a lease they could not break) for an adult bookstore subject to a newly adopted ordinance banning adult entertainment activities within 1,000 feet of a residential zone.

Finally, with respect to any potential argument that phasing out and amortizing fossil fuel production in the Culver City portion of the IOF would result in an unconstitutional taking, as explained in the Center's March 14, 2018 Comments (p. 28), a court would be unlikely to find that a taking has occurred. First, the Culver City is a small portion of the productive capacity of the field. Second, any amortization period combined with an individual appeals process would mitigate financial losses. When weighed against the significant public health and environmental benefit, such a regulation is clearly a reasonable exercise of the City's police powers.

The Center encourages the City Council to adopt the Subcommittee's recommendation. Please do not hesitate to contact me with any questions.

Sincerely,

Maya Golden-Krasner
Senior Attorney | Climate Law Institute
Center for Biological Diversity
mgoldenkrasner@,biologicaldiversity.org
(213) 785-5402

\section*{Enclosure 2:}

August 12, 2020 letter re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field

August 12, 2020
City Clerk
City of Culver City
9770 Culver Boulevard
Culver City, CA 90232
City.clerk@culvercity.org
via email

\section*{Re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field}

The Center for Biological Diversity ("Center") submits these comments in support of the City Council Oil Drilling Subcommittee's ("Subcommittee) recommendation for the Inglewood Oil Field ("IOF") to direct staff to develop a framework that identifies an appropriate period to phase out oil and gas activity, and to authorize the Oil Drilling Subcommittee to continue its work with staff on this framework.

Oil drilling near homes and schools increases numerous health and safety risks, especially for residents who live, go to school, play, or work within 2500 feet of the operations. In addition, approving new wells will only hinder achievement of the state's climate goals. Immediate and aggressive greenhouse gas emissions reductions are necessary to keep warming well below \(2^{\circ} \mathrm{C}\) rise above pre-industrial levels-the temperature rise beyond which the most catastrophic effects of climate change are projected to occur.

The emission reduction potential of phasing out oil drilling in California alone is staggering. In February 2018, the Stockholm Environment Institute released a study concluding that restricting California oil production by 100 million barrels/year would likely decrease global GHG emissions by 8 to 24 million tons \(\mathrm{CO}_{2} /\) year. \({ }^{1}\) Overall emission benefits may be even greater if one factors in the upstream GHG emissions associated with producing, transporting, and processing that oil. \({ }^{2}\)

Similarly, an Oil Change Institute report released in May 2018 found that halting new oil well permits and phasing out wells within 2,500 feet of sensitive areas - a distance within which public health studies suggest the greatest exposure to toxic air pollution occurs-could keep 660 million barrels of oil in the ground from 2019 through 2030. \({ }^{3}\) This oil, if extracted and burned,

\footnotetext{
\({ }^{1}\) Peter Erickson \& Michael Lazarus, Stockholm Envtl. Institute, How limiting oil production could help California meet its climate goals at p. 3 (Feb. 27, 2018), available at https://www.sei.org/wp-content/uploads/2018/03/sei-2018-db-california-oil2.pdf ("SEI Report").
\({ }^{2}\) Ibid.
\({ }^{3}\) Oil Change International, "The Sky's Limit California: Why the Paris Climate Goals Demand that California Lead in a Managed Decline of Oil Extraction, at p. 8 (May 2018), available at http://priceofoil.org/content/uploads/2018/05/Skys Limit California Oil Production R2.pdf.
}
would release more than 425 million metric tons of carbon pollution over the same time period. \({ }^{4}\) Both of these studies found that reducing production in California would not result in an equal import of oil from other states or countries. Rather, reducing production locally results in a net reduction of overall oil produced. The Stockholm Environment Institute, for instance, confirmed that every barrel of California oil left in the ground will result in a net decrease of about half a barrel of oil consumption globally. \({ }^{5}\)

The urgent need to prevent the worst impacts of climate change means that California cannot afford to continue investing in fossil fuel extraction and infrastructure that locks in carbon intensive oil production for years into the future. Thus, the Center fully supports phasing out oil drilling in the Culver City portion of the IOF.

In particular, we urge the City Council to:
- Move forward with phasing out oil production and remediation starting in January 2021;
- Ensure that the operator, not taxpayers, covers the full costs for remediation, and that workers hired for remediation are local and unionized;
- Create a process for community-led determination of the long-term transition vision for the site, including informed consent of the local Indigenous community.

Courts have upheld amortization periods for phasing out many different types of uses.
Furthermore, amortization of existing wells is a legally appropriate way of ending oil drilling here. In Livingston Rock and Gravel Co. v. County of Los Angeles (1954) 43 Cal.2d 121, Los Angeles County re-zoned an area from industrial to light manufacturing with a 20 -year amortization period, and after a public hearing, revoked the company's right to operate a cement mixing plant, effective one year later. In upholding the right of the County to shorten the phaseout period, the Supreme Court recognized the legitimacy of amortization periods, noting that "zoning legislation looks to the future in regulating district development and the eventual liquidation of nonconforming uses within a prescribed period commensurate with the investment involved." Id. at 127.

In City of Los Angeles v. Gage (1954) 127 Cal.App.2d 442, the City of Los Angeles passed a zoning ordinance requiring discontinuance of nonconforming commercial and industrial uses of residential buildings in residential zones. A wholesale and retail plumbing business challenged the five-year amortization period, but the California Court of Appeal upheld it. The court stated that:

Use of a reasonable amortization scheme provides an equitable means of reconciliation of the conflicting interests in satisfaction of due process requirements. As a method of eliminating existing nonconforming uses it allows the owner of the nonconforming use, by affording an opportunity to make new plans, at least partially to offset any loss he might suffer.
\(I d\). at 460 . After considering several fact-dependent factors, the court found that the amortization period was reasonable as applied to the plumbing business. Id. at 461.

\footnotetext{
\({ }^{4}\) Ibid.
\({ }^{5}\) SEI Report.
}

Furthermore, with respect to any potential argument that phasing out and amortizing fossil fuel production in the Culver City portion of the IOF would result in an unconstitutional taking, a court would be unlikely to find that a taking has occurred. First, the Culver City is a small portion of the productive capacity of the field. Second, any amortization period combined with an individual appeals process would mitigate financial losses. When weighed against the significant public health and environmental benefit, such a regulation is clearly a reasonable exercise of the City's police powers.

The Baker \& O'Brien Amortization Study supports phasing out wells in the Culver City portion of the IOF starting in January 2021.

The study by Baker \& O'Brien used two different methods to determine the time required for the amortization of capital investment ("ACI") by Sentinel Peak Resources, LLC: modeling the time for ACI for Sentinel's investment when it acquired Freeport McMoRan's portfolio of California oil and gas production properties, and modeling the time for ACI based on the original costs to drill and complete the wells and infrastructure made by other operators in the IOF between 1925 and 2016. The analysis demonstrates that the time for ACI for Sentinel's capital investment is within four to five years of Sentinel's acquisition date, thus by January 2021. In addition, even if particular wells fall short of the five-year ACI mark, the study confirms that high returns from performing wells offset low returns from marginal wells. The Center therefore urges the City Council and staff to develop a plan that begins to phase out wells starting in January 2021.

A just transition of the oil field to clean energy can help spur jobs and economic recovery.
A global survey of more than 200 of the world's most senior economists and economic officials found that investment in clean energy infrastructure, clean research and development spending, connectivity infrastructure investment, and other incentive spending have both climate benefits and the greatest stimulus effect ("economic multiplier") over time. \({ }^{6}\) Green spaces and natural infrastructure investment and building upgrades for energy were both ranked as having high climate benefits though a lower economic multiplier.

Repurposing this portion of the IOF for clean energy, green spaces, natural infrastructure would do more to create jobs and stimulate Culver City's economy than maintaining the status quo. To that end, the City should look into: ensuring that Sentinel pays for plugging and abandoning the wells as well as remediation, rather than taxpayers; and including a project labor agreement for work done at the site to ensure that the workers receive a living wage, are properly trained, are unionized, and where possible, local.

For these reasons, the Center encourages the City Council to adopt the Subcommittee's recommendations as the best outcome for Culver City's residents. Please do not hesitate to contact me with any questions.

\footnotetext{
\({ }^{6}\) Hepburn, Cameron et al., Oxford Smith School of Enterprise and the Environment, Working Paper No. 20-02 (May 4, 2020), forthcoming in the Oxford Review of Economic Policy 36(S1), https://www.smithschool.ox.ac.uk/publications/wpapers/workingpaper20-02.pdf.
}

Sincerely,

Maya Golden-Krasner
Senior Attorney | Climate Law Institute Center for Biological Diversity
mgoldenkrasner@biologicaldiversity.org
(213) 785-5402

\section*{Enclosure 3:}

August 28, 2020 letter re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field

August 28, 2020

City Council for the City of Culver City
City of Culver City - City Hall
9770 Culver Boulevard
Culver City, CA 90232
city.council@culvercity.org
via email

\section*{Re: File No. 21-158, Amortization Study for Culver City Portion of the Inglewood Oil Field}

To the Honorable City Council Members:
On behalf of the Center for Biological Diversity and the National Resources Defense Council, we thank the City Council for demonstrating continued leadership in addressing Culver City's dangerous oil and gas projects. We submit these comments in response to the August 13, 2020 letter sent to Culver City Council by Alston \& Bird on behalf of Sentinel Peak Resources California LLC ("Sentinel"), which contains misinformation and erroneous characterization of local government authority.

Sentinel claims in its letter that amortization does not apply to vested rights in the oil and gas context because "extraction of minerals" is protected under the diminishing asset doctrine identified in Hansen Brothers Enterprises v. Board of Supervisors, 12 Cal. 4th 533 (1996). \({ }^{1}\) According to Sentinel, this doctrine distinguishes the "extensive" rights that belong to companies that extract minerals from the rights of billboard owners whose investments may be amortized. \({ }^{2}\) The report Sentinel commissioned from Robert Lang and attached to its letter goes further, stating that the Hansen case means amortization cannot apply to any "extractive industries," and that the oil and gas industry has a right to unfettered expansion of "development and exploration" operations. \({ }^{3}\) These assertions misrepresent the diminishing asset doctrine, which has no application to Sentinel's operations in Culver City.

\footnotetext{
\({ }^{1}\) Letter from Nikki Carlsen, Counsel to Sentinel Peak Resources LLC, to Culver City Council 1 (Aug. 13, 2020).
\({ }^{2}\) Letter from Nikki Carlsen, Counsel to Sentinel Peak Resources LLC, to Heather Baker, Assistant City Attorney for Culver City 1-2 (June 3, 2020).
\({ }^{3}\) Robert Lang, Review of the Baker \& O'Brien Report 8 (Aug. 13, 2020).
}

\section*{I. The Diminishing Asset Doctrine Identified in the Hansen Case is Limited to Quarrying and Gravel Mining.}

Hansen dealt only with the applicability of the diminishing asset doctrine to quarrying and gravel mining, finding that the scope of a vested right to mine rock and gravel can extend to an entire parcel such that abandonment of a nonconforming use is determined by looking at overall operations on the parcel. Hansen Bros. Enters., 12 Cal. 4th at 540, 542. In outlining the diminishing asset doctrine, the Hansen court cited exclusively to quarrying and gravel mining cases, id. at 554-558, \({ }^{4}\) and noted the distinctive nature of quarrying and gravel mining activities:
[Q]uarrying involves a unique use of land. As opposed to other nonconforming uses in which the land is merely incidental to the activities conducted upon it . . . quarrying contemplates the excavation and sale of the corpus of the land itself as a resource. Depending on customer needs, the land will be gradually excavated in order to supply the various grades of sand and gravel demanded. Thus as a matter of practicality as well as economic necessity, a quarry operator will not excavate his entire parcel of land at once, but will leave areas in reserve, virtually untouched until they are actually needed.

It is because of the unique realities of gravel mining that . . . quarrying constitutes the use of land as a 'diminishing asset.' . . . [Q]uarrying, as a nonconforming use, cannot be limited to the land actually excavated at the time of enactment of the restrictive ordinance because to do so would, in effect, deprive the landowner of his use of the property as a quarry.
id. at 554.

In fact, the Hansen court recognized that "[i]n general, the state has the same power to prohibit the extraction or removal of natural products from the land as it does to prohibit other uses." Id. at 553 (emphasis added) (citing Beverly Oil Co. v. City of Los Angeles, 40 Cal.2d 552, 558 (1953)). The court in Beverly Oil affirmed that a city has "the unquestioned right to regulate the business of operating oil wells within its city limits, and to prohibit their operation within the delineated areas and districts, if reason appears for so doing." 40 Cal .2 d at 558. Quarrying and gravel mining uses were specifically distinguished from other natural resource uses by the Hansen court. Those uses are exempted from the general rule barring expansion of existing nonconforming uses because quarrying land is "one use" land: quarrying operations fundamentally depend on excavation of all portions of the land where that use existed or was

\footnotetext{
\({ }^{4}\) Stephan \& Sons v. Municipality of Anchorage, 685 P.2d 98 (Alaska 1984) (gravel pit); McCaslin v. City of Monterey Park, 329 P.2d 522 (Cal. Ct. App. 1958) (decomposed granite quarry and sand and gravel pit); County of Du Page v. Elmhurst-Chicago Stone Co., 165 N.E.2d 310 (Ill. 1960) (quarry); Hawkins v. Talbot, 80 N.W.2d 863, 865 (Minn. 1957) (gravel pit); Town of Wolfeboro v. Smith, 556 A.2d 755 (N.H. 1989) (gravel pit); Flanagan v. Town of Hollis, 293 A.2d 328, 329 (N.H. 1972) (gravel excavation); Moore v. Bridgewater Tp., 173 A.2d 430, 437 (N.J. Super. 1961) (quarry); Struyk v. Samuel Braen's Sons, 85 A.2d 279, 281 (N.J. Super. 1951) (quarry); Syracuse Aggregate Corp. v. Weise, 414 N.E. 2 d 651 (N.Y. 1980) (quarry); Dolomite Products Company v. Kipers, 279 N.Y.S.2d 192 (N.Y. App. Div. 1965) (quarry); R. K. Kibblehouse v. Marlborough, 630 A.2d 937, 944 (Pa. Commw. Ct. 1993) (quarry); Gibbons \& Reed Company v. North Salt Lake City, 431 P.2d 559, 562-563 (Utah 1967) (gravel mine); Smart v. Dane County Bd. of Adjustments, 501 N.W.2d 782, 785 (Wis. 1993) (quarry).
}
clearly contemplated when zoning regulations changed. Id. at 553. For these reasons, the diminishing asset doctrine is limited to quarrying and gravel mining.

As the City Council is no doubt aware, Culver City has prevailed on this very legal issue before. In Plains Exploration \& Production Co. v. City of Culver City (L.A. Super. Ct. No. BS122799, March 26, 2010), the Court rejected an oil company's argument that it had a vested right to expand its existing nonconforming use and drill new wells under the diminishing asset doctrine outlined in Hansen. The Court pointed out that oil and gas drilling are not mining under California law. Id. at 10-11. In addition, oil and gas are generally migratory rather than fixed features of a parcel-they can be extracted from one location on a property without expanding use to the entire parcel. Id. at 11-12. Owners can also use oil and gas-producing land for purposes other than extraction. Id. The diminishing asset doctrine is of highly questionable application outside of the quarrying and gravel mining context and of absolutely no application to oil and gas operations.

\section*{II. Even If the Diminishing Asset Doctrine Applied to Oil and Gas Operations-Which It Does Not-Amortization Could Still Be Used to Phase Out Drilling Rights.}

Vested rights are not perpetual rights; they may be lawfully discontinued through amortization. City of Los Angeles v. Gage, 127 Cal. App. 2d 442, 459 (1954). This is true even when those rights relate to mining diminishing assets, which, again, is not the case with oil and gas vested rights. Sentinel's statement that "[n]o case has held that the amortization applies to eliminate a diminishing asset use" is false. \({ }^{5}\) In fact, the Hansen court expressly acknowledged that a vested nonconforming use may be limited to the period adequate for amortization of the owners' investment. Hansen, 12 Cal. 4th at 552. Other states that recognize the diminishing asset doctrine have also noted its compatibility with amortization. See Stephan \& Sons v. Municipality of Anchorage, 685 P.2d 98, 102 (Alaska 1984) (by "providing for the amortization of a mineral resource nonconforming use," Alaska law "contemplates that those uses may continue to some degree" under the diminishing asset doctrine); City of Univ. Place v. McGuire, 30 P.3d 453, 459 (Wash. 2001) (adopting the "doctrine of diminishing asset to determine the lawful scope of the nonconforming use in mining operations" and noting that any "potential damage to zoning schemes" caused by this adoption "may be ameliorated through reasonable amortization periods"). Even if the diminishing asset doctrine applied to oil and gas operations, amortization of the investment for those assets would be possible. And Sentinel has not demonstrated that the amortization period would be longer if its oil and gas drilling rights were subject to the doctrine.

California courts have long recognized amortization periods as a legal means to balance the competing interests of a landowner's property rights and a local agency's need to implement zoning changes that benefit public health and welfare. Gage, 127 Cal . App. 2d at 460 . As noted in the Center for Biological Diversity's earlier comments, amortization's application is not confined to billboards. On the contrary, courts have approved the use of phase out periods in a wide variety of contexts. \({ }^{6}\)

\footnotetext{
\({ }^{5}\) Letter from Nikki Carlsen, Counsel to Sentinel Peak Resources LLC, to Culver City Council 1 (Aug. 13, 2020).
\({ }^{6}\) See, e.g., Livingston Rock \& Gravel Co. v. County of Los Angeles, 43 Cal. 2d 121 (1954) (cement mixing plant); People v. Gates, 41 Cal. App. 3d 590, 603 (1974) (wrecking yard); Castner v. City of Oakland, 129 Cal. App. 3d 94, 96-97 (1982) (adult bookstore).
}

Moreover, local governments have always had authority to exercise their broad police powers to abate nuisances and protect the public from harm. Cal. Const. Art. XI, sec. 7; Richeson v. Helal, 158 Cal. App. 4th 268, 277 (2007). In Culver City, the air, water, noise, and light pollution caused by oil and gas activities have been allowed to endanger nearby residents for far too long.

We commend the Culver City Council for directing staff to develop a framework and timeline to phase out wells in the City. Sentinel's manufactured arguments should not slow down this process. Please do not hesitate to contact us with any questions. We look forward to working together on this critical issue.

\author{
Sincerely, \\ /s/ Liz Jones \\ Liz Jones, Staff Attorney \\ Center for Biological Diversity \\ 660 S. Figueroa St., Suite 1000 \\ Los Angeles, CA 90017 \\ ljones@biologicaldiversity.org (213) 785-5400 \\ Damon Nagami \\ Director, Southern California Ecosystems Project \\ Senior Attorney, Nature Program \\ Natural Resources Defense Council \\ 1314 Second Street \\ Santa Monica, CA 90401 \\ dnagami@nrdc.org \\ (310) 434-2300
}
cc: Carol Schwab, City Attorney, city.attorney@culvercity.org
Heather Baker, Assistant City Attorney, heather.baker@culvercity.org

\section*{Enclosure 4:}

October 26, 2020 letter re: A-4. 21-389, Resolution Declaring Intent to Evaluate Phase Out Period for the Inglewood Oil Field

October 26, 2020

\author{
City Council for the City of Culver City \\ City of Culver City - City Hall \\ 9770 Culver Boulevard \\ Culver City, CA 90232 \\ city.clerk@culvercity.org \\ public.comment@culvercity.org \\ via email
}

\section*{Re: A-4. 21-389, Resolution Declaring Intent to Evaluate Phase Out Period for the Inglewood Oil Field}

To the Honorable City Council Members:
The Center for Biological Diversity ("Center") submits these comments in support of the City Council Oil Drilling Subcommittee's ("Subcommittee") recommendation to adopt a resolution "declaring the City Council's intent to evaluate the establishment of an approximate five-year phase-out period for the amortization and removal of nonconforming oil and gas activities within the City," and to direct the Subcommittee and staff to develop and refine an Amortization Program. We thank the City Council for demonstrating continued leadership in addressing Culver City's dangerous oil and gas projects.

Oil drilling poses numerous health and safety risks, especially for residents who live, go to school, play, or work within 2,500 feet of operations. Research has found that people living near drilling sites have a higher risk for developing cancer, higher hospitalization rates, higher rates of preterm births and low birth rates, and more upper respiratory problems and rashes. Many Californians living near active oil and gas wells suffer from terrible symptoms such as nosebleeds, headaches, and worsened asthma. In addition, drilling hinders our state's ability to achieve climate goals. Immediate and aggressive greenhouse gas emissions reductions are necessary to keep global warming well below \(2{ }^{\circ} \mathrm{C}\) rise above pre-industrial levels-the temperature rise beyond which the most catastrophic effects of climate change are projected to occur.

In order to protect the safety and wellbeing of Culver City residents, the Council must act quickly to transition away from fossil fuels to a clean and sustainable economy. By repurposing the Inglewood Oil Field for clean energy, green spaces, and natural infrastructure, Culver City can create jobs and help spur economic recovery.

California courts have long recognized amortization periods as a legal means to balance the competing interests of a landowner's property rights and a local agency's need to implement zoning changes that benefit public health and welfare. As explained in the Center for Biological

Diversity's earlier comments, \({ }^{1}\) Courts have approved the use of phase out periods in a wide variety of contexts. \({ }^{2}\) Sentinel Peak Resources, LLC's arguments that oil drilling is specially protected under California law have also been rejected by the Los Angeles Superior Court. \({ }^{3}\) Finally, local governments have always had authority to exercise their broad police powers to abate nuisances and protect the public from harm. \({ }^{4}\) In Culver City, the air, water, noise, and light pollution caused by oil and gas activities have been allowed to endanger nearby residents for far too long.

The study commissioned by Baker \& O'Brien found that Sentinel Peak Resources, LLC achieved amortization of its capital investment within four to five years of purchasing the wells in the Inglewood Oil Field: that is, by January 2021. In addition, even if particular wells fall short of the five-year amortization mark, the study confirms that high returns from performing wells offset low returns from marginal wells. While we are disappointed that City Council and staff have not committed to phasing out drilling and fully remediating the site of oil and gas activities sooner than five years after the effective date of the proposed Amortization Program, the five year timeframe proposed in the resolution is clearly sufficient given the findings of the Baker \& O'Brien study. We urge City Council to adopt the Subcommittee's recommendation.

Further, the Subcommittee and staff should work to prepare the Amortization Program as quickly as possible. City Council should also at a future date consider adopting a more specific timeline for the end of drilling at the site and for remediation. For the health and safety of City residents and in order to ensure legacy spills and other drilling activity impacts are fully cleanedup, Sentinel Peak Resources, LLC must not be allowed to wait until the end of the five-year period to stop drilling and begin remediation. Drilling can and should be phased out starting in January 2021.

Please do not hesitate to contact me with any questions. We look forward to working together on this critical issue.

Sincerely,

Liz Jones, Staff Attorney
Center for Biological Diversity
660 S. Figueroa St., Suite 1000
Los Angeles, CA 90017
ljones@biologicaldiversity.org
(213) 785-5400

\footnotetext{
\({ }^{1}\) The Center for Biological Diversity submitted letters on March 14, 2018; June 20, 2018; August 12, 2020; August 28,2020 . We are happy to further discuss the information contained in any of these letters.
\({ }^{2}\) See, e.g., Livingston Rock \& Gravel Co. v. County of Los Angeles, 43 Cal. 2d 121 (1954) (cement mixing plant); Castner v. City of Oakland, 129 Cal. App. 3d 94, 96-97 (1982) (adult bookstore); People v. Gates, 41 Cal. App. 3d 590, 603 (1974) (wrecking yard); City of Los Angeles v. Gage, 127 Cal. App. 2d 442 (1954) (commercial and industrial uses of residential buildings in residential zones).
\({ }^{3}\) Plains Expl. \& Prod. Co. v. City of Culver City at 10-12 (L.A. Super. Ct. No. BS122799, March 26, 2010).
\({ }^{4}\) Cal. Const. Art. XI, sec. 7; Richeson v. Helal, 158 Cal. App. 4th 268, 277 (2007).
}
\begin{tabular}{ll}
From: & Leah Pressman \\
Sent: & Monday, October 18, 2021 2:03 PM \\
To: & Public Comment at Culver City; Fisch, Alex; Vera, Albert; Yasmine-Imani McMorrin; Lee, \\
& Daniel; Eriksson, Goran \\
Subject: & Public Comment for City Council Item PH-1
\end{tabular}

Dear Mayor, Vice Mayor, and Council Members,
I expect your vote on this item will be unanimous. I write and echo much of what Jeff Schwartz has said in his email to you because I agree and I am running out of time to submit a very original comment.

Four of you campaigned on closing the oil field and voted for this item on its previous appearance. This was a BIG deal. My deep and heartfelt thanks to those of you who chose to lead on tis.

Culver City's leadership was followed by Los Angeles City and Los Angeles County also acting to close down the oil field.
As Pete Buttigieg pointed out yesterday, if we do not act and act boldly and decisively to mitigate climate change, it will result in more death and more economic devastation.

Capital \& Main, Grist, and LA Taco just collaborated the article referenced below:
Nose Bleeds and Cancer in Los Angeles: A Troubling Look at the Oil Fields in Our Backyards

Nose Bleeds and Cancer in Los Angeles: A Troubling Look at the Oil Field...

Neighborhood drilling is a distinctly Californian phenomenon that affects Black and Brown people the most. Even ...

It's focused on environmental racism, but also documents the health impacts of drilling near homes. I encourage you to close this deal and shut down the oil field once and for all.

Thank you for continuing to move this forward and keeping Culver City a climate leader.
\begin{tabular}{ll}
From: & McGuire, Julie <JMcGuire@manatt.com> \\
Sent: & Monday, October 18, 2021 2:22 PM \\
To: & Public Comment at Culver City \\
Cc: & Waggener, Sigrid; Moyer, Craig \\
Subject: & Comments on Proposed Zoning Code Amendment P2021-036-ZCA, City Council \\
& October 18, 2021 Hearing \\
Attachments: & Letter to Clerk_City of Culver City - October 18_ 2021.pdf
\end{tabular}

Please see attached comments of the California Independent Petroleum Association on Zoning Code Amendment P2021-0036-ZCA.

Thank you.

\section*{Julie McGuire}

Legal Secretary

Manatt, Phelps \& Phillips, LLP
One Embarcadero Center
30th Floor
San Francisco, CA 94111
D (415) 291-7573 F (415) 291-7474
JMcGuire@manatt.com
manatt.com

October 18, 2021

\title{
VIA E-MAIL [PUBLIC.COMMENT@CULVERCITY.ORG]
}

City of Culver City
City Council for the City of Culver City
9770 Culver Blvd.
Culver City, CA 90232

\section*{Re: Comments on Proposed Zoning Code Amendment P2021-0036-ZCA, City Council October 18, 2021 Hearing}

Dear Mayor, Vice Mayor and Honorable Council Members:
This firm represents the California Independent Petroleum Association (CIPA). On CIPA's behalf, we submit the below comments on the City of Culver City's (City) reintroduction of its proposed Zoning Code Amendment, Ordinance P2021-0036-ZCA entitled, "Nonconforming Oil Use, to Terminate Nonconforming Oil and Gas Uses by November 24, 2026" (Ordinance). We ask that these comments be made part of the record of proceedings regarding the Ordinance.

\section*{1. The Ordinance Conflicts with State Law; It Is Therefore Preempted.}

We urge the City to suspend all proceedings concerning the Ordinance in light of last week's decision in the matter of Chevron U.S.A., Inc. v. County of Monterey, No. H045791, 2021 Cal. App. LEXIS 844, at *4 2021 WL 4743024 (Ct. App. Oct. 12, 2021) (Chevron). In Chevron, the Court of Appeal affirmed the authority of the State to regulate the manner in which oil drilling operations could proceed. Nevertheless, the City's proposed Ordinance would prohibit most oil and gas activity, including the drilling and redrilling, or deepening of existing wells and to prohibit the erection of any derrick, structure, or equipment related to oil and gas operations, all of which conflict with the State's laws and regulations. [Proposed Zoning Code Amendment, section D.] This is contrary to the holding in Chevron, and moving forward with the Ordinance will likely result in the Ordinance being challenged on Chevron grounds.

\section*{2. Application of An Amortization Program is Improper Here.}

The amortization concept is based on the premise that a property owner must be given an opportunity to recoup its investment and be made whole. The application of the concept to oil fields does not achieve that purpose. The utility of an oil field depends on its productivity, which requires ongoing infrastructure investment. Amortization does not fully account for such

\section*{manatt}

Clerk, City of Culver City
October 18, 2021
Page 2
investments and therefore does not facilitate actual recovery on oil field infrastructure investments. Instead, the application of an amortization program in the context of oil field operations amounts to a taking of property without just compensation.

\section*{3. Even if Amortization Could Be Applied Here, the City's Application Is Flawed}

As discussed in the October 18, 2021 letter of Sentinel Peak Resources California, LLC submitted in connection with the proposed Ordinance, the City's amortization program relies on fundamentally flawed and legally improper assumptions. By way of example, the program assumes that all capital investments in oilfields within the City were made decades ago and returns on those investments have already been garnered. Not so. As explained above, the nature of oil and gas operations requires constant, ongoing capital investment. Such investments have yet to be recouped.

\section*{4. The City's Reliance on Categorical Exemptions Is Improper}

The City purports to comply with the environmental disclosure, evaluation and mitigation mandates of the California Environmental Quality Act (CEQA) in its adoption of the Ordinance by relying on three categorical exemptions. \({ }^{1}\) Such reliance is improper. In deeming the Ordinance exempt from CEQA, the City failed to consider the significant, foreseeable impact the Ordinance would have on mineral resources. The City must undertake a legally adequate evaluation of the impacts to this CEQA resource class prior to adoption of the Ordinance. The City must also consider the increases in greenhouse gas (GHG) emissions that will result from Ordinance adoption. Reducing oil and gas production in California will result in an immediate, foreseeable increase in the importation of foreign oil. Importation of foreign oil results in increased GHG emissions from tanker ships carrying the oil and the oil itself, which is not climate compliant. \({ }^{2}\)

For the reasons stated herein, CIPA strongly opposes the City to discontinue its processing of the proposed Ordinance and decline to adopt the Ordinance.

Sincerely,

Sigrid R. Waggener

\footnotetext{
\({ }^{1}\) These exemptions are Existing Facilities (Class 1), Minor Alterations to Land (Class 4), and Actions by Regulatory Agencies for the Protection of the Environment (Class 8).
\({ }^{2}\) By contrast, oil produced in California is climate compliant-meaning that oil produced in State is produced in compliance with some of the most rigorous GHG reductio programs in the world.
}

Ferrel, Mimi
From:
Sent:
To:
Monday, October 18, 2021 3:01 PM
Public Comment at Culver City
Attachments:
Culver City 10-18-2021 (CFT).pdf

\section*{LIZ K. GOSNELL}

CONE FEE TRUST

\title{
McGarrigle, Kenney \& Zampiello, APC \\ 9600 TOPANGA CANYON BLVD., SUITE 200 \\ CHATSWORTH, CALIFORNIA 91311 \\ TELEPHONE (818) 998-3300 FAX (818) 998-3344 \\ E-MAIL: thefirm@mkzlaw.com
}

OUR FILE NUMBER-
8597-001

October 18, 2021

\section*{VIA E-MAIL}

The City of Culver City City Council Mayor

Alex Fisch
Vice Mayor Daniel Lee
Council Member Goran Eriksson
Council Member Yasmine-Imani McMorrin
Council Member Albert Vera
alex.fisch@culvercity.org daniel.lee@culvercity.org goran.eriksson@culvercity.org yasmine-imani.mcmorrin@culvercity.org albert.vera@culvercity.org

Re: Cone Fee Trust And Vickers Group's Objections To Reintroduction of and ordinance approving zoning code ordinance code amendment P2021-0036-ZCA, amending Culver City municipal code Title 17: Zoning code, section 17.610 .010 .D - nonconforming oil use to terminate nonconforming oil and gas uses by 11/24/2026 and (2) direction to the subcommittee and City Staff as deemed appropriate

Dear Mayor, Vice Mayor and Council Members,
On behalf of the Cone Fee Trust, an owner within the Inglewood Oil Field (IOF) and stakeholder in these proceedings, CFT provides preliminary comments as follows. Attorney Charles Moore representing the Vickers Group, the major landowner in the Culver City portion of the Inglewood Oil Field, joins in the comments expressed herein.

For transparency's sake, the City Council for the City of Culver City should report to their residence and taxpayers all funds spent in the last decade plus years in the City's relentless efforts to close the oil field. The City Council must also advise the same group of the related extensive cost of future litigation going forward should the City Council choose to proceed with this erroneous proposed zoning and inherently flawed "Amortization Study" as a pretext for the unlawful taking of private property.

Further, the proposed zoning is squarely at odds with myriad facts and principles:
- The total ban on the future use of the existing 100-year-old oil field without adequate compensation is an improper taking of the landowners' property interests.

\author{
The City of Culver City City Council Mayor Alex Fisch \\ Vice Mayor Daniel Lee \\ Council Member Goran Eriksson \\ Council Member Yasmine-Imani McMorrin \\ Council Member Albert Vera
}

October 18, 2021
Page 2
- This proposed action is not a question of banning or regulating future oil and gas activities in the City. This local regulation is about the uncompensated taking of the existing oil production activities.
- The threatened City action to compel termination of the oil field in five years is a conclusory announcement untethered to law or fact. No owner consents to such activity. No owner subscribes to the wholly flawed and socialist "amortization" rubric. The existing use is established under law and not subject to government seizure through these surreptitious means.
- If adopted, the City will be immediately challenged in Court in order to derive adequate compensation for the proposed taking.

Additionally, the City relies on a purported general exception in state law with no real application to the landowners or the energy or future uses of the property. Amortization is not a mere accounting principal simply borrowed to replace the land use principles of zoning. Amortization does not end the discussion of the landowners' interest or the true cost of eliminating this single source of energy or uses of future private property.

The City and its out of town consultant ignore future uses and any analysis of future uses. Therefore, the City did only half a study, at best, and the study, as it is, presents zero basis for any action by the City now or hereafter that attempts to restrict or take private property.

If any councilperson is in favor of transparency, accountability, fiscal responsibility, and the interests of all of its citizens, the Amortization Study and any action thereon should be recommended to be rejected and abandoned and the limited resources utilized for essential services for the citizens.

Should you wish to discuss, please feel free to contact me.```

[^0]: ${ }^{1}$ The City also states that the proposed Ordinance will "acknowledge and affirm" the role of the City's comprehensive General Plan Update. [Proposed Ordinance, p. 5.] The proposed Ordinance cannot "affirm" a General Plan that is invalid. As stated in Lesher: "The tail does not wag the dog." Lesher, 52 Cal.3d at 541.

[^1]: ${ }^{1}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 10.
 ${ }^{2}$ Report of Robert Lang dated June 17, 2021, pgs. 10-21.
 ${ }^{3}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 2.

[^2]: ${ }^{4}$ Report of Robert Lang dated June 17, 2021, Exhibit 1, Exhibit 2, and Table 3 (pg. 24).
 ${ }^{5}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 7.
 ${ }^{6}$ Report of Robert Lang dated June 17, 2021, Exhibit 1 and 2.

[^3]: ${ }^{7}$ Report of Robert Lang dated June 17, 2021, pg. 18, par. 52.
 ${ }^{8}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 19. Emphasis added.
 ${ }^{9}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 14.

[^4]: ${ }^{10}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 6.
 ${ }^{11}$ Depreciation is a non-cash item and, therefore, it would be inappropriate to deduct depreciation from any cash flow analysis.
 ${ }^{12}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 15-17.
 ${ }^{13}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 17-18.
 ${ }^{14}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 20.
 ${ }^{15}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 15-18.
 ${ }^{16}$ To be clear, this letter does not contain an exhaustive list of items for which I disagree with the B\&O Letter.
 ${ }^{17}$ Baker \& O'Brien, Inc.'s Letter dated October 8, 2021, pg. 7 and 10.

[^5]: ${ }^{18}$ Furthermore, even if an ACI analysis dating back decades was relevant, by B\&O's own admission, detailed information is not available and B\&O simply "estimated" or "back-casted" a majority of the inputs needed to develop its cash flow model (Baker \& O'Brien, Inc.'s Capital Investment Amortization Study Report dated May 29, 2020, pgs. 31-32).
 ${ }^{19}$ It is SPR's position that an ACI calculation is not appropriate for oil and gas investments. I was asked to perform an ACI calculation as if it was appropriate.
 ${ }^{20}$ See Opinion 1 in the Report of Robert Lang dated June 17, 2021.
 ${ }^{21}$ See Opinion 2 in the Report of Robert Lang dated June 17, 2021.

[^6]: two other corporations, which we will refer to collectively as Trio. The six actions were consolidated by the trial court for the Phase 1 trial.
 ${ }^{2}$ All further statutory references are to the Public Resources Code unless otherwise indicated.

[^7]: ${ }^{3}$ Chevron conceded at the outset of the Phase 1 trial that it was not using well stimulation techniques or hydraulic fracturing at the San Ardo Field, where Chevron's Monterey County drilling operations were located. However, Chevron argued that "the possibility that Chevron might in the future use well stimulation or may need to or may decide to, that's enough for standing." NARO also conceded that "nobody's using hydrofracturing at the moment and probably-maybe never again in the County of Monterey." The trial court ultimately rejected plaintiffs' challenges to LU-1.21 based on its finding that they lacked standing to challenge that aspect of Measure Z . That ruling is not at issue in this appeal.

[^8]: ${ }^{4}$ The court consolidated the six cases filed by plaintiffs for purposes of the "Phase 1" trial, which was to resolve the facial challenges to Measure Z, including preemption and takings. The County has not appeared in this appeal.
 ${ }^{5}$ The Center for Biological Diversity (the Center) also sought to intervene. The trial court denied the Center's motion, but granted PMC's motion to intervene. The court also permitted PMC's spokesperson, Dr. Laura Solorio, to intervene. We will refer to PMC and Solorio collectively as PMC.

[^9]: ${ }^{6}$ Some of the other parties also filed notices of appeal, but all of them subsequently dismissed their appeals.
 ${ }^{7}$ We refer to these two policies as Measure Z in our analysis for ease of reference, even though Measure Z also encompasses LU-1.21, which is not at issue in this appeal and which the trial court did not find preempted. Our references to Measure Z should not be misunderstood to include LU-1.21.

[^10]: ${ }^{10}$ A 1957 amendment added "or reservoir energy" after "loss of oil, gas". (Stats. 1957, ch. 405, \& 7.) It made no other change.
 ${ }^{11}$ DOGGR became the Division of Geologic Energy Management (CalGEM) on January 1, 2020. (§ 3002.) We continue to refer to it as DOGGR in this opinion as the trial court and the parties have done.
 ${ }^{12}$ The 1989 amendment added additional methods to the second paragraph, and added a third paragraph, before the final sentence, giving the supervisor authority to impose a monitoring program. (Stats. 1989, ch. 1383, § 2.) The 1994 amendment granted the supervisor authority over tanks, pipelines, and other facilities. (Stats. 1994, ch. $523, \S 3$.)

[^11]: ${ }^{13}$ Division 3 of the Public Resources Code contains a large number of statutes regulating oil and gas. Chapter 1, article 3 regulates well stimulation treatments. ($\S \S 3150-3161$.) Article 4 regulates the operation of oil and gas wells. ($\S(3200-3238$.) Section 3203 authorizes the supervisor to approve the drilling of a well. Article 4.4 regulates oil and gas production facilities. ($\$ \S 3270-3270.6$.) Article 6 establishes an administrative appeal process for challenging orders by the supervisor. ($\S 3350-3359$.) Chapter 3 regulates the spacing of wells. ($\S(3600-3609$.) Chapter 3.5 deals with "unit operations."

[^12]: ${ }^{14}$ We decline to resolve the parties' dispute over whether Measure Z regulates "subsurface" activity as the resolution of that specific dispute is unnecessary to our analysis. We also see no need to rely on the 1976 Attorney General's opinion that the parties both rely on as we review this legal issue de novo. Nevertheless, we note that the 1976 Attorney General's opinion is consistent with our view. It found that "certain phases of oil and gas activities are of statewide rather than local concern and that any local regulation in conflict with those phases would therefore be ineffective; in our view, the state has so fully occupied these certain phases that there is no room left for local regulation." (59 Ops.Cal.Atty.Gen. 461, 477.) Having different regulations in different locations would be particularly problematic where oil and gas deposits extended under the boundaries of multiple local jurisdictions. (Ibid.) The Attorney General concluded that this preemption of local control extended to anything that the supervisor had approved. (Id. at p. 478.)
 ${ }^{15}$ The parties argue at length over whether Measure Z is entitled to a presumption against preemption. We see no need to address these competing arguments as any presumption was amply rebutted in this case. Preemption is established as a matter of law.

[^13]: ${ }^{16}$ Nothing in this opinion should be construed to cast any doubt on the validity of local regulations requiring permits for oil drilling operations or restricting oil drilling operations to particular zoning districts. This case involves no such regulations.

[^14]: ${ }^{17}$ Because we do not reach these issues, we deny Chevron's April 2019 request for judicial notice, as it concerns only the federal preemption issue.

[^15]: ${ }^{18}$ Aera filed three declarations in support of its Phase 1 arguments. CRC filed five declarations and numerous exhibits in support of its Phase 1 arguments. CRC also made a request for judicial notice. NARO filed two declarations along with their accompanying exhibits. Chevron submitted six declarations and their accompanying exhibits. Chevron also submitted a glossary of terms. Eagle submitted two declarations with exhibits. Plaintiffs also submitted a joint request for judicial notice of 80 exhibits.
 ${ }^{19}$ Plaintiffs also filed supplemental declarations and additional judicial notice requests. PMC and the County also objected to plaintiffs' supplemental declarations and supplemental requests for judicial notice.
 ${ }^{20}$ The court rejected the single-subject rule challenge and the general plan consistency challenges, and those rulings are not challenged on appeal.

[^16]: Selected References: Ingram, W.L., 1963, Cascade Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1. Roth, G.H., 1958, Cascade Oil Field, A Guide to the Geology and Oil Fields of the Los Angeles and Ventura Regions: Pacific Section Am. Assoc. Petroleum Geologists, p. 166-171.

[^17]: Cross, R.K., 1940, Gato Ridge Area of Cat Canyon Oil Field: State Div. of Mines, Bull. 118, p. 438.
 Dolman, S.G., 1931, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 17 , No. 3, p. 34.
 Woodring, W.P., and M.N. Bramlette, 1950, Geology and Paleontology of the Santa Maria District, California: U.S. Geol. Survey Prof. Paper 222, p. 121.

[^18]: Selected References: Gaede, V.F., 1957, Leffingwell 0il Field: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 2.

[^19]: Selected References: Stockton, A.D., 1974, Lyon Canyon Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 59, No. 1.

[^20]: Selected References: Durham, D.L., and R.F. Yerkes, 1964, Geology and $0 i 1$ Resources of the Eastern Puente Hills Area, Southern California, in Geology of the Eastern Los Angeles Basin, Southern California: U.S. Geol. Survey Prof. Paper 420-B, Gray, C.H. Jr., 1961, Geology of the Corona South Quadrangle and the Santa Ana Narrows Area, Riverside, Orange and San Bernardino Counties, California: Calif. Div. of Mines Bull. 178.

[^21]: Selected References:
 Corwin, C.H., 1946, West Newport Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 32. No. 2.
 Hunter, A.L., and D.R. Allen, 1956, Recent Developments in West Newport Oil Field: Calif. Div. of 0il and Gas, Summary of Operations -Calif. Oil Fields, Vol. 42, No. 2.

[^22]: Selected References:
 Kaplow, E.J., 1947, Oxnard Oil Field: Calif. Div, of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 33, No. 2. Dosch, M.W., and W.S. Mitchell, 1964, Oxnard Oil Field: Div. of Oil and Gas, Sumary of Operations -- Calif. Oil Fields, Vol. 50, No. I. Dosch, M.W., 1965, Pjiocene Tar Sands in Oxnard Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol 51, No. 2.

[^23]: Selected References: Dolman, S.G., 1948, Operations in District No. 3: Calif. Div. of Oil and Gas, Summary of Operations--Calif. 0il Fields, Vol. 34, No. 2. 2 raverse, E.F., A.D. Deibert, and A.J. Sustek, 1982, San Ardo - A Case History of a Successful Steamflood: Energy Progress, September 1982, Vol. 2, No. 3, p. 177

[^24]: Selected References: Godde, H.A., 1924, Oil Fields of Ventura County: Calif. Div. of 0il and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 10 , No. 5.

[^25]: Selected References: McColloh, J.H., 1969, Geologic Characteristics of the Dos Cuadras Offshore Field: U.S. Geol. Survey Prof. Paper 679-C.
 Adams, M.V., 1973, Report on Water Injectivity Test, Lease OCS-P 0241, Well No. B-49-I, Dos Cuadras Field, Santa Barbara Channel, Offshore Calif., U.S. Geol. Survey Cir. 687.

[^26]: Selected References: Sankur, V., L.S. Weber, and L.0. Masoner, 1990, Development of Sockeye Field in Offshore California: A Case History: SPE Paper 20047.

